

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

Տայաստանի քիմիական հանդես

Химический журнал Армении

72, №3, 2019

Chemical Journal of Armenia

УДК 547.36+547.32

ИЗУЧЕНИЕ РЕАКЦИИ ГИДРОЛИЗА 1,3-ДИХЛОРБУТ-2-ЕНА В СИСТЕМЕ N-МЕТИЛМОРФОЛИН N-ОКСИД – ВОДА В ПРИСУТСТВИИ ГИДРОКСИДА НАТРИЯ

А. Г. АСРАТЯН, С. Г. КОНЬКОВА, С. С. АЙОЦЯН, Г. В. ЗАКАРЯН, А. Дж. МАРКОСЯН, Р. М. АКОПЯН и О. С. АТТАРЯН

Научно-технологический центр органической и фармацевтической химии НАН Республики Армения Армения, 0014, Ереван, пр. Азатутян, 26 E-mail: hovelenatt@mail.ru

Поступило 29 VII 2019

Показано, что гидролиз 1,3-дихлорбут-2-ена (E/Z) в системе N-метилморфолин N-оксид – вода в присутствии гидроксида натрия не останавливается на процессе гидролиза, а реакция сопровождается с алкилированием in situ полученного хлор-2-бутен-2-он-4 с исходным 1,3-дихлорбут-2-еном.

Библ. ссылок 6.

Продолжая исследования реакций алкилирования и дегидрохлорирования органических соединений в системе N-метилморфолин N-оксид — вода (NMO/ H_2O) [1-4], мы провели в указанной системе исследование гидролиза (E/Z)-1,3-дихлорбут-2-ена (1,3-ДХБ-2) (1). Выбор 1,3-ДХБ-2 был обоснован тем, что он в больших количествах образуется в виде отхода при производстве хлоропренового каучука и есть определенная потребность в изучении областей возможного применения этого вещества как с точки зрения экологии, так и с учетом того, что себестоимость 1,3-ДХБ-2 чрезвычайно низка [5].

Опыты по гидролизу 1,3-ДХБ-2 в системе NMO/ H_2O в присутствии гидроксида натрия показали, что реакция не ограничивается процессом гидролиза. Гидролиз сопровождается алкилированием полученного спирта (2) исходным 1,3-ДХБ-2 с образованием труднодоступного дихлорбутенильного эфира (3) [6].

В результате реакции образуется смесь геометрических изомеров соединения **3**. Исследования состава смеси проводились методами ИК спектроскопии, спектроскопии ЯМР 1 Н и 13 С, масс-спектрометрии и элементного анализа.

ИК-спектр соединения **3** характеризуется валентными и внеплоскостными колебаниями двойной связи при 1667 и 815-890 $c M^{-1}$, соответственно. В спектре отмечены также колебания в интервале 1059-1089 $c M^{-1}$, относящиеся к эфирной группе.

По данным спектроскопии ЯМР 1 Н, в результате реакции образуется смесь (E,E) и (E,Z) изомеров дихлорбутенильного эфира (3) в соотношении 5:1, а данные по образованию 3 (Z,Z) изомера в спектре ЯМР 1 Н отсутствуют.

Экспериментальная часть

3-(Хлор-1-[(3-хлорбут-2-ен-1-ил]окси)бут-2-ен (3). К смеси 8 *г* (0.2 *моля*) NaOH и 50 *мл* 50% водного раствора NMO при температуре 50°C по каплям в течение 2 *ч* добавляют 12.5 *г* (0.1 *моля*) 1,3-дихлор-бут-2-ена и продолжают перемешивать в течение 3 *ч* при температуре 50°C. Реакционную смесь экстрагируют хлороформом. После удаления растворителя остаток перегоняют при пониженном давлении. Выход 6 *г* (61%) соединения **3** с т.кип. 55-57°C (1 *мм рт ст*), n_D²⁰ 1.4700. Найдено, %: С 49.35; Н 6.13; О 8.22. С₈H₁₂Cl₂O. Вычислено, %: С 49.25; Н 6.20; О 8.20. ИК-спектр, v, *см*⁻¹: 815, 980, 1667 (С=С), 1059-1084 (СОС). Спектр ЯМР ¹H, δ , м. д., Γ *ų*: (E,E)-изомер: 2.14 к (6H, =CCH₃, *J*=1.3); 4.04 д.к (4H, OCH₂, *J*=5.9 и 1.3); 5.64 т.к (2H, =CH, *J*=5.9 и 1.3). Спектр ЯМР ¹³C, δ , м. д.: (E,E)-изомер: 25.5; 95.2; 128.1; 131.4. Спектр ЯМР ¹H, δ , м. д., Γ *ų*: (E,Z)-изомер: 2.10 д.к (6H, =CCH₃, *J*=1.1 и 0.7); 3.93 д.к (4H, OCH₂, *J*=7.1 и 0.7); 5.70 т.к (2H, =CH, *J*=7.1 и 1.1). Спектр ЯМР ¹³C, δ ,

м. д.: (E,Z)-изомер: 25.4; 85.2; 127.9; 131.4. Масс-спектр, m/z (Іотн, %): 195 [M] $^+$ (100), 159 [C₈H₁₂ClO] (23).

ИК-спектры сняты на спектрофотометре "Termo Nicoletion Nexus" в вазелиновом масле. Спектры ЯМР 1 Н и 13 С получены на приборе Varian "Mercury 300VX" с рабочими частотами 300.077 и 75 $M\Gamma u$ при температуре 300 К в растворе ДМСО- d_6 -CCl₄ (1:3), внутренний стандарт – ТМС. Хромато-масс-спектр (ЭУ, 70 эВ) записан на приборе "GC MS Bruker EM 640 S". Элементный анализ выполнен на приборе "Eurovector EA 3000". В исследованиях использован NMO производства фирмы "АРИАК" (Армения).

Исследование выполнено при финансовой поддержке Государственного комитета по науке МОН РА в рамках научного проекта 18Т-2E151.

1,3-ԴԻՔԼՈՐԲՈԻՏ-2–ԵՆԻ ՏԻԴՐՈԼԻԶԻ ՌԵԱԿՑԻԱՅԻ ՏԵՏԱԶՈՏՈԻՄԸ N-ՄԵԹԻԼՄՈՐԾՈԼԻՆ N-ՕՔՍԻԴ–ՋՈԻՐ ՏԱՄԱԿԱՐԳՈԻՄ ՆԱՏՐԻՈՒՄԻ ՏԻԴՐՕՔՍԻԴԻ ՆԵՐԿԱՅՈՒԹՅԱՄԲ

Ա. Հ. ՀԱՍՐԱԹՅԱՆ, Ս. Գ. ԿՈՆԿՈՎԱ, Ս. Ս. ՀԱՅՈՑՅԱՆ, Գ. Վ. ԶԱՔԱՐՅԱՆ, Ա. Ջ. ՄԱՐԿՈՍՅԱՆ, Ռ. Մ. ՀԱԿՈԲՅԱՆ և Հ. Ս. ԱԹԹԱՐՅԱՆ

Ցույց է տրվել, որ 1,3-դիքլորբուտ-2-են (E/Z)-ի Հիդրոլիդը N-մեԹիլմորֆոլին N-օքսիդ- Չուր Համակարդում նատրիումի Հիդրօքսիդի ներկայուԹյամբ էի ավարտվում Հիդրոլիդով, այլ ուղեկցվում է in situ առաջացած քլոր-2-բուտ-2-ենոլ-4-ի ալկիլացմամբ 1,3-դիքլորբուտ-2-ենով:

STUDY OF THE REACTION OF HYDROLYSIS OF 1,3-DICHLOROBUT-2-ENE IN THE N-METHYLMORPHOLINE N-OXIDE-WATER SYSTEM IN THE PRESENCE OF SODIUM HYDROXIDE

A. H. HASRATYAN, S. G. KONKOVA, S. S. HAYOTSYAN, G. V. ZAKARYAN, A. J. MARKOSYAN, R. M. AKOPYAN and H. S. ATTARYAN

The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA 26, Azatutyan Str., Yerevan, 0014, Armenia E-mail: hovelenatt@mail.ru

It has been shown that hydrolysis of 1,3-dichlorobut-2-ene (E/Z) in the N-methylmorpholine N-oxide-water system in the presence of sodium hydroxide does not stop during the hydrolysis process, the reaction proceeds accompanied by alkylation of in situ obtained chloro-2-buten-2-one-4 with the initial 1,3-dichlorobut-2-ene.

As a result of the reaction, a mixture of geometric isomers of compound **3** was formed. The composition of the mixture was studied by IR, ¹H, ¹³C NMR, mass spectrometry and elemental analysis.

The IR spectrum of compound 3 is characterized by valence and out-of-plane vibrations of the double bond at 1667 and 815-890 cm^{-1} , respectively. Oscillations in the range of 1059-1089 cm^{-1} , belonging to the ether group, are also noted in the spectrum.

According to ¹H NMR spectroscopy data, the reaction mixture of (E, E) and (E, Z) isomers of dichlorobutenyl ether (3) was formed in a ratio of 5:1. Data on the formation of 3 (Z, Z) isomers in the ¹H NMR spectrum were absent.

ЛИТЕРАТУРА

- [1] Закарян Г.Б., Айоцян С.С., Аттарян О.С., Асратян Г.В. // ЖОХ, 2015, т. 85, с. 1212. [Zakaryan G.B., Hayotsyan S.S., Attaryan H.S., Hasratyan G.V. Russ. J. Gen. Chem., 2015, v. 85, №7, p. 1773.] doi 10.1134/S1070363215070348.
- [2] Закарян Г.Б., Айоцян С.С., Айвазян А.Г., Тамазян Р.А., Паносян Г.А., Данагулян Г.Г., Аттарян О.С. // ХГС, 2016, т. 52, №4, с. 253. [Zakaryan G.B., Hayotsyan S.S., Ayvazyan A.G., Tamazyan R.A., Panosyan H.A., Danagulyan G.G., Attaryan H.S. Chem. Heterocyclic Compd., 2016, 52, №4, 253.] doi 10.1007/S1059301618702.
- [3] Zakaryan G.B., Hayotsyan S.S., Mkrtchyan D.A., Attaryan H.S. / In 5th International conference of Young Scientists, Chemistry Today-2016. "Alternative reaction medium for alkylation of phenols". September, 2016, Tbilisi, Georgia, 84.
- [4] Закарян Г.Б., Айоцян С.С., Аттарян О.С., Асратян Г.В. // ЖОХ, 2016, т. 86, с. 337. [Zakaryan G.B., Hayotsyan S.S., Attaryan H.S., Hasratyan G.V. Russ. J. Gen. Chem., 2016, v. 86, №2, p. 414.] doi 10.1134/S1070363216020377.
- [5] *Бадасян Е.Б., Рахманкова Т.Н.* Основы технологии синтеза хлоропренового каучука. М., Мир, 1971, с.53.
- [6] Klebanski A.L., Zjurich L.Q., Dolgopolski I.M. // Chem. Zentralbe, 1935, v. 11, p. 3844.