ՎՎԺՄՎՈՐԵԳՎՈՐՎ ՄՍԵԳՎՈՐԵԳԱՐՄՍ ՎՄՍՑՍՍԵՍԻ ԱՎԱԳՐՈՒԻ ՈՎԵՌԻՐՈ

HAЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ APMEHUЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

Տայաստանի քիմիական հանդես

Химический журнал Армении 71, №1-2, 2018 Chemical Journal of Armenia

УДК 547.856.1

СИНТЕЗ И ПРЕВРАЩЕНИЯ (3,3-ДИМЕТИЛ-2-ЦИАНО-3,4-ДИГИДРОНАФТАЛИН-1-ИЛ)ФЕНИЛКАРБАМАТА

А. И. МАРКОСЯН, К. К. АЙРАПЕТЯН, С. А. ГАБРИЕЛЯН, С. С. МАМЯН, Дж. А. АВАКИМЯН и Г. М. СТЕПАНЯН

Научно-технологический центр органической и фармацевтической химии НАН Республики Армения

Армения, 0014, Ереван, пр. Азатутян, 26 Тел: (37410)288443, E-mail: ashot@markosyan.am

Поступило 27 III 2018

Конденсацией 1-амино-3,3-диметил-3,4-дигидронафталин-2-карбонитрила с фенилхлор-формиатом синтезирован (3,3-диметил-2-циано-3,4-дигидронафталин-1-ил)фенилкарбамат, образующий с первичными и вторичными аминами дизамещённые и тризамещённые мочевины, соответственно. Показано, что тот же карбамат реагирует с гидразидами ароматических, алкоксиароматических и гетероциклических кислот с образованием 2-замещённых 4,4-диметил-4,5-дигидробензо[h][1,2,4]триазоло[1,5-с]хиназолин-11(10H)-онов. Согласно результатам биологических исследований, большинство исследованных соединений проявляет слабую или умеренную антибактериальную активность в отношении грамположительных и грамотрицательных микроорганизмов.

Библ. ссылок 21.

В последнее время интерес к химии бензо[h]хиназолиновых соединений значительно возрос, что обусловлено их ценными биологическими свойствами[1-7]. Ранее проведенные нами исследования доказали, что для синтеза бензо[h]хиназолиновых соединений различного строения (в том числе и спироциклического) удобными синтонами могут служить соответствующие β-аминоэфиры и β-аминонитрилы [8-17]. С целью синтеза 2-замещенных 4,4-диметил-4,5-дигидробензо[h][1,2,4]триазоло[1,5-с]хиназолин-11(10H)-онов нами разработан метод получения исходного ключевого соединения — (3,3-диметил-2-циано-3,4-дигидронафталин-1-ил)фенилкарбамата (2). Метод основан на взаимодействии 1-амино-3,3-диметил-3,4-дигидронафталин-2-карбонитрила (1) с фенилхлорформиатом в среде бензола. Поскольку мочевины представляют оп-

ределённый интерес с биологической точки зрения, карбамат 2 введен во взаимодействие с первичными (пропиламин, изопропиламин и анилин) и вторичными (диметиламин, диэтиламин, пирролидин, пиперидин, морфолин и азепан) аминами, приведшее к образованию дизамещённых (3-5) и тризамещённых (6-11) мочевин дигидронафталинового ряда. Синтез целевых 2-замещённых 4,4-диметил-4,5-дигидробензо[h][1,2,4]триазоло[1,5-с]хиназолин-11(10H)-онов осуществлен конденсацией карбамата 2 с гидразидами различных карбоновых кислот (изоникотиновой, бензойной, 4-бромбензойной, 4-этоксибензойной, 4-бутоксибензойной, 4-изобутоксибензойной, фенилуксусной, 2-(о-толилоксиуксусной, 2-м-толилоксиуксусной, 2-л-толилоксиуксусной) по схеме:

 $R = C_3H_7$ (3), uso- C_3H_7 (4), C_6H_5 (5), CH_3 (6), C_2H_5 (7), пирролидино (8), пиперидино (9), морфолино (10), азепино (11), R' = 4-пиридил (12), C_6H_5 (13), $CH_2C_6H_5$ (14), 4- BrC_6H_4 (15), 2- $CH_3C_6H_4$ OCH $_2$ (16), 3- $CH_3C_6H_4$ OCH $_2$ (17), 4- $CH_3C_6H_4$ OCH $_2$ (18), 2- ClC_6H_4 OCH $_2$ (19), 4- C_2H_5 OC $_6H_4$ (20), 4- C_4H_9 OC $_6H_4$ (21), 4-uso- C_4H_9 OC $_6H_4$ (22).

Изучены антибактериальные свойства синтезированных соединений по методу диффузии в агаре [21] при бактериальной нагрузке 20 млн микробных тел на 1 мл среды. В качестве тест-объектов использованы грамположительные стафилококки (Staph. Aureus 209р, 1) и грамотрицательные палочки (Sh.dysenteriae Flexneri 6858, E. Coli 0-55). Учёт результатов проводен по диаметру (d) зон отсутствия роста микроорганизмов на месте нанесения соединений (в мм). У большинства исследованных соединений выявлена слабая или умеренная активность в отношении грамположительных и грамотрицательных микроорганизмов в зоне диаметром 10-16 мм.

Экспериментальная часть

ИК-спектры сняты на спектрофотометре "FT-IR NEXUS" в вазелиновом масле, спектры ЯМР 1 Н и 13 С — на приборе Varian "Mercury-300", внутренний стандарт — ТМС или ГМДС. ТСХ проведена на пластинках "Sorbfil", проявитель — пары йода.

(3,3-Диметил-2-циано-3,4-дигидронафталин-1-ил)фенилкарбамат (2). Смесь 19.8 ε (0.1 моля) аминонитрила 1 и 15.7 ε (0.1 моля) фенилхлорформиата в 100 мл бензола кипятят с обратным холодильником 7 ι . После отгонки растворителя остаток перекристаллизовывают из смеси этанол-вода (3:1). Получают 29 ε (91%) карбамата 2, т. пл. 172-173°C. R_f 0.65 (хлороформ-ацетон, 4:1). ИК-спектр: ν , ε м $^{-1}$: 1590, 1600 (C=C Ap); 1759 (C=O); 2204 (C=N); 3400 (NH). Спектр ЯМР 1 H (300 MГ ι и, DMSO/CCl $_4$ — 1/3), δ , м.д.: 1.25 (с, 6H, C(CH $_3$) $_2$), 2.85 (с, 2H, $_4$ CH $_2$ -C(CH $_3$) $_2$), 7.14-7.24 (м, 4H $_4$ Dom), 7.27-7.42 (м, 4H $_4$ Dom), 7.49-7.55 (м, 1H $_4$ Dom), 9.82 (с, 1H, NH). Спектр ЯМР 1 3C (75 MГ $_4$ 0, DMSO/CCl $_4$ — 1/3), δ 5, м.д.: 26.02 (С($_4$ CH $_3$ 2), 32.58 (С($_4$ CH $_3$ 2), 41.56 ($_4$ CH $_2$ -C(CH $_3$ 2), 114.53 (C= $_4$ C-C=N), 115.61 (C=N), 121.29 (2(CH $_4$ Dom)), 124.32 (CH $_4$ Dom), 124.67 (CH $_4$ Dom), 126.40 (CH $_4$ Dom), 127.88 (CH $_4$ Dom), 128.61 (2(CH $_4$ Dom)), 129.11 (С $_4$ Dom), 129.83 (CH $_4$ Dom), 135.04 (С $_4$ Dom), 143.00 ($_4$ C=C=C=N), 150.61 (С $_4$ Dom), 151.59 (C=O). Найдено, %: C 75.45; H 5.70; N 8.80. С $_4$ CDH $_1$ 8N2O $_4$ 2. Вычислено, %: C 75.28; H 5.82; N 8.65.

Общая методика синтеза мочевин 3-11. Смесь 3.2 г (0.01 моля) карбамата 2, 0.015 моля амина и 40 мл абсолютного этанола кипятят с обратным холодильником в течение 10 ч. Затем к реакционной смеси добавляют 10 мл воды. Образовавшиеся кристаллы отфильтровывают, несколько раз промывают водой и перекристаллизовывают из 60-80% этанола.

1-(3,3-Диметил-2-циано-3,4-дигидронафталин-1-ил)-3-пропилмочевина (3). Выход 2 ε (70%), т. пл. 159-160°С. R_f 0.63 (бензол-этилацетат, 4:3). ИКспектр: ν , εM^{-1} : 1611 (C = C Ap); 1639 (C = O); 2204 (C=N); 3200-3360 (NH). Спектр ЯМР 1 Н (300 $M\Gamma u$, DMSO/CCl₄ — 1/3), δ , м.д., Γu : 0.96 (т. J=7.35, 3H, NH-CH₂CH₂CH₃), 1.17 (с, 6H, C(CH₃)₂), 1.45-1.59 (м, 2H, NH-CH₂CH₂CH₃), 2.77 (с, 2H, CH₂-C(CH₃)₂), 3.03-3.11 (м, 2H, NH-CH₂CH₂CH₃), 6.39 (т. J=5.72, 1H, NH-CH₂CH₂CH₃), 7.09-7.31 (м, 4H_{apom.}), 8.00 (с, 1H, NH). Спектр ЯМР 13 С (75 $M\Gamma u$, DMSO/CCl₄ — 1/3), δ , м.д.: 11.01 (NH-CH₂CH₂CH₃), 22.82 (NH-CH₂CH₂CH₃), 26.03(C(CH₃)₂), 31.91 (C(CH₃)₂), 40.91 (NH-CH₂CH₂CH₃), 41.95 (CH₂-C(CH₃)₂), 107.57 (C = C-C=N), 116.33 (C=N), 125.11 (CH_{apom.}), 125.70 (CH_{apom.}), 127.51 (CH_{apom.}), 129.05 (CH_{apom.}), 129.40 (C_{apom.}), 134.92 (C_{apom.}), 145.37 (C=C-C=N), 154.08 (C=O). Найдено, %: C 72.06; H 7.47; N 14.83. C₁₇H₂₁N₃O. Вычислено, %: C 71.90; H 7.37; N 14.72.

1-(3,3-Диметил-2-циано-3,4-дигидронафталин-1-ил)-3-изопропилмочевина (4). Выход 1.2 ε (42%), т. пл. 209-210°C. R_f 0.78 (бензол-этилацетат, 1:1). ИК-спектр: ν , εM^{-1} : 1615 (C=C Ap); 1650 (C=O); 2200 (C=N); 3200-3360 (NH). Спектр ЯМР 1 H (300 $M\Gamma u$, DMSO/CCl₄ - 1/3), δ , м.д., Γu : 1.15 (д.

J=6.72, 6H, NH-CH($\underline{\mathrm{CH_3}}$)₂), 1.15 (c, 6H, C(CH₃)₂), 2.74 (c, 2H, $\underline{\mathrm{CH_2}}$ -C(CH₃)₂), 3.67-3.85 (м, 1H, NH- $\underline{\mathrm{CH}}$ (CH₃)₂), 6.23 (д, J=7.51, 1H, $\underline{\mathrm{NH-CH}}$ (CH₃)₂), 7.05-7.29 (м, 4H_{apom}), 7.85 (c, 1H, NH). Спектр ЯМР ¹³С (75 MГ μ , DMSO/CCl₄ − 1/3), δ , м.д.: 22.72 (NH-CH($\underline{\mathrm{CH_3}}$)₂), 26.05 (C($\underline{\mathrm{CH_3}}$)₂), 31.93 ($\underline{\mathrm{C}}$ (CH₃)₂), 40.98 (NH- $\underline{\mathrm{CH}}$ (CH₃)₂), 41.98 ($\underline{\mathrm{CH_2}}$ -C(CH₃)₂), 107.45 (C= $\underline{\mathrm{C}}$ -C≡N), 116.36 (C≡N), 125.08 (CH_{apom}), 125.72 (CH_{apom}), 127.51 (CH_{apom}), 129.06 (CH_{apom}), 129.41 (C_{apom}), 134.94 (C_{apom}), 145.36 ($\underline{\mathrm{C}}$ =C-C≡N), 153.36 (C=O). Найдено, %: C 72.06; H 7.47; N 14.83. C₁₇H₂₁N₃O. Вычислено, %: C 72.15; H 7.39; N 14.90.

1-(3,3-Диметил-2-циано-3,4-дигидронафталин-1-ил)-3-фенилмочевина (**5**). Выход 2.7 г (85%) 3-фенилмочевины **5**, т. пл. 200-201°C. R_f 0.75 (бензол-этилацетат, 4:3). ИК-спектр: ν , cm^{-1} : 1600, 1611 (C=C Ap); 1656 (C=O); 2200 (C≡N); 3250-3350 (NH). Спектр ЯМР 1 H (300 $M\Gamma u$, DMSO/CCl₄ − 1/3), δ , м.д.: 1.21 (c, 6H, C(CH₃)₂), 2.82 (c, 2H, CH₂-C(CH₃)₂), 6.89-6.96 (м, 1H_{apom.}), 7.14-7.32 (м, 5H_{apom.}), 7.35-7.45 (м, 3H_{apom.}), 8.29 (c, 1H, NH), 8.84 (c, 1H, NH). Спектр ЯМР 13 С (75 $M\Gamma u$, DMSO/CCl₄ − 1/3), δ , м.д.: 26.04 (С(СН₃)₂), 32.14 (С(СН₃)₂), 41.88 (СН₂-С(СН₃)₂), 109.25 (С=С-С≡N), 116.20 (С≡N), 117.85 (2(СН_{аром.})), 121.49 (СН_{аром.}), 124.93 (СН_{аром.}), 125.98 (СН_{аром.}), 127.74 (СН_{аром.}), 128.13 (2(СН_{аром.})), 129.12 (С_{аром.}), 129.37 (СН_{аром.}), 135.00 (С_{аром.}), 139.23 (С_{аром.}), 144.62 (С=С-С≡N), 151.42 (С=О). Найдено, %: С 75.69; H 6.03; N 13.24. С₂₀H₁₉N₃O. Вычислено, %: С 75.52; H 6.19; N 13.15.

3-(3,3-Диметил-2-циано-3,4-дигидронафталин-1-ил)-1,1-диметилмочевина (6). Выход 1.1 ε (41%), т. пл. 169-170°С. R_f 0.71 (бензол-этанол, 10:1). ИКспектр: ν , εM^{-1} : 1616 (C=C Ap); 1644 (C=O); 2204 (C=N); 3273 (NH). Спектр ЯМР 1 H (300 $M\Gamma u$, DMSO/CCl₄ - 1/3), δ , м.д.: 1.20 (c, 6H, C(CH₃)₂), 2.81 (c, 2H, CH_2 -C(CH₃)₂), 3.00 (c, 6H, N(CH₃)₂), 7.11-7.31 (м, 4H_{apom.}), 8.08 (c, 1H, NH). Спектр ЯМР 13 С (75 $M\Gamma u$, DMSO/CCl₄ - 1/3), δ , м.д.: 26.11 (C(CH_3)₂), 32.15 ($C(CH_3$)₂), 36.06 (N(CH_3)₂), 41.81 (CH_2 -C(CH₃)₂), 112.07 (C=C-C=N), 116.15 (C=N), 124.71 (CH_{apom.}), 125.94 (CH_{apom.}), 127.53 (CH_{apom.}), 129.12 (CH_{apom.}), 130.01 (C_{apom.}), 134.87 (C_{apom.}), 145.75 (C=C-C=N), 155.10 (C=O). Найдено, %: C 71.35; H 7.11; N 15.60. C₁₆H₁₉N₃O. Вычислено, %: C 71.46; H 7.03; N 15.67.

3-(3,3-Диметил-2-циано-3,4-дигидронафталин-1-ил)-1,1-диэтилмочевина (7). Выход 1.5 ε (50%), т. пл. 135-136°С. R_f 0.67 (бензол-этанол, 10:1). ИКспектр: \mathbf{v} , $\mathbf{c}\mathbf{m}^{-1}$: 1610 (C=C Ap); 1644 (C=O); 2200 (C=N); 3221(NH). Спектр ЯМР 1 H (300 $M\Gamma u$, DMSO/CCl $_4$ — 1/3), δ , м.д.: Γu : 1.20 (т, J=7.02, 6H, N(CH $_2$ CH $_3$) $_2$), 1.20 (c, 6H, C(CH $_3$) $_2$), 2.81 (c, 2H, CH $_2$ -C(CH $_3$) $_2$), 3.37 (к, J=7.02, 4H, N(CH $_2$ CH $_3$) $_2$), 7.11-7.29 (м, 4H $_4$ Dom.), 7.94 (c, 1H, NH). Спектр ЯМР 13 С (75 $M\Gamma u$, DMSO/CCl $_4$ — 1/3), δ , м.д.: 13.61 (N(CH $_2$ CH $_3$) $_2$), 26.10 (C(CH $_3$) $_2$), 32.13 (C(CH $_3$) $_2$), 40.59 (N(CH $_2$ CH $_3$) $_2$), 41.85 (CH $_2$ -C(CH $_3$) $_2$), 112.20 (C=C-C=N), 116.25 (C=N), 124.72 (CH $_4$ Dom.), 125.90 (CH $_4$ Dom.), 127.49 (CH $_4$ Dom.), 129.02 (CH $_4$ Dom.), 130.21 (C $_4$ Dom.), 134.80 (C $_4$ Dom.), 145.92 (C=C-

С≡N), 153.73 (С=O). Найдено, %: С 72.70; Н 7.80; N 14.13. $C_{18}H_{23}N_3O$. Вычислено, %: С 72.63; Н 7.94; N 14.06.

N-(3,3-Диметил-2-циано-3,4-дигидронафталин-1-ил)пирролидин-1-карбоксамид (8). Выход 1.6 ε (54%), т. пл. 197-198°C. R_f 0.57 (бензол-этилацетат, 1:1). ИК-спектр: ν , $c M^{-1}$: 1600, 1610 (C=C Ap); 1675 (C=O); 2196 (C=N); 3200-3400 (NH). Спектр ЯМР 1 H (300 $M \Gamma u$, DMSO/CCl₄ — 1/3), δ , м.д.: 1.20 (c, 6H, C(CH₃)₂), 1.92-2.02 (м, 4H, N(CH₂CH₂)₂), 2.81 (c, 2H, CH₂-C(CH₃)₂), 3.38-3.48 (м, 4H, N(CH₂CH₂)₂), 7.11-7.39 (м, 4H_{apom.}), 7.87 (c, 1H, NH). Спектр ЯМР 13 C (75 $M \Gamma u$, DMSO/CCl₄ — 1/3), δ , м.д.: 24.96 (N(CH₂CH₂)₂), 26.10 (C(CH₃)₂), 32.14 (C(CH₃)₂), 41.81 (CH₂-C(CH₃)₂), 45.47 (N(CH₂CH₂)₂), 112.17 (C=C-C=N), 116.16 (C=N), 124.94 (CH_{apom.}), 125.91 (CH_{apom.}), 127.50 (CH_{apom.}), 129.11 (CH_{apom.}), 130.01 (C_{apom.}), 134.83 (C_{apom.}), 145.43 (C=C-C=N), 153.18 (C=O). Найдено, %: C 73.19; H 7.17; N 14.23. C₁₈H₂₁N₃O. Вычислено, %: C 73.09; H 7.24; N 14.19.

N-(3,3-Диметил-2-циано-3,4-дигидронафталин-1-ил)пиперидин-1-карбоксамид (9). Выход 1.9 ε (61%), т. пл. 204-205°С. R_f 0.73 (бензол-этилацетат, 1:1). ИК-спектр: ν , εM^{-1} : 1612 (C=C Ap); 1644 (C=O); 2200 (C≡N); 3221 (NH). Спектр ЯМР 1 Н (300 $M \Gamma u$, DMSO/CCl₄ − 1/3), δ , м.д.: 1.20 (с, 6H, C(CH₃)₂), 1.55-1.74 (м, 6H, ((CH₂)₃)_{пиперидин}), 2.80 (с, 2H, CH₂-C(CH₃)₂), 3.42-3.50 (м, 4H,(N(CH₂)₂)_{пиперидин}), 7.11-7.17 (м, 1H_{аром.}), 7.17-7.31 (м, 3H_{аром.}), 8.16 (с, 1H, NH). Спектр ЯМР 13 С (75 $M \Gamma u$, DMSO/CCl₄ − 1/3), δ , м.д.: 24.18 ((CH₂)_{пиперидин}), 25.29 ((CH₂)₂)_{пиперидин}), 26.14 (C(CH₃)₂), 32.10 (C(CH₃)₂), 41.85 (CH₂-C(CH₃)₂), 44.93 ((N(CH₂)₂)_{пиперидин}), 111.54 (C=C-C≡N), 116.21 (C≡N), 124.61 (CH_{аром.}), 125.93 (CH_{аром.}), 127.52 (CH_{аром.}), 129.07 (CH_{аром.}), 130.05 (С_{аром.}), 134.90 (С_{аром.}), 145.82 (С=C-C≡N), 154.27 (C=O). Найдено, %: C 73.76; H 7.49; N 13.58. C₁₉H₂₃N₃O. Вычислено, %: C 73.62; H 7.38; N 13.47.

N-(3,3-Диметил-2-циано-3,4-дигидронафталин-1-ил)морфолин-4-карбоксамид (10). Выход $2.4\ \varepsilon$ (77%), т. пл. >230°C (сублимирует). R_f 0.53 (бензол-этанол, 10:1). ИК-спектр: ν , $c M^{-1}$: 1610 (C=C Ap); 1641 (C=O); 2203 (С=N); 3216 (NH). Спектр ЯМР 1 H (300 $M \Gamma \mu$, DMSO/CCl₄ — 1/3), δ , м.д.: 1.21 (с, 6H, C(CH₃)₂), 2.81 (с, 2H, CH₂-C(CH₃)₂), 3.46-3.52 (м, 4H, N(CH₂)_{2морф.}), 3.62-3.68 (м, 4H, O(CH₂)_{2морф.}), 7.12-7.18 (м, 1H_{аром.}), 7.19-7.32 (м, 3H_{аром.}), 8.35 (с, 1H, NH). Спектр ЯМР 13 C (75 $M \Gamma \mu$, DMSO/CCl₄ — 1/3), δ , м.д.: 26.13 (С(CH₃)₂), 32.21 (С(CH₃)₂), 41.80 (СH₂-C(CH₃)₂), 44.37 (N(CH₂)_{2морф.}), 65.89 (O(CH₂)_{2морф.}), 112.26 (C=C-C=N), 116.13 (C=N), 124.57 (CH_{аром.}), 126.03 (CH_{аром.}), 127.63 (CH_{аром.}), 129.26 (CH_{аром.}), 129.89 (С_{аром.}), 134.96 (С_{аром.}), 145.45 (С=C-C=N), 154.64 (C=O). Найдено, %: С 69.43; H 6.80; N 13.49. С₁₈H₂₁N₃O₂. Вычислено, %: С 69.34; H 6.72; N 13.56.

N-(3,3-Диметил-2-циано-3,4-дигидронафталин-1-ил)азепан-1-карбоксамид (**11).** Выход 1.6 ε (49%), т. пл. 177-178°C. R_f 0.71 (бензол-этилацетат, 1:1). ИК-спектр: ν , $c \omega^{-I}$: 1612 (C=C Ap); 1640 (C=O); 2208 (C≡N); 3229 (NH). Спектр ЯМР 1 H (300 $M \Gamma u$, DMSO/CCl₄ - 1/3), δ , м.д.: 1.21 (c, 6H,

 $C(CH_3)_2$), 1.58-1.84 (м, 8H, $N(CH_2CH_2CH_2)_2$), 2.81 (с, 2H, $CH_2-C(CH_3)_2$), 3.44-3.52 (м, 4H, $N(CH_2CH_2CH_2)_2$), 7.12-7.31 (м, 4 $H_{apom.}$), 7.92 (с, 1H, NH). Спектр ЯМР 13 С (75 $M\Gamma u$, DMSO/CCl₄ - 1/3), δ , м.д.: 26.11 ($C(CH_3)_2$), 26.40 ($N(CH_2CH_2CH_2)_2$), 28.03 ($N(CH_2CH_2CH_2)_2$), 32.14 ($C(CH_3)_2$), 41.85 ($CH_2-C(CH_3)_2$), 46.42 ($C(CH_2CH_2CH_2)_2$), 112.25 (C=C-C=N), 116.21 (C=N), 124.72 ($CH_{apom.}$), 125.90 ($CH_{apom.}$), 127.50 ($CH_{apom.}$), 129.05 ($CH_{apom.}$), 130.21 ($C_{apom.}$), 134.83 ($C_{apom.}$), 145.84 (C=C-C=N), 154.17 (C=O). Найдено, %: C 74.27; H 7.79; N 12.99. $C_{20}H_{25}N_3O_2$. Вычислено, %: C 74.32; H 7.63; N 13.05.

Общая методика синтеза триазолов 12-22. Смесь $3.2\ \varepsilon$ (0.01 моля) карбамата 2, 0.01 моля гидразида и 30 мл диметилформамида кипятят с обратным холодильником в течение 10 ч. Затем реакционную смесь охлаждают и прибавляют 25 мл воды. Образовавшийся осадок отфильтровывают, промывают смесью этанол-вода (2:1). Осадок перекристаллизовывают из этанола.

4,4-Диметил-2-(пиридин-4-ил)-4,5-дигидробензо[h][1,2,4]триазоло[1,5-с]хиназолин-11(10H)-он (12). Выход 1.7 ε (50%), т. пл. >250°С. R_f 0.39 (толуолэтанол, 7:1). ИК-спектр: v, $c M^{-1}$: 1595, 1612 (C=C Ap); 1739 (C=O). Спектр ЯМР 1 H (300 $M \Gamma u$, DMSO/CCl $_4$ — 1/3), δ , м.д.: 1.52 (c, 6H, C(CH $_3$) $_2$), 2.88 (c, 2H, CH $_2$ -C(CH $_3$) $_2$), 7.23-7.41 (м, 3H $_{apom.}$), 7.95-8.02 (м, 1H $_{apom.}$), 8.08-8.14 (м, 2H $_{apom.}$), 8.66-8.72 (м, 2H $_{apom.}$), 12.10 (c, 1H, NH). Спектр ЯМР 13 С (75 $M \Gamma u$, DMSO/CCl $_4$ — 1/3), δ , м.д.: 26.19 (С(CH $_3$) $_2$), 32.49 (C(CH $_3$) $_2$), 44.02 (CH $_2$ -C(CH $_3$) $_2$), 110.51 (C=C-NH), 120.57 (2(CH $_{пир.}$)), 123.78 (CH $_{apom.}$), 125.82 (C=C-NH), 126.55 (CH $_{apom.}$), 128.01 (CH $_{apom.}$), 129.75 (CH $_{apom.}$), 135.72 (С $_{apom.}$), 137.03 (С $_{apom.}$), 137.57 (С $_{пир.}$), 144.35 (N=C-N), 149.64 (2(CH $_{пир.}$)), 154.41 (C=O), 161.24 (N=C-Ph). Найдено, %: C 69.96; H 4.99; N 20.40. C20H $_{17}$ N $_5$ O. Вычислено, %: C 69.88; H 4.92; N 20.51.

4,4-Диметил-2-фенил-4,5-дигидробензо[h][1,2,4]триазоло[1,5-с]хиназолин-11(10H)-он (13). Выход 1.8 ε (53%), т. пл. >250°C. R_f 0.66 (бензол-этилацетат, 1:2). ИК-спектр: ν , $c m^{-1}$: 1590, 1605 (C=C Ap); 1731 (C=O); 3100-3250 (NH). Спектр ЯМР 1 H (300 $M \Gamma u$, DMSO/CCl₄ - 1/3), δ , м.д.: 1.53 (c, 6H, C(CH₃)₂), 2.88 (c, 2H, CH_2 -C(CH₃)₂), 7.23-7.40 (м, 3H_{аром.}), 7.42-7.53 (м, 3H_{аром.}), 7.94-8.02 (м, 1H_{аром.}), 8.21-8.29 (м, 2H_{аром.}), 11.95 (c, 1H, NH). Спектр ЯМР 13 C (75 $M \Gamma u$, DMSO/CCl₄ - 1/3), δ , м.д.: 26.24 (C(CH_3)₂), 32.52 ($C(CH_3)_2$), 44.13 (CH_2 -C(CH₃)₂), 110.56 (C=C-NH), 123.65 (CH_{аром.}), 125.99 (C=C-NH), 126.50 (CH_{аром.}), 126.79 (2(CH_{аром.})), 127.91 (2(CH_{аром.})), 127.96 (CH_{аром.}), 129.40 (CH_{аром.}), 129.53 (CH_{аром.}), 130.05 (C_{аром.}), 135.65 (С_{аром.}), 136.98 (С_{аром.}), 144.53 (N=C-N), 154.03 (C=O), 163.13 (N=C-Ph). Найдено, %: C 73.67; H 5.30; N 16.36. C₂₁H₁₈N₄O₂. Вычислено, %: C 73.52; H 5.42; N 16.27.

2-Бензил-4,4-диметил-4,5-дигидробензо[h][1,2,4]триазоло[1,5-с]хиназолин-11(10H)-он (14). Выход 2.7 ε (76%), т. пл. 237-238°C. R_f 0.61 (толуол-этанол, 7:1). ИК-спектр: ν , εM^{-1} : 1600, 1609 (C=C Ap); 1707 (C=O); 3120-3270

(NH). Спектр ЯМР 1 Н (300 $M\Gamma u$, DMSO/CCl₄ - 1/3), δ , м.д.: 1.44 (c, 6H, C(CH₃)₂), 2.83 (c, 2H, CH₂-C(CH₃)₂), 4.14 (c, 2H, CH₂-Ph), 7.13-7.40 (м, 8H_{apom.}), 7.89-7.96 (м, 1H_{apom.}), 11.85 (c, 1H, NH). Спектр ЯМР 13 С (75 $M\Gamma u$, DMSO/CCl₄ - 1/3), δ , м.д.: 26.14 (C(CH₃)₂), 32.42 (C(CH₃)₂), 34.44 (CH₂-Ph), 44.13 (CH₂-C(CH₃)₂), 110.49 (C=C-NH), 123.57 (CH_{apom.}), 125.82 (CH_{apom.}), 126.00 (C=C-NH), 126.47 (CH_{apom.}), 127.72 (2(CH_{apom.})),127.91 (CH_{apom.}), 128.43 (2(CH_{apom.})), 129.45 (CH_{apom.}), 135.59 (C_{apom.}), 136.72 (C_{apom.}), 137.07 (C_{apom.}), 144.41 (N=C-N), 153.73 (C=O), 165.10 (N=C-CH₂-Ph). Найдено, %: C 74.14; H 5.66; N 15.72. C₂₂H₂₀N₄O. Вычислено, %: C 74.24; H 5.60; N 15.61.

2-(4-Бромфенил)-4,4-диметил-4,5-дигидробензо[h][1,2,4]триазоло[1,5-с]хи-назолин-11(10H)-он (15). Выход 2.2 ε (52%), т. пл. >250°С. R_f 0.80 (бензол-этилацетат, 1:2). ИК-спектр: ν , ε м- $^{-1}$: 1600, 1610 (C=C Ap); 1721 (C=O); 3160-3320 (NH). Спектр ЯМР 1 H (300 MГ u , DMSO/CCl 4 — 1/3), δ , м.д.: 1.52 (с, 6H, C(CH 3), 2.87 (с, 2H, C H 2 -C(CH 3), 7.22-7.28 (м, 1H 3 pom.), 7.59-7.65 (м, 2H 3 pom.), 7.95-8.01 (м, 1H 3 pom.), 8.14-8.20 (м, 2H 3 pom.), 11.98 (с, 1H, NH). Спектр ЯМР 13 С (75 MГ u , DMSO/CCl 4 — 1/3), δ , м.д.: 26.22 (С(C H 3 2), 32.49 (C (CH 3 2), 44.08 (C H 2 -C(CH 3 2), 110.47 (C =C-NH), 123.58 (С 3 pom.), 123.70 (CH 3 pom.), 125.90 (C= C -NH), 126.51 (СН 3 pom.), 127.96 (СН 3 pom.), 128.47 (2(СН 3 pom.)), 129.14 (С 3 pom.), 129.61 (СН 3 pom.), 131.10 (2(СН 3 pom.)), 135.66 (С 3 pom.), 137.22 (С 3 pom.), 144.41 (N=C-N), 154.15 (C=O), 162.23 (N=C-Ph). Найдено, %: С 59.87; H 4.07; Br 18.97; N 13.30. С 2 1H 1 7BrN 4 O. Вычислено, %: С 59.95; H 4.16; Br 18.87; N 13.15.

4,4-Диметил-2-[(о-толилокси)метил]-4,5-дигидробензо[h][1,2,4]триазоло[1,5-с]хиназолин-11(10H)-он (16). Выход 1.7 ε (44%), т. пл. 239-240°С. R_f 0.84 (бензол-этилацетат, 1:2). ИК-спектр: ν , cm^{-1} : 1595, 1610 (C=C Ap); 1717 (C=O); 3150-3350 (NH). Спектр ЯМР 1 H (300 $M\Gamma u$, DMSO/CCl₄ — 1/3), δ , м.д.: 1.46 (c, 6H, C(CH₃)₂), 2.26 (c, 3H, CH₃-Ph), 2.85 (c, 2H, CH₂-C(CH₃)₂), 5.24 (c, 2H, OCH₂), 6.77-6.84 (м, 1H_{apom.}), 7.02-7.15 (м, 3H_{apom.}), 7.20-7.40 (м, 3H_{apom.}), 7.92-7.99 (м, 1H_{apom.}), 11.98 (c, 1H, NH). Спектр ЯМР 13 С (75 $M\Gamma u$, DMSO/CCl₄ — 1/3), δ , м.д.: 15.86 (CH₃-Ph), 26.12 (C(CH₃)₂), 32.45 (C(CH₃)₂), 44.09 (CH₂-C(CH₃)₂), 63.20 (OCH₂), 110.62 (C=C-NH), 111.48 (CH_{apom.}), 120.28 (CH_{apom.}), 123.69 (CH_{apom.}), 125.92 (C=C-NH), 126.16 (CH_{apom.}), 126.16 (C_{apom.}), 135.68 (C_{apom.}), 137.17 (C_{apom.}), 144.44 (N=C-N), 153.97 (C=O), 156.10 (N=C-CH₂-O-Ph), 162.20 (C_{apom.}). Haŭдено, %: С71.48; H 5.74; N 14.50. C₂₃H₂₂N₄O₂. Вычислено, %: С 71.35; H 5.88; N 14.32.

4,4-Диметил-2-[(м-толилокси)метил]-4,5-дигидробензо[h][1,2,4]триазоло[1,5-с]хиназолин-11(10H)-он (17). Выход 1.6 ε (41%), т. пл. >250°С. R_f 0.83 (бензол-этилацетат, 1:2). ИК-спектр: ν , cm^{-1} : 1595, 1610 (C=C Ap); 1723 (C=O); 2200 (C=N); 3150-3320 (NH). Спектр ЯМР 1 H (300 $M\Gamma u$, DMSO/CCl₄ — 1/3), δ , м.д.: 1.47 (c, 6H, C(CH₃)₂), 2.33 (c, 3H, CH_3 -Ph), 2.85 (c, 2H, CH_2 -C(CH₃)₂), 5.20 (c, 2H, OCH₂), 6.68-6.90 (м, $3H_{apom}$), 7.07-

7.16 (м, $1\rm{H}_{apom.}$), 7.20-7.40 (м, $3\rm{H}_{apom.}$), 7.92-7.99 (м, $1\rm{H}_{apom.}$), 11.98 (с, $1\rm{H}$, NH). Спектр ЯМР $^{13}\rm{C}$ (75 $M\Gamma u$, DMSO/CCl₄ - 1/3), δ , м.д.: 20.97 (<u>CH_3-Ph</u>), 26.14 (С(<u>CH_3</u>)₂), 32.43 (<u>C</u>(CH₃)₂), 44.08 (<u>CH_2-C(CH_3)_2</u>), 62.80 (OCH₂), 110.61 (<u>C</u>=C-NH), 111.40 (CH_{apom.}), 115.23 (CH_{apom.}), 121.27 (CH_{apom.}), 123.70 (CH_{apom.}), 125.90 (C=<u>C-NH</u>), 126.51 (CH_{apom.}), 127.96 (CH_{apom.}), 128.50 (CH_{apom.}), 129.61 (CH_{apom.}), 135.67 (C_{apom.}), 137.19 (C_{apom.}), 138.26 (C_{apom.}), 144.40 (N=C-N), 153.93 (C=O), 157.94 (N=<u>C-CH_2-O-Ph</u>), 162. 02 (С_{apom.}). Найдено, %: C 71.48; H 5.74; N 14.50. C₂₃H₂₂N₄O₂. Вычислено, %: C 71.55; H 5.67; N 14.61.

4,4-Диметил-2-[(п-толилокси)метил]-4,5-дигидробензо[h][1,2,4]триазоло[1,5-с]хиназолин-11(10H)-он (18). Выход 1.8 ε (47%), т. пл. >250°С.R_f 0.80 (бензол-этилацетат, 1:2). ИК-спектр: ν , $c M^{-1}$: 1600, 1610 (C=C Ap); 1716 (C=O); 3160-3250 (NH). Спектр ЯМР 1 H (300 $M \Gamma \mu$, DMSO/CCl₄ — 1/3), δ , м.д.: 1.46 (c, 6H, C(CH₃)₂), 2.28 (c, 3H, CH₃-Ph), 2.85 (c, 2H, CH₂-C(CH₃)₂), 5.18 (c, 2H, OCH₂), 6.89-6.95 (м, 2H_{apom.}), 7.01-7.07 (м, 2H_{apom.}), 7.21-7.28 (м, 1H_{apom.}), 7.29-7.39 (м, 2H_{apom.}), 7.93-7.99 (м, 1H_{apom.}), 11.98 (c, 1H, NH). Спектр ЯМР 13 С (75 $M \Gamma \mu$, DMSO/CCl₄ — 1/3), δ , м.д.: 19.97 (CH₃-Ph), 26.16 (C(CH₃)₂), 32.45 (C(CH₃)₂), 44.09 (CH₂-C(CH₃)₂), 63.02 (OCH₂), 110.63 (С=C-NH), 114.35 (2(CH_{apom.})), 123.71 (CH_{apom.}), 125.93 (С=C-NH), 126.53 (CH_{apom.}), 127.97 (CH_{apom.}), 129.20 (2(CH_{apom.})), 129.23 (С_{apom.}), 129.62 (CH_{apom.}), 135.69 (С_{apom.}), 137.18 (С_{apom.}), 144.43 (N=C-N), 153.95 (C=O), 155.88 (N=C-CH₂-O-Ph), 162.10 (С_{apom.}). Найдено, %: С 71.48; H 5.74; N 14.50. С₂₃H₂₂N₄O₂. Вычислено, %: С 71.42; H 5.68; N 14.41.

2-[(2-Хлорфенокси)метил]-4,4-диметил-4,5-дигидробензо[h][1,2,4]триазоло[1,5-с]хиназолин-11(10H)-он (19). Выход 1.9 ε (47%), т. пл. >250°С. R_f 0.80 (бензол-этилацетат, 1:2). ИК-спектр: v, cm^{-l} : 1612 (C=C Ap); 1708 (C=O); 3170-3350 (NH). Спектр ЯМР 1 H (300 $M\Gamma u$, DMSO/CCl₄ - 1/3), δ , м.д.: 1.46 (с, 6H, $C(CH_3)_2$), 2.85 (с, 2H, CH_2 - $C(CH_3)_2$), 5.33 (с, 2H, OCH_2), 6.88-6.95 (м, 1H_{аром.}), 7.18-7.40 (м, 6H_{аром.}), 7.92-7.99 (м, 1H_{аром.}), 12.02 (с, 1H, NH). Спектр ЯМР 13 С (75 $M\Gamma u$, DMSO/CCl₄ - 1/3), δ , м.д.: 26.11 ($C(CH_3)_2$), 32.43 ($C(CH_3)_2$), 44.05 (CH_2 - $C(CH_3)_2$), 63.87 (CCH_2), 110.61 (C=C-NH), 114.20 ($CH_{apom.}$), 121.31 ($CH_{apom.}$), 122.31 ($C_{apom.}$), 123.70 ($CH_{apom.}$),125.88 (C=C-NH), 126.52 ($CH_{apom.}$), 127.15 ($CH_{apom.}$), 127.97 ($CH_{apom.}$), 129.58 ($CH_{apom.}$)), 129.65 ($CH_{apom.}$), 135.69 ($C_{apom.}$), 137.32 ($C_{apom.}$), 144.39 (C=C-N), 153.53 (C=C-CH₂-O-Ph), 154.00 (C=O), 161.50 ($C_{apom.}$). Hайдено, %: C=C-S. N 13.67.

2-(4-Этоксифенил)-4,4-диметил-4,5-дигидробензо[h][1,2,4]триазоло[1,5-с]хиназолин-11(10H)-он (20). Выход 1.8 ε (47%), т. пл. >250°С. R_f 0.55 (толуол-этанол, 7:1). ИК-спектр: ν , εM^{-1} : 1594, 1612 (C=C Ap); 1716 (C=O); 3100-3250 (NH). Спектр ЯМР 1 H (300 MГ μ , DMSO/CCl $_4$ — 1/3), δ , м.д., $\Gamma \mu$: 1.44 (т, J=6.93, 3H, OCH $_2$ CH $_3$), 1.52 (c, 6H, C(CH $_3$) $_2$), 2.87 (c, 2H, CH $_2$ -C(CH $_3$) $_2$), 4.11 (к, J=6.93, 2H, OCH $_2$ CH $_3$), 6.93-6.99 (м, 2H $_4$ DOM.), 7.22-7.39 (м, 3H $_4$ DOM.), 7.93-8.00 (м, 1H $_4$ DOM.), 8.11-8.17 (м, 2H $_4$ DOM.), 11.88 (c, 1H, NH).

Спектр ЯМР 13 С (75 $M\Gamma$ и, DMSO/CCl₄ — 1/3), δ , м.д.: 14.29 (OCH₂CH₃), 26.23 (C(<u>CH</u>₃)₂), 32.49 (<u>C</u>(CH₃)₂), 44.13 (<u>CH</u>₂-C(CH₃)₂), 62.63 (O<u>CH</u>₂CH₃), 110.47 (<u>C</u>=C-NH), 113.80 (2(CH_{apom.})), 122.35 (C_{apom.}), 123.59 (CH_{apom.}), 126.03 (C=<u>C</u>-NH), 126.46 (CH_{apom.}), 127.91 (CH_{apom.}), 128.23 (2(CH_{apom.})), 129.43 (CH_{apom.}), 135.60 (C_{apom.}), 136.74 (C_{apom.}), 144.51 (N=C-N), 153.86 (C=O), 159.93 (C_{apom.}), 163.08 (N=C-Ph). Найдено, %: С 71.48; H 5.74; N 14.50. C₂₃H₂₂N₄O₂ Вычислено, %: С 71.55; H 5.79; N 14.41.

2-(4-Бутоксифенил)-4,4-диметил-4,5-дигидробензо[h][1,2,4]триазоло[1,5**c]хиназолин-11(10H)-он (21).** Выход 2 ε (48%), т. пл. >250°C. R_f 0.51 (толуолэтанол, 7:1). ИК-спектр: ν , $c M^{-1}$: 1600, 1612 (C=C Ap); 1707 (C=O); 3100-3350 (NH). Спектр ЯМР 1 Н (300 $M\Gamma u$, DMSO/CCl₄ - 1/3), δ , м.д., Γu : 1.01 $(T_1, J=7.34, 3H, OCH_2CH_2CH_2CH_3), 1.46-1.60 (M, 2H, OCH_2CH_2CH_3),$ 1.52 (c, 6H, C(CH₃)₂), 1.73-1.85 (м, 2H, OCH₂CH₂CH₂CH₃), 2.87 (c, 2H, $\underline{\text{CH}}_2\text{-C}(\text{CH}_3)_2$, 4.03 (T, J=6.41, 2H, $\underline{\text{OCH}}_2\text{CH}_2\text{CH}_2\text{CH}_3$), 6.92-6.98 (M, $2H_{apom.}$), 7.22-7.39 (M, $3H_{apom.}$), 7.93-8.00 (M, $1H_{apom.}$), 8.11-8.17 (M, $2H_{apom.}$), 11.88 (с, 1H, NH). Спектр ЯМР ¹³С (75 *МГц*, DMSO/CCl₄ - 1/3), δ, м.д.: 13.41 (OCH₂CH₂CH₂CH₃), 18.64 (OCH₂CH₂CH₃CH₃), 26.25 (C(<u>CH₃</u>)₂), $30.68 \text{ (OCH}_2\text{CH}_2\text{CH}_2\text{CH}_3), 32.50 \text{ (C(CH}_3)_2), 44.15 \text{ (CH}_2\text{-C(CH}_3)_2), 66.85$ $(OCH_2CH_2CH_2CH_3)$, 110.48 (C=C-NH), 113.82 $(2(CH_{apom.}))$, 122.35 $(C_{apom.})$, 123.60 (CH_{apom.}), 126.03 (C= \underline{C} -NH), 126.47 (CH_{apom.}), 127.93 (CH_{apom.}), 128.22 (2(CH_{apom.})), 129.44 (CH_{apom.}), 135.62 (C_{apom.}), 136.75 (C_{apom.}), 144.53 (N=C-N), 153.87 (C=O), 160.12 (С_{аром.}), 163.10 (N=C-Ph). Найдено, %: С 72.44; Н 6.32; N 13.52. С₂₅Н₂₆N₄О_{2.} Вычислено, %: С 72.34; Н 6.41; N 13.42.

2-(4-Изобутоксифенил)-4,4-диметил-4,5-дигидробензо[h][1,2,4]триазоло[1,5-с]хиназолин-11(10H)-он (22). Выход 2.2 ε (53%), т. пл. >250°С. R_f 0.55 (толуол-этанол, 7:1). ИК-спектр: ν , $c M^{-1}$: 1600, 1614 (C=C Ap); 1704 (C=O); 3200-3350 (NH). Спектр ЯМР 1 H (300 $M \Gamma u$, DMSO/CCl₄ — 1/3), δ , м.д., Γu : 1.07 (д. J=6.74, 6H, OCH₂CH($\underline{CH_3}$)₂), 1.53 (с. 6H, C(CH₃)₂), 2.03-2.19 (м. 1H, OCH₂CH(CH₃)₂), 2.87 (с. 2H, $\underline{CH_2}$ -C(CH₃)₂), 3.80 (д. J=6.38, 2H, OCH₂CH(CH₃)₂), 6.93-6.99 (м. 2H_{apom.}), 7.22-7.39 (м. 3H_{apom.}), 7.93-8.00 (м. 1H_{apom.}), 8.11-8.17 (м. 2H_{apom.}), 11.88 (с. 1H, NH). Спектр ЯМР 13 С (75 $M \Gamma u$, DMSO/CCl₄ — 1/3), δ , м.д.: 18.80 (OCH₂CH($\underline{CH_3}$)₂), 26.25 (C($\underline{CH_3}$)₂), 27.64 (OCH₂CH(CH₃)₂), 32.49 (\underline{C} (CH₃)₂), 44.15 ($\underline{CH_2}$ -C(CH₃)₂), 73.55 (OCH₂CH(CH₃)₂), 110.49 (\underline{C} =C-NH), 113.85 (2(CH_{apom.})), 122.39 (C_{apom.}), 123.59 (CH_{apom.}), 126.03 (C= \underline{C} -NH), 126.47 (CH_{apom.}), 127.92 (CH_{apom.}), 128.20 (2(CH_{apom.})), 129.43 (CH_{apom.}), 135.62 (C_{apom.}), 136.74 (C_{apom.}), 144.52 (N=C-N), 153.87 (C=O), 160.18 (C_{apom.}), 163.08 (N=C-Ph). Haйдено, %: C72.44; H 6.32; N 13.52. C₂₅H₂₆N₄O₂. Вычислено, %: C 72.32; H 6.40; N 13.42.

Исследование выполнено при финансовой поддержке Государственного комитета по науке МОН РА в рамках научного проекта №15Т-1D149.

(3,3-ԴԻՄԵԹԻԼ-2-ՑԻԱՆ-3,4-ԴԻՏԻԴՐՈՆԱՎԹԱԼԻՆ-1-ԻԼ)ՖԵՆԻԼԿԱՐԲԱՄԱՏԻ ՍԻՆԹԵԶԸ ԵՎ ՓՈԽԱՐԿՈՒՄՆԵՐԸ

Ա. Ի. ՄԱՐԿՈՍՅԱՆ, Կ. Կ. ৲ԱՅՐԱՊԵՏՅԱՆ, Ս. ৲. ԳԱԲՐԻԵԼՅԱՆ, Ս. Ս. ՄԱՄՅԱՆ, Ջ. Ա. ԱՎԱԿԻՄՅԱՆ և ৲. Մ. ՍՏԵՓԱՆՅԱՆ

1-Ամինո-3.3-դիմենիլ-3.4-դիՀիդրոնավնային-2-կարբոնիտրիլի և ֆենիլթլորֆորմիատի կոնդենսման Հիման վրա սիննեղվել է (3,3-դիմենիլ-2-ցիան-3,4-դիՀիդրոնավնային-1-իլ) ֆենիլկարբամատ։ Վերջինիս փոխազդեցունյունը առաջնային և երկրորդային ամինների Հետ բերել է Համապատախանաբար երկ- և եռտեղակալված միզանյուների ստացմանը։ Վերոհիչյալ կարբամատի և արոմատիկ, ալկօջսիարոմատիկ ու Հետերոարոմատիկ Թնուների հիդրադիդների ռեակցիայի արդյունջում սիննեղվել են 2-տեղակալված 4,4-դիմենիլ-4,5-դիՀիդրոբենզո[հ][1,2,4]տրիաղոլ[1,5-c]խինաղոլին-11(10H)-ոններ։ Կենսաբանական Հետազոտունյունները ցույց են տվել, որ ուսումնասիրված միացուժյունների մեծ մասը դրամդրական և դրամբացասական միկրոօրդանիզմների նկատմամբ ցուցաբերում է Թույլ կամ միջին ակտիվունյուն։

SYNTHESIS AND TRANSFORMATIONS OF (3,3-DIMETHYL-2-CYANO-3,4-DIHYDRONAPHTHALENE-1-IL)PHENYLCARBAMATE

A. I. MARKOSYAN, K. K. HAYRAPETYAN, S. H. GABRIELYAN, S. S. MAMYAN, J. A. AVAKIMYAN and H. M. STEPANYAN

Scientific and Technological Center of Organic and Pharmaceutical Chemistry of NAS RA 26, Azatutyan Ave., Yerevan, 0014, Armenia Phone: +374 10 288 443. E-mail: ashot@markosyan.am

The reaction of 1-amino-3,3-dimethyl-3,4-dihydronaphthalene-2-carbonitrile (1) with phenylchloroformate a method was developed for obtaining (3,3-dimethyl-2-cyano-3,4-dihydronaphthalene-1-yl)phenylcarbamate (2). Carbamate 2 was put into reaction with primary (propylamine, isopropylamine and aniline) and secondary amines (dimethylamine, diethylamine, pyrrolidine, piperidine, morpholine and azepan), which led to the formation of disubstituted (3-5) and trisubstituted (6-11) urea dihydronaphthalene series. The synthesis of the desired 2-substituted 4,4-dimethyl-4,5-dihydrobenzo[h][1,2,4]triazolo[1,5-c]quinazoline-11(10H)-ones (12-22) was carried out by condensation of carbamate 2 with hydrazides of various carboxylic acids (isonicotinic, benzoic, 4-bromobenzoic, 4-ethoxybenzoic, 4-butoxybenzoic, 4-iso-butoxybenzoic, phenylacetic, 2-(o-tolyloxyacetic, 2-m-tolyloxyacetic, 2-p-tolyloxyacetic).

The antibacterial activity of the synthesized compounds was studied by the method of "diffusion in agar" at a microbial load of 20 million microbial bodies per 1 ml of environment. As test objects, gram-positive staphylococci are used (Staph. Aureus 209p, 1) and gram-negative rods (Sh. dysenteriae Flexneri 6858, E. Coli 0-55). The calculation of the results is carried out according to the diameter (d) of the no-growth zones of microorganisms at the site of application of compounds (in mm). Most of the compounds studied showed weak or moderate activity against gram-positive and gram-negative microorganisms in 10-16 mm diameter zone.

ЛИТЕРАТУРА

- [1] Feng Y., Ding X., Chen T., Chen L., Liu F., Jia X., Luo X., Liu D. // J. Med. Chem., 2010, v. 53 (9), p. 3465.
- [2] Patil A., Ganguly S., Surana S., Pekamwar S., Sangamwar A. // Int. J. Pharm. Tech. Res., 2009, v. 1 (4), p. 1227.
- [3] Mikshiev V.Y., Antonov A.S., Pozharski A.F. // Org. Lett., 2016, v. 18 (12), p. 2872.
- [4] Reddy R.S., Prasad P.K., Ahuja B.B., Sudalai A. // J. Org. Chem., 2013, v. 78 (10), p. 5045.
- [5] Ramesh G., Gali R., Velpula R., Rajitha B. // Res. Chem. Intermed., 2016, v.42, Issue 4, p. 3863.
- [6] Wei W., Li Ch., Wang T., Liu D., Zhang N. // Tetrahedron, 2016, v. 72, Issue 33, p. 5037.
- [7] Verbitskiy E.V., Rusinov G.L., Chupakhin O.N., Charushin V.N. // ARKIVOC, 2016, (iv), p. 204.
- [8] Григорян Н.П., Тарзян Л.А., Маркосян А.И., Пароникян Р.Г., Сукасян Р.С. // Хим. ж. Армении, 2009, т. 62, № 1-2, с. 160.
- [9] *Маркосян А.И., Диланян С.В., Арсенян Ф.Г., Сукасян Р.С., Гарибджанян Б.Т. //* Хим.фарм. ж., 2010, т.44, № 3, с. 3.
- [10] Григорян Н.П., Маркосян А.И., Варданян Н. А., Авакимян Д.Л., Степанян Г.М. // Хим. ж. Армении, 2011, т.64, № 3, с. 394.
- [11] Маркосян А.И., Торширзад Н.М., Габриелян С.А., Шахатуни Р.К., Авакимян Дж.А. // Материалы 3-ьей научной конференции АХО «Успехи в области органической и фармацевтической химии». Ереван, 2012, с. 34.
- [12] *Маркосян А.И., Торширзад Н.М., Габриелян С.А.* //Хим. ж. Армении, 2013, т. 66, № 1, с. 110.
- [13] Markosyan A.I., Torshirzad N.M., Gabrielyan S.H., Papanyan N.J., Avakimyan J.A. // Electronic J. Nat. Sci. NAS RA, 2013, v. 1(20), p. 17.
- [14] Markosyan A.I., Torshirzad N.M., Gabrielyan S.H., Mkrtchyan D.A., Stepanyan H.M., Avakimyan J.A. // Electronic J. Nat. Sci. NAS RA, 2014, v. 1(22), p. 26.
- [15] *Маркосян А.И., Габриелян С.А., Авакимян Дж.А., Степанян Г.М.* // Сборник трудов НТЦОФХ, выпуск-2, Ереван, 2015, с. 194.
- [16] Markosyan A.I., Hayrapetyan K.K., Gabrielyan S.H., Mamyan S.S., Avakimyan J.A. // Electronic J. Nat. Sci. NAS RA, 2016, v. 2(27), p. 3.
- [17] Markosyan A.I., Dilanyan S.V., Gabrielyan S.H., Mamyan S.S. // Electronic J. Nat. Sci. NAS RA, 2016, v. 2(27), p. 23.
- [18] Григорян Н.П., Маркосян А.И., Григорян А.С., Степанян Г.А., Сукасян Р.С., Пароникян Р.Г. // Хим.-фарм. ж., 2017, т. 51, №2, с. 11.
- [19] Григорян Н.П., Маркосян А.И., Пароникян Р.Г., Сукасян Р.С. // Хим.-фарм. ж., 2017, т. 51, №8, с. 3.
- [20] Маркосян А.И., Айрапетян К.К., Габриелян С.А., Мамян С.С., Авакимян Дж.А., Степанян Г.М. // Хим. ж. Армении, 2017, т. 70, №3, с. 368.
- [21] Руководство по проведению доклинических исследований лекарственных средств. / под ред. А.Н.Миронова, М., 2012.