ZUBUUSUUF GFSNFBBNFUUECF UQQUBFU UYUGEUFUHAЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК АРМЕНИИNATIONAL ACADEMY OF SCIENCES OF ARMENIAДОКЛАДЫQUYNF88UEC

Zwwnp Tom Volume

2020

№ 1

МЕДИЦИНА

УДК 616+77,1

120

П. А. Казарян

Современное представление об этиологии, патогенезе, диагностике и лечении коронавирусных заболеваний

(Представлено чл.-кор. НАН РА А. А. Трчуняном 2/II 2020)

Ключевые слова: этиология, патогенез, диагностика, коронавирус.

В настоящее время одной из актуальных проблем теоретической и практической медицины является выявление этиологии, патогенеза, диагностики и лечения атипичной пневмонии, вызываемой коронавирусом 2019-nCoV.

Коронавирус – возбудитель атипичной пневмонии. Генетически он более всего связан с тяжелым острым респираторным синдромом (SARS) и ближневосточным респираторным синдромом (MERS) и относится к семейству РНК-вирусов, включающих на январь 2020 г. 40 видов, объединённых в 2 подсемейства. Название коронавирусов произошло от формы строения оболочки в виде короны. Вирусные частицы (вирионы) имеют сферическую форму (с некоторыми признаками полиморфизма) диаметром 75-160 нм (размер 2019-nCoV от 60 до 140/~120 нм в диаметре). Высота выступов коронавирусов составляет в среднем 1224 нм. Коронавирусы – вирусы с положительной цепью РНК (+РНК). Геном РНК кодирует 4-5 структурных белков включая белок внешней оболочки (N), белок матрицы (M), белок малой оболочки (E), спайк (S) гликопротеин, что обеспечивает связывание и проникновение клеток. Одни из β-коронавирусов имеют белок (гликопротеин (НЕ)), используемый некоторыми оболочечными вирусами в качестве механизма вторжения. НЕ помогает прикреплению и разрушению определенных рецепторов сиаловой кислоты, которые находятся на поверхности клетки-хозяина. По сравнению с другими РНКвирусами 2019-nCoV имеют исключительно большой геном (от тысяч пар оснований) и используют сложную стратегию его экспрессии. Организация генома полицистронная; механизм транскрипции для генерации вложенного набора субгеномных (sg) мРНК уникален.

В последнее время были опубликованы данные о секвенировании коронавируса, выделенного из жидкости, полученной из бронхов больных. Вирус был идентифицирован как новое семейство вирусов. В 2019 г. он был назван ВОЗ 2019-пСоV [1]. Геном пСоV представляет собой одноцепочечную РНК (+ ssRNA со сруктурой 5 -сар и 3 -роly-A tail). Размер генома пСоV почти в два раза больше всех РНК-вирусов. Большой размер генома может быть связан с особенностями пСоV, который содержит два типа ферментов. Один из этих энзимов — 3 -5 -экзорибонуклеаза делает СоV уникальным среди всех РНК-вирусов [1, 2]. Результаты исследований показали, что 2019-пСоV обладает типичной структурой генома коронавируса.

Интересные результаты получили немецкие исследователи. Были опубликованы клинические данные более чем 40 пациентов, инфицированных 2019-nCoV в городе Ухань провинции Хубэй центрального Китая. У пациентов отделения интенсивной терапии были выявлены пневмония с патологическими изменениями на КТ грудной клетки и резкое повышение уровня цитокинов с более выраженными изменениями: IL10, IL7, IL2, IP10, MP1A и других фракций в плазме крови. Материалы для диагностики штаммов 2019-nCoV, обнаруженных в городе Ухань, были получены от ВОЗ. Дополнительная информация о протоколах для лаборатории и диагностическая информация о нуклеотидной последовательности коронавируса доступны online CDC и на сайте Virological.org. Высказаны предположения, что основным хозяином в природе для 2019nCoV является летучая мышь. Выявлено несколько переносчиков болезни, вызываемой новым коронавирусом. Людей, а также кошек, птиц, собак, крупный рогатый скот, свиней и зайцев, летучих мышей, верблюдов и других животных поражают разные типы коронавирусов. Высока вероятность мутаций этого вируса, что может привести к появлению «универсального» вируса. Возможные рекомбинация и передача могут быть связаны с хозяевами-змеями, что может быть выявлено на основе генетического анализа гликопротеинов.

В настоящее время в центре внимания ученых находятся результаты исследований этиологических факторов. Подтверждены факты передачи вируса как от животного человеку, так и от человека человеку. По данным ВОЗ среднее количество людей, которое потенциально способен заразить один носитель вируса, т.е. базовая способность к размножению (R0), составляет от 1.4 до 2.5 человек. Точное число заболеваемости устанавливать довольно трудно. В реальной эпидемиологической ситуации всегда есть недовыявленность вируса, так как не все люди обращаются к врачу, и для точного определения этого параметра может потребоваться несколько лет научных исследований. Существует проблема и с определением летальности. Определению числа заболевших мешает также наличие инкубационного периода, который часто протекает бессимптомно и продолжается до двух недель, и поэтому статистические данные могут быть существенно занижены.

Таким образом, коронавирус 2019-nCoV является частью семейства коронавирусов, которые вызывают тяжелый острый респираторный синдром и ближневосточный респираторный синдром. По литературным данным [1-5] противовирусные препараты, такие как ингибитор РНК-полимеразы, ремдесивир, лопинавир, интерферон β и другие противовирусные препараты широкого спектра действия, в отношении MERS-CoV продемонстрировали на экспериментальных животных положительные результаты. Что касается вакцин, выработанных на основе нуклеиновых кислот MERS-CoV, SARS- CoV, то они используются в некоторых странах при инфекционных заболеваниях. Для создания вакцин против 2019-nCoV предполагается использование технологиии мРНК.

При разработке вакцин и антител необходимы ускоренные целенаправленные исследования для защиты населения от новой вспышки распространения данного вируса. Такие исследования проводятся во многих странах мира. Вместе с тем имеются подозрения о появлении еще одного патологического HCoV вируса. Ощутимых успехов можно достичь лишь в результате незамедлительного обмена данными и международного сотрудничества. В середине января 2020 г. группа ученых Шанхайского клинического центра общественного здравоохранения уже опубликовала полную геномную последовательность 2019-nCoV в общедоступных бесплатных базах данных (GenBank: MN908947.3.) Британский медицинский журнал опубликовал в свободном доступе информацию о MERS и SARS. Сотрудничество может варьировать начиная с малочисленных групп ученых, обменивающихся данными в частном порядке, и кончая публичным обменом данных на уровне международного научного сообщества.

Обмен информацией при поиске лекарств затруднен из-за того, что данные различных анализов лекарств могут быть неоднородными и для обмена такими данными необходимы сложные технологии, требующие высокоуровневого контроля. Нет сомнений, что сотрудничество на высоком уровне может быть ключевым в процессе подбора эффективных лекарств. На сегодняшний день имеются очень эффективные технологии, объединяющие усилия научного сообщества.

По мнению большинства исследователей [1-5] в условиях отсутствия эффективных терапевтических средств или вакцин лучшим способом борьбы с тяжелыми инфекциями CoV являются контроль источника инфекции, ранняя диагностика, отчетность, изоляция, поддерживающее лечение и своевременная публикация новой эпидемиологической ситуации. Для предотвращения заражения пCoV необходимы качественная личная гигиена, подходящая маска, вентиляция, избегание больших скоплений людей. Важна также быстрая разработка диагностических наборов 2019-nCoV. Исследования в этом направлении ведутся, и уже получены результаты.

Таким образом, описанная тактика и целенаправленный подход благодаря более тесному скоординированному сотрудничеству могут стать

основой для решения основных задач этиологии, патогенеза, диагностики и лечения коронавируса.

Гематологический центр им. проф. Еоляна МЗ PA e-mail: ghazarpa@yahoo.com

П. А. Казарян

Современное представление об этиологии, патогенезе, диагностике и лечении коронавирусных заболеваний

Приводятся обзорные данные о недавно обнаруженной коронавирусной (2019-nCoV) пневмонии, в частности о ее распространении, патогенезе, диагностике и возможности лечения биотехнологическими средствами. Приводятся также данные о структуре, классификации, геноме, механизмах воздействия 2019-nCoV и мерах по предотвращению распространения инфекции.

Պ. Ա. Ղազարյան

Ժամանակակից պատկերացումները կորոնավիրուսային հիվանդությունների Էթիոլոգիայի, ախտածնության, ախտորոշման և բուժման վերաբերյալ

Բերվում են վերջին տարիների գրականության տվյալները նոր հայտնաբերված կորոնավիրուսային (2019-nCoV) ատիպիկ թոքաբորբի տարածվածության, ախտածնության, կանխորոշման և բուժման հնարավոր ուղիների՝ կենսատեխնոլոգիական միջոցների վերաբերյալ։ Բերվում են ամփոփ տվյալներ 2019-nCoV-ի կառուցվածքի, դասակարգման, գենոմի, ազդեցության մեխանիզմների մասին, ինչպես նաև վարակի տարածման կանխարգելման միջոցների վերաբերյալ։

P. A. Ghazaryan

Contemporary Understanding of Etiology, Pathology, Diagnosis and Treatment of Coronavirus Diseases

The article provides recent literature data on newly discovered coronavirus (2019-nCoV) pneumonia in particular the prevalence, pathogenesis, diagnosis and possible ways of treatment by biotechnological means. Summary data on the structure, classification, genome, mechanisms of impact of 2019-nCoV are provided, as well as measures to prevent the spread of the infection.

Литература

- 1. Barry Bunin Coronavirus (2019-nCoV): The facts Collaboration Leads the Way to Better Understanding of Pathogen https://www.collaborativedrug.com/coronavirus-2019-ncov-facts/
- 2. Coronavirus Infections-More Than Just the Common Cold. Paules CI, Marston HD, Fauci AS. JAMA. 2020 Jan 23. doi: 10.1001/jama.2020.0757. PMID: 31971553.
- 3. https://nv.ua/ukraine/politics/koronavirus-kitay-skolko-lyudey-zaboleli-novosti-ukrainy-50067754.html.
- 4. The FAIR Guiding Principles for scientific data management and stewardship. Wilkinson, M., Dumontier, M., Aalbersberg, I. et al. Sci Data 3, 160018 (2016). https://doi.org/10.1038/sdata.2016.18
- 5. The Long Now Foundation suggests we use the date 02020 to think longer term, rather than the more conventional 2020 (http://longnow.org/).