

Pիոլ. և գյուղատնա. գիտություններ

VII. № 2, 1954

Биол. и сельхоз. науки

КРАТКИЕ НАУЧНЫЕ СООБЩЕНИЯ

Т. Х. Григорян

О жизнеспособности пыльцы пшеницы

При выведении новых высокоурожайных сортов сельскохозяйственных растений методом гибридизации представляет интерес изучение жизнеспособности пыльцы.

Многими исследователями установлено, что на жизнеспособность пыльцы действуют различные условия: температура, влажность, свет, кислород, углекислый газ, атмосферное давление и другие. Эти условия действуют по-разному, в зависимости от природы растения.

В работе А. В. Дорошенко [5] указано, что, по данным Гоффа, жизнеспособность пыльцы вишни и сливы сохраняется при температуре —20°С, маслины —23°С; по данным Андронеску, пыльца кукурузы теряет оплодотверящую способность при 0° через 51 час при нормальной влажности, а наиболее благоприятной температурой является 10—14°С. Пыльца кукурузы выдерживается в сухой атмосфере 2 часа, во влажной—48 часов.

По данным Сандстена, приведенным А. В. Дорошенко, при температуре 50—70°С понижается жизнеспособность пыльцы яблони и сливы, а предельной температурой, которую может перенести малая часть пыльцевых зерен, является 90°С.

- А. В. Дорошенко приводятся данные Арнольдовой, которая установила, что пыльца подсолнечника сохраняет жизнеспособность 386 дней, и данные Гольмана и Брубакера, которые установили, что пыльца злаковых сохраняет жизнеспособность в среднем 1 день.
- А. В. Дорошенко установил, что свет действует отрицательно на жизнеспособность пыльцы, а темнота способствует большей активности пыльцы.
- А. И. Алексеенко [1] изучал жизнеспособность пыльцы люпина на 15% растворе сахара при температуре 20—25°С в течение 20—22 часов и установил, что наибольшая активность пыльцы наблюдается на первыйвторой день раскрытия цветков, процент прорастания пыльцы составлял 81,4

Исследованиями И. Н. Голубинского [2, 3, 4], А. С. Татаринцева и Е. П. Соколовой [6], И. М. Шайтана [7] было установлено, что на жизнеспособность и свойства пыльцы, кроме указанных факторов, влияют: загущенность посева в искусственных условиях, примесь пыльцы окружающих растений, наличие околоцветника во время опыления, местоположение цветка на побеге, время цветения.

В наших исследованиях ставилась задача изучить продолжительность жизнеспособности пыльцы пшеницы в различное время (дня) опыления, а также жизнеспособность и наследственность гибридных растений пшеницы, полученных от опыления пыльцой различного возрастного состояния.

В настоящем сообщении приводятся результаты изучения жизнеспособности пыльцы различного возрастного состояния в разное время опыления.

Изучение жизнеспособности пыльцы пшеницы проводилось в полевых условиях с учетом факторов температуры и относительной влажности воздуха. С целью изучения жизнеспособности пыльцы пшеницы во время гибридизации для эксперимента были взяты в качестве материнской формы озимая пшеница Егварди 4, отцовская Егварди 4 и озимая пшеница Арташати 42. Для гибридизации было кастрировано в 1 день 100 колосьев и изолировано в пергаментные мешочка. Такое количество кастрированных колосьев должно было обеспечить гибридизацию в 14 сроков по 6 колосьев в каждый срок. Для опыления заранее собиралась пыльца как Егварди 4, так и Арташати 42 в равном количестве. Соотношение пыльны быле взято из расчета на каждый цветок по 2 тычинки, и составлена смесь. Собранная смесь пыльцы сохранялась в стеклянных баночках в естественных (полевых) условиях. После сбора пыльцы сейчас же было начато опыление колосьев ишеницы и продолжалось в течение 6 часов при повторении через каждые 20 минут. Первый срок опыления был начат с 9 часов утра, затем 920, 940, 1000, 1021, 1010, 1100, 1120, 1110, 1200, 1220, 1240, 1300, 1320, 1340, 1400, 1500 часов.

В каждый срок опыления определялась температура и относительная влажность воздуха психрометром Ассмана б/м, устанавливаемым на уровне колосьев. После уборки собранные колосья анализировались по срокам. Для учета процента завязывания зерен подсчитывалось количество цветков в колосе и завязавшихся зерен.

Результаты анализа жизнеспособности смеси пыльцы Егварди 4 и Арташати 42 приводятся в таблице.

Данные таблицы показывают, что наилучшее завязывание зерен было получено в первый срок опыления (9 часов), когда наиосилась свежая пыльца, при этом процент завязывания был равен 50, температура воздуха $22,2^{\circ}$ и относительная влажность воздуха 42%.

Низкий процент завязывания был получен в 15 часов, при этом завязывание зерен падало до 2%, температура воздуха была равна 27,2°, относительная влажность воздуха 33%. Это явление объясняется старением пыльцы, повышением температуры воздуха и понижением относительной влажности.

Данные таблицы показывают также, что жизнеспособность пыльцы пшеницы может сохраниться 6 часов при постепенном понижении активности.

^{*} Опыты были заложены в Институте генетики и селекции растений АН Арм. ССР.

Ланные жизнеспособности пыльцы озимой пшеницы Егварди 4 и Арташати 42 в различное время опыления 1953 г. (год скрещивания)

Комбинация	Время опыления	Процент завязыва- ния зерен	Температу- ра воздуха	Относительвая влажность воздуха
♀ Егварди 4 × ♂ Егварди 4 ♂ Арташати 42	900 940 1000 1020 1040 1140 1240 1360 1320 1340 1400 1500	50,0 25,0 30,0 23,8 16,3 19,7 20,8 12,4 8,5 5,9 4,7 2,7 5,0 2,0	22,2 22,8 22,7 24,4 24,2 23,6 25,4 25,9 26,5 26,9 27,6 26,9 27,7 27,2	42 45 40 51 46 42 36 38 41 40 43 44 41 33

На основе вышензложенных данных можно сделать вывод, что:

1. Во время гибридизационных работ опыление целесообразнее проводить пыльцой, взятой непосредственно после сбора в утренние часы (свежей), т. к. со старением пыльца теряет жизнеспособность, что выражается в низком проценте завязывания зерен.

На жизнеспособность пыльцы большое влияние оказывают температура и относительная влажность воздуха.

2. Изучение жизнеспособности пыльцы пшеницы имеет практическое значение для селекционно-семеноводческих работ.

Институт генетики и селекции растений АН Арм. ССР

Поступило 20 XI 1953 г.

ЛИТЕРАТУРА

- 1. Алексеенко А. И. Жизнеспособность пыльцы и рыльца у люпина. Журн. "Селекция и семеноводство", 11, 1951.
- 2. Голубинский И. Н. Характер прорастания пыльцы в зависимости от местоположения цветка. Укр. ССР, Ботаничний журнал, том VII, 3, 1950.
- Голубинский И. Н. К познанию физиологии прорастания пыльцевых зерен. Докл. АН СССР, т. XVIII, 1, 1945.
- 4. Голубинский И. Н. Влияние примеси пыльцы окружающих растений на прорастание пыльцы. Докл. АН СССР, т. 76, 4, 1951.
- Дорошенко А. В. Физнология пыльцы. Труды по прикладной ботанике, генетике и селекции, т. 18, в. 5, 1928.
- 6. Татаринцев А. С. и Соколова Е. П. О значении околоцветника для прорастания пыльцевых зерен. Журн. "Природа", 1, 1951.
- 7. *Шайтан И. М.* Влияние условий развития цветка на разнокачественность пыльцы. Докл. АН СССР, т. 76, 4, 1951.

8. Խ. Գրիգորյան

ՑՈՐԵՆԻ ԾԱՂԿԱՓՈՇՈՒ ԿԵՆՍՈՒՆԱԿՈՒԹՅԱՆ ՊԱΖՊԱՆՄԱՆ ՏԵՎՈՂՈՒԹՅԱՆ ՄԱՍԻՆ

ULAUQUILL

Աշխատանքի նպատակն է եղել ուսումնասիրել ծաղկափոշու կենսունակության պահպանման տևողությունը տարբեր ժամանակներում փոշոտելու դեպքում և նրա ազգեցությունը բույսի կենսունակության և ժառանդականության վրա.

Տվյալ աշխատանքում բերում ենք միայն ծաղկափոշու կենսունակու-Ժյան պահպանման տևողուԹյան ուսումնասիրուԹյունները տարբեր ժամկետներում։

Փորձերը դրվել են ցորենի երկու սորտերի վրա, որպես մայրական ձև վերցվել է Եղվարդի 4 սորտը, իսկ հայրական՝ Եղվարդի 4 և Արտաշատի 42 սորտերի փոշիների խառնուրդը։ Կաստրացիայի է ենթարկվել ցորենի 100 հասկ և վերցվել է մեկուսիչների մեջ այն հաշվով, որ 14 ժամ-կետում հնարավոր լինի փոշոտել։ Ծաղկափոշին հավաքվել է շատ կարճ ժամկետում։

Եղվարդի 4 և Արտաչատի 42 ծաղկափոշու խառնուրդը պատրաստվել է հավասար դանակությամբ և պահպանվել է դաշտային պայմաններում ապակյա անոթների մեջ։

Առաջին ժամկետի փոշոտումը կատարվել է անմիջապես ծաղկափոշին վերցնելուց հետո, իսկ հետագա փոշոտումները համապատասխանորեն յուրաքանչյուր 20 րոպեյից հետո՝ օրվա հետևյալ ժամերին՝ 9, 9²⁰, 9⁴⁰, 10, 10²⁰, 10⁴⁰, 11, 11²⁰, 11⁴⁰, 12, 12²⁰, 12⁴⁰, 13, 13²⁰, 13⁴⁰, 14⁰⁰, 15⁰⁰, փորձի ընթացքում որոշվել է օգի Ջերմությունը և հարաբերական խոնավությունը հասկերի բարձրության սահմաններում։

Ստացված արդյունքները ցույց են տալիս, որ հիրըիդիզացիայի ժաժ ժանակ հատիկների կազմակերպման տեսակետից լավագույն արդյունք ստացվում է, երը փոշոտումը կատարվում է առավոտյան ժամերին (ժ.9) Թարմ ծաղկափոշիով փոշոտելու դեպքում։

Որքան ծաղկափոշին երկար է պահպանվում (հնացվում), այնքան իջնում է հատիկակալման տոկոսը։

6 ժամ պահելուց հետո, երբ այդպիսի ծաղկափոշիով փոշոտում է կատարվում բեղմնավորման տոկոսը հասնում է մինչև 2-ի։

Ծաղկափոշու կենսունակության պահպանման, ինչպես նաև բեղմիավորման ինտենսիվության վրա ազդում է օդի ջերմասաիձանը և հարարեբական խոնավությունը։ Օդի բարձր ջերմաստիձանը և հարարերական խոնավության ցածր աստիձանը րացասական են ազդում ըեղմիավորման վրա։

Ծաղկափոշու կենսունակության պահպանման տևողության ուսումնասիրություններն ունեն գործնական նշանակություն սելեկցիոն-սերքնարուծական աշխատանքների համար։