#### ՀԱՅԱՍՑԱՆԻ ՀԱՆՐԱՊԵՏՈՐԹՅՈՆ ԳԻՏՈՐԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ

### НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

Տայաստանի քիմիական հանդես

Химический журнал Армении 70, №3, 2017 Chemical Journal of Armenia

#### ОРГАНИЧЕСКАЯ И БИООРГАНИЧЕСКАЯ ХИМИЯ

УДК 547.787

# СИНТЕЗ И ИЗУЧЕНИЕ АНТИРАДИКАЛЬНОЙ АКТИВНОСТИ ГИДРАЗИДОВ (Z)-N-БЕНЗОИЛ- $\alpha$ , $\beta$ -ДЕГИДРОАМИНОКИСЛОТ

### В. О. ТОПУЗЯН $^1$ , М. М. ХАЛАТЯН $^1$ , А. А. ОГАНЕСЯН $^1$ , Л. Х. ГАЛСТЯН $^2$ и А. Р. МАНВЕЛЯН $^1$

<sup>1</sup> Научно-технологический центр органической и фармацевтической химии НАН Республики Армения Армения, 0014, Ереван, пр. Азатутяна, 26
<sup>2</sup> Ереванский государственный университет Армения, 0025, Ереван, ул. А.Манукяна, 1 E-mail: vtop@web.am

Поступило 25 IV 2017

Осуществлен синтез гидразидов N-замещенных  $\alpha$ , $\beta$ -дегидроаминокислот взаимодействием ненасыщенных 5(4H)-оксазолонов с гидразингидратом. Изучены антирадикальные свойства синтезированных гидразидов их реакцией с 2,2'-дифенил-1-пикрилгидразилом (ДФПГ). Для всех гидразидов рассчитаны первичные скорости реакции и время полуингибирования радикала ДФПГ. Установлено, что производные N-замещенных  $\alpha$ , $\beta$ -дегидротирозинов проявляют сравнительно высокую ингибирующую активность по отношению к стабильному радикалу ДФПГ.

Рис.1, табл. 2, библ. ссылок 10.

Известно, что коричная кислота и ее производные (амиды, эфиры) как природного, так и синтетического происхождения проявляют антирадикалные свойства [1-5]. С другой стороны,  $\alpha$ -аминокоричная кислота ( $\alpha$ , $\beta$ -дегидрофенилаланин) является полезным прекурсором для синтеза биологически активных соединений[6]. Однако в литературе отсутствуют данные по антирадикальным свойствам соединений, содержащих остатки  $\alpha$ , $\beta$ -дегидроаминокислот. В связи с этим нами взаимодействием ненасыщенных 5(4H)-оксазолонов (1-20) с гидразингидратом в метаноле или этаноле при комнатной температуре были получены целевые гидра-

зиды N-замещенных  $\alpha$ , $\beta$ -дегидрофенилаланинов и  $\alpha$ , $\beta$ -дегидротирозинов (21-40) с выходами, колеблющимися от 65 до 90%, а также исследованы их антирадикальные свойства.

Следует отметить, что, согласно физико-химическим исследованиям синтезированных соединений, реакции оксазолонов **4-6** с гидразингидратом сопровождаются двумя параллельно протекающими реакциями — раскрытием азлактонного цикла, приводящим к образованию гидразида, и расщеплением ацетильной группы, приведшим к образованию свободной гидрокисльной группы в боковой ароматической цепи  $\alpha, \beta$ -дегидроаминокислотного остатка.

Ar—C O 
$$H_2NNH_2$$
  $R_2$   $R_1$   $O$   $O$   $NHNH_2$   $R_2$   $R_3$   $R_4$   $R_4$   $R_5$   $R_5$   $R_6$   $R_7$   $R_8$   $R_8$   $R_8$   $R_9$   $R_9$ 

R = H; Me; Br; Cl.  $R_1 = H$ ; Br; Cl.  $R_2 = H$ ; NO<sub>2</sub>.

 $A = C_6H_5; 4-MeOC_6H_4; 4-OHC_6H_4; 3-MeO-4-OHC_6H_3; 3-EtO-4-OHC_6H_3; 4-i-PrOC_6H_4; 3,4-CH_2O_2C_6H_3; 4-ClC_6H_4; 3-O_2NC_6H_4; C_4H_3O.$ 

В ИК-спектрах гидразидов N-бензоил-α,β-дегидротирозина (24), N-бензоил-3-метокси-α,β-дегидротирозина (25) и N-бензоил-3-этокси-α,β-дегидротирозина (26) отсутствуют полосы поглощений при 1751-1754*cм*<sup>-1</sup> (СО-эфирн.), в то время как они присутствуют в соответствующих ненасыщенных 5(4H)-оксазолонах 4-6. В ЯМР <sup>1</sup>H спектрах соединений 24-26 отсутствуют сигналы протонов ацетильной группы и наблюдаются синглетные сигналы фенольных водородных атомов при 8.73-9.39 м.д.

В ЯМР  $^1$ Н спектрах гидразидов **21-40** синглетный сигнал водородного атома винильной группы проявляется при 7.12-7.25 м.д., что свидетельствует об их Z-конфигурации. Согласно данным ЯМР  $^1$ Н спектра,

гидразид N-4-бромбензоил- $\beta$ -стирил- $\alpha$ , $\beta$ -дегидроаланина (33) является смесью двух стереоизомеров (1: 0.5).

Изучены антирадикальные свойства синтезированных гидразидов **21-40.** Исследования проводились с помощью их реакций со свободным стабильным радикалом — 2,2'-дифенил-1-пикрилгидразилом (ДФПГ $^{\bullet}$ ), в среде метанола при температуре  $25^{\circ}$ С и соотношении реагентов 1:1. Измерения проводились спектрофотометрическим методом [7]. Для количественной оценки антирадикальной активности (АРА%) использовали формулу 1:

$$APA\% = \frac{A_0 - A_1}{A_0} \times 100, \tag{1}$$

где  $A_0$  — оптическая плотность раствора в отсутствие ингибитора;  $A_1$  — оптическая плотность раствора на данный момент в присутствии ингибитора.

Таблица 1
Данные антирадикальных свойств гидразидов 21-40,
витамина С и галловой кислоты

|      | APA, % |       |        |        |        |        | $V_{\text{Hau.}}$ | Т <sub>50%</sub> , мин |
|------|--------|-------|--------|--------|--------|--------|-------------------|------------------------|
|      | 1 мин  | 5 мин | 10 мин | 20 мин | 30 мин | 40 мин | %, <i>c</i>       |                        |
| 21   | 17.9   | 47.6  | 60.9   | 70.3   | 73.4   | 74.4   | 0.28              | 5.75                   |
| 22   | 5.4    | 20.4  | 35.3   | 52.8   | 62.8   | 68.9   | 0.09              | 18.25                  |
| 23   | 6.8    | 22.3  | 36.4   | 53.7   | 64.2   | 69.5   | 0.11              | 17.50                  |
| 24   | 31.0   | 63.6  | 75.8   | 82.0   | 83.2   | 84.0   | 0.52              | 3.25                   |
| 25   | 91.0   | 91.0  | 91.0   | 91.0   | _      | ı      | 1.52              | 0.55***                |
| 26   | 90.0   | 90.7  | 90.7   | 90.7   | _      | ı      | 1.50              | 0.56***                |
| 27   | 14.2   | 42.0  | 55.4   | 65.8   | 70.8   | 73.1   | 0.24              | 7.55                   |
| 28   | 6.1    | 20.7  | 36.3   | 55.2   | 64.7   | 70.0   | 0.10              | 17.0                   |
| 29   | 5.8    | 18.3  | 30.2   | 46.1   | 56.9   | 63.9   | 0.10              | 23.5                   |
| 30   | 9.8    | 36.6  | 52.2   | 68.5   | 75.0   | 77.0   | 0.16              | 9.3                    |
| 31   | 11.7   | 37.9  | 55.3   | 70.9   | 75.7   | 77.7   | 0.19              | 8.0                    |
| 32   | 21.2   | 53.2  | 68.3   | 76.4   | 79.0   | 79.0   | 0.35              | 4.5                    |
| 33   | 35.4   | 67.9  | 75.9   | 80.0   | 86.4   | 86.7   | 0.59              | 2.7                    |
| 34   | 22.1   | 56.9  | 68.9   | 72.3   | 72.3   | 72.3   | 0.37              | 4.2                    |
| 35   | 8.6    | 28.0  | 43.9   | 60.0   | 67.6   | 71.7   | 0.14              | 13.5                   |
| 36   | 12.0   | 30.6  | 45.3   | 60.7   | 67.9   | 71.2   | 0.20              | 12.0                   |
| 37   | 7.5    | 26.3  | 41.1   | 58.9   | 67.8   | 72.3   | 0.13              | 15.0                   |
| 38   | 7.9    | 27.0  | 42.6   | 59.7   | 65.2   | 70.8   | 0.13              | 14.5                   |
| 39   | 7.5    | 26.9  | 42.9   | 60.5   | 68.9   | 73.6   | 0.13              | 14.4                   |
| 40   | 27.6   | 69.4  | 80.8   | 82.3   | 82.3   | 82.3   | 0.46              | 3.1                    |
| 41   | 0      | 0     | 0      | 0      |        | _      | -                 |                        |
| 42   | 2      | 2     | 2      | 2      | _      | _      | -                 |                        |
| VC*  | 93.5   | 93.5  | 93.5   | 93.5   | -      | _      | 1.57              | 0.53***                |
| GA** | 88.8   | 88.8  | 88.8   | 88.8   | _      | _      | 1.46              | 0.56***                |

 $<sup>^*</sup>$  — витамин C;  $^{**}$  — галловая кислота;  $^{***}$  — максимальный % ингибирования достигается в течение 1 *мин*.

Рассчитаны также скорости реакций  $\Delta\Phi\Pi\Gamma^{\bullet}$  с гидразидами в начальный момент (через 1 *мин*) времени. Величину скорости (Vнач.) для исследуемых реакций определяли как тангенс угла наклона начального прямолинейного участка кинетической кривой (формула 2). С помощью кинетических кривых было определено время ингибирования  $\Delta\Phi\Pi\Gamma^{\bullet}$  на 50% ( $\Gamma_{50\%}$ ) под действием соединений **21-40** (табл. 1).

$$V_{\text{Ha}} = \frac{\text{M1}}{60},\tag{2}$$

где  $U_1$  — значение ингибирования ДФПГ $^{ullet}$  данным веществом через 1 мин.

Как видно из табл. 1, все синтезированные гидразиды N-замещенных  $\alpha$ , $\beta$ -дегидроаминокислот проявляют способность подавлять стабильный радикал ДФПГ. Из рассмотрения данных  $V_{Haq}$ . и  $T_{50\%}$  гидразидов с различными  $\alpha$ , $\beta$ -дегидроаминокислотными остатками очевидно, что активность увеличивается в ряду О-метил- $\alpha$ , $\beta$ -дегидротирозина (22, 0.09 и 18.25)<3,4-диоксиметилен- $\alpha$ , $\beta$ -дегидрофенилаланина (23,0.11 и 17.5) <3-нитрофенилаланина (27, 0.24 и 7.55)< $\alpha$ , $\beta$ -дегидрофенилаланина (21, 0.28 и 5.75)< $\alpha$ , $\beta$ -дегидротирозина (24,0.52 и 3.25)<3-этокси- $\alpha$ , $\beta$ -дегидротирозина (26,1.50 и 0.56)<3-метокси- $\alpha$ , $\beta$ -дегидротирозина (25,1.52 и 0.55). Аналогичная картина наблюдается при переходе от гидразида 20 к гидразидам 4-бромбензоил- $\beta$ -стирил- $\alpha$ , $\beta$ -дегидроаланина (33,  $V_{Haq}$ . = 0.59% в c и  $T_{50\%}$  = 2.7 mun) и 4-бромбензоил- $\beta$ -фурил- $\alpha$ , $\beta$ -дегидроаланина (34, $V_{Haq}$ . = 0.37 % в c и  $T_{50\%}$  = 4.2 mun).

При сравнении структурных особенностей гидразидов N-замещенных О-метил- $\alpha$ , $\beta$ -дегидротирозинов (22, 28, 30, 35, 37) легко убедиться, что введение как электронодонорной (метилзамещенные соединения 22 и **28**), так и электроноакцепторной (Cl, Br,  $NO_2$ -содержащие соединения 30, 35 и 37) групп в бензольное кольцо N-заместителя благоприятно влияют на величины  $m V_{
m Hay}$  и  $m T_{50\%}$  (табл. 1). Очевидно также, что введение алкоксигруппы в положение 3 бензольного кольца α,βдегидротирозинового остатка(сравнить данные соединений 25 и 26 с 24) стабильного способствует подавлению гидразидом значительно радикала ДФПГ°. Следует отметить также, что гидразиды 25 и 26 по величинам  $m V_{
m hau.}$  и  $m T_{
m 50\%}$  не уступают известным антиоксидантам витамину C и галловой кислоте.

Для сравнительно более активных гидразидов **25** и **26** были определены также  $IC_{50\%}$ , т.е. концентрации веществ, подавляющие  $Д\Phi\Pi\Gamma^{\bullet}$  на 50% (табл. 2). Как видно из табл. 2, значения  $IC_{50\%}$  соединений **25** и **26** близки к данным витамина C, но уступают значениям  $IC_{50\%}$  галловой кислоты.

| Соединение       | $r^2$ | IC <sub>50%</sub> , µг мл <sup>-1</sup> |
|------------------|-------|-----------------------------------------|
| 25               | 0.999 | 4.55                                    |
| 26               | 0.999 | 4.77                                    |
| витамин С        | 0.986 | 3.90                                    |
| галловая кислота | 0.999 | 1.97                                    |

Обобщая результаты проведенных исследований, следует констатировать, что все исследуемые гидразиды **21-40** реагируют со свободным стабильным радикалом  $\Delta \Phi \Pi \Gamma^{\bullet}$ , и скорости реакций в случае различных гидразидов отличаются друг от друга. Очевидно, что исследуемый процесс протекает с отрывом от аминогруппы гидразида (GH) атома водорода, который превращает радикал  $\Delta \Phi \Pi \Gamma^{\bullet}$  в 2,2'-дифенил-1-пикрилгидразин.

2,2'-дифенил-1-пикрилгидразил радикал

2,2'-дифенил-1-пикрилгидразин

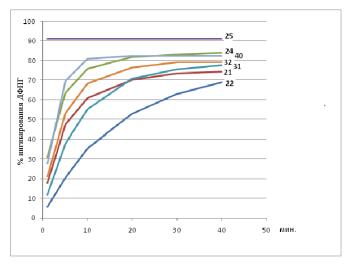



Рис. Кинетические кривые ингибирования радикала ДФПГ $^{\bullet}$  в реакциях с некоторыми гидразидами (**21,22,24,25,31,32** и **40**) N-замещенных  $\alpha, \beta$ -дегидроаминокислот.

Обращает на себя внимание вид кинетических кривых расходования  $\Delta \Phi \Pi \Gamma^{\bullet}$  в реакциях с гидразидами (некоторые кинетические кривые см. в рисунке). В большинстве случаев в начале реакции наблюдается резкое уменьшение количества  $\Delta \Phi \Pi \Gamma^{\bullet}$ , а затем в ходе реакции концентрация радикала медленно снижается. Этот факт, по-видимому, обусловлен образованием нового радикала (G  $\bullet$ ), который по мере накопления проявляет конкурентность по отношению к  $\Delta \Phi \Pi \Gamma^{\bullet}$ .

Сравнительно высокие значения АРА гидразидов **24-26**, по данным как Vнач, так и по T<sub>50%</sub>, вероятно, можно объяснить наличием гидроксильной группы в этих соединениях. В связи с этим можно предположить, что, если в гидразидах донором протона является аминогруппа гидразидного остатка исследуемого соединения, то в случае соединений **24-26** эту роль выполняет фенольная гидроксильная группа боковой цепи аминокислотного остатка. Такое предположение подтверждается как данными работы [1], где АРА производных гидроксикоричной кислоты объясняется наличием гидроксильной группы, так и нашими исследованиями АРА амида N-бензоил-α, β-дегидрофенилаланина (**41**) и фенилгидразона соединения **21** (**42**), согласно которым, они практически лишены этой активности (табл. 1).

$$NH_2$$
 $NH_2$ 
 $NH_2$ 

Таким образом, нами найден новый ряд соединений — гидразиды N-замещенных  $\alpha$ , $\beta$ -дегидроаминокислот, проявляющие антирадикальные свойства.

### Экспериментальная часть

ИК-спектры сняты на спектрометре "Nicolet Avatar 330" в вазелиновом масле, спектры ЯМР  $^1$ Н — на приборе "Varian Mercury-300" с рабочей частотой 300  $M\Gamma u$  в растворе ДМСО- $d_6$ , внутренний стандарт — ТМС. ТСХ проведена на пластинках "TLC Silica gel 60  $F_{254}$ ", элюент —  $C_6H_6$ :МеОН, 5:1 (A),  $C_6H_6$ :МеОН, 5:2 (Б), проявитель — УФ-лучи и пары йода. Данные элементного анализа соответствуют численным значениям. Синтез исходных ненасыщенных 5(4H)-оксазолонов 1-20 проводился по [8], амида N-бензоил- $\alpha$ , $\beta$ -дегидрофенилаланина (41) — по [9] и фенилгидразона 42 — по [10].

Общий способ синтеза гидразидов N-замещенных α,β-дегидроаминокислот 21-40. К смеси 0.01 моля 2-арил-4-арилиден-5(4H)-оксазолона в 10 мл метанола или этанола при перемешивании добавляют 0.02 моля 98% гидразингидрата и оставляют при комнатной температуре на 5 ч. Образовавшийся осадок отфильтровывают, промывают водой и сушат на воздухе. Перекристаллизацию проводят из этанола.

Гидразид N-бензоил- $\alpha$ ,β-дегидрофенилаланина (21). Выход 72.4%, т.пл. 163-165°C,  $R_f(E)$  0.68. ИК-спектр,  $\nu$ ,  $c \omega^{-1}$ : 1645 (CO-амидн.), 3246, 3295 (NH). Спектр ЯМР  $^1$ H,  $\delta$ , м. д.: 4.19 (2H, уш. c,NH<sub>2</sub>); 7.17 (1H, уш. c,=CH); 7.20-7.33 (3H, м,C<sub>6</sub>H<sub>5</sub>); 7.41-7.56 (5H, м, C<sub>6</sub>H<sub>5</sub>) и 7.98-8.03 (2H, м, C<sub>6</sub>H<sub>5</sub>); 9.32 (1H, уш. c, NH); 9.67 (1H, уш. c, NH).

Гидразид N-бензоил-О-метил- $\alpha$ ,β-дегидротирозина (22). Выход 83.7%, т.пл. 160-162°C, R<sub>f</sub>(A) 0.62. ИК-спектр, ν,  $cм^{-1}$ : 1642 (СО-амидн.), 3224, 3265 (NH). Спектр ЯМР  $^1$ H,  $\delta$ , м. д.: 3.77 (3H, c, OCH<sub>3</sub>); 4.18 (2H, уш. c,NH<sub>2</sub>); 6.80-6.85 (2H,м,C<sub>6</sub>H<sub>4</sub>);7.17 (1H, уш. c, =CH); 7.42-7.55 (5H, м, C<sub>6</sub>H<sub>5</sub>); 8.00-8.05 (2H,м,C<sub>6</sub>H<sub>4</sub>); 9.21 (1H, c, NH); 9.60 (1H, уш. c, NH).

Гидразид N-бензоил-3,4-диоксиметилен- $\alpha$ ,β-дегидрофенилаланина (23). Выход 65.0%, т.пл. 168-170°С, R<sub>f</sub> (A) 0.65. ИК-спектр,  $\nu$ ,  $cw^{-1}$ : 1661 (СО-амидн.), 3305, 3410 (NH). Спектр ЯМР  $^1$ H,  $\delta$ , м. д.,  $\Gamma \mu$ : 4.13 (2H, уш. с, NH<sub>2</sub>); 5.96 (2H, c, OCH<sub>2</sub>O); 6.77(1H, д, J = 8.1, C<sub>6</sub>H<sub>3</sub>); 7.03 (1H, дд, J = 8.1,1.7, C<sub>6</sub>H<sub>3</sub>); 7.12 (1H, д, J = 1.7, C<sub>6</sub>H<sub>3</sub>); 7.14 (1H, уш. с, =CH);7.42-7.55 (3H, м, C<sub>6</sub>H<sub>5</sub>); 7.99-8.04 (2H, м, C<sub>6</sub>H<sub>5</sub>); 9.26 (1H, уш. с, NH); 9.61 (1H, уш. с, NH).

Гидразид N-бензоил- $\alpha$ ,β-дегидротирозина (24). Выход 69.5%, т.пл. 224-227°С,  $R_f$  (Б) 0.57. ИК-спектр,  $\nu$ ,  $c M^{-1}$ : 1662 (СО-амидн.), 3279, 3319 (NH); 3405 (ОН). Спектр ЯМР  $^1$ Н,  $\delta$ , м. д.: 4.13 (2H, уш. c,NH<sub>2</sub>); 6.67-6.71 (2H, м,  $C_6H_4$ ); 7.13 (1H, уш. c, =CH); 7.35-7.40 (2H, м,  $C_6H_4$ ); 7.42-7.55 (3H, м,  $C_6H_5$ ); 8.00-8.05 (2H, м,  $C_6H_5$ ); 9.12 (1H, уш. c,NH);9.39 (1H, уш. c,OH);9.55 (1H, уш. c,NH).

Гидразид N-бензоил-3-метокси- $\alpha$ ,β-дегидротирозина (25). Выход 68.0%, т.па. 210-213°C, R<sub>f</sub>(B) 0.56. ИК-спектр,  $\nu$ ,  $c M^{-1}$ : 1662 (СО-амидн.), 3275, 3323 (NH). Спектр ЯМР  $^1$ Н,  $\delta$ , м. д.,  $\Gamma \psi$ : 3.53 (3H, c, OCH<sub>3</sub>); 4.17 (2H, уш.с, NH<sub>2</sub>); 6.71 (1H, д, J=8.2, C<sub>6</sub>H<sub>3</sub>); 6.95 (1H, дд, J=8.2, 2.0, C<sub>6</sub>H<sub>3</sub>); 7,18 (1H, д, J=2.0, C<sub>6</sub>H<sub>3</sub>); 7.19 (1H, c, =CH); 7.42-7.54 (3H, м, C<sub>6</sub>H<sub>5</sub>); 8.05-8.10 (2H, м, C<sub>6</sub>H<sub>5</sub>); 8.81 (1H, уш.с, NH); 9.17 (1H, уш.с, NH); 9.61 (1H, c, OH).

Гидразид N-бензоил-3-этокси- $\alpha$ ,β-дегидротирозина (26). Выход 69.9%, т.пл. 226-228°C, R<sub>f</sub> (Б) 0.71. ИК-спектр, ν,  $cм^{-1}$ : 1644 (СО-амидн.), 3317 (NH). Спектр ЯМР <sup>1</sup>H,  $\delta$ , м. д.,  $\Gamma y$ : 1.18 (3H, т, J = 7.0, CH<sub>3</sub>); 3.71 (2H,  $\kappa$ , J = 7.0, CH<sub>2</sub>); 4.18 (2H, yiii. c,NH<sub>2</sub>); 6.71 (1H,  $\Delta$ , J = 8.1, C<sub>6</sub>H<sub>3</sub>); 6.93 (1H,  $\Delta$ , J = 8.1, 1.9, C<sub>6</sub>H<sub>3</sub>); 7.16 (1H,  $\Delta$ , J = 1.9, C<sub>6</sub>H<sub>3</sub>); 7.18 (1H, yiii. c, CH); 7.42-7.55 (3H, M, C<sub>6</sub>H<sub>5</sub>); 8.04-8.09 (2H, M, C<sub>6</sub>H<sub>5</sub>); 8.73 (1H, yiii. c, OH); 9.16 (1H, yiii. c, NH); 9.59 (1H, yiii. c, NH).

Гидразид N-бензоил-3-нитро-α,β-дегидрофенилаланина (27). Выход 90.0%, т.пл. 204-205°С,  $R_f$  (A) 0.54. ИК-спектр, v,  $c \omega^{-l}$ : 1643 (СО-амидн.),3262, 3333 (NH). Спектр ЯМР  $^1$ H,  $\delta$ , м. д.,  $\Gamma u$ : 4.26 (2H, уш. с, NH<sub>2</sub>); 7.25 (1H, уш. c, = CH); 7.42-7.53 (3H, м,  $C_6H_5$ ); 7.56 (1H, дд, J=8.2, 7.9,  $C_6H_4$ ); 7.90 (1H, уш. д, J=7.9,  $C_6H_4$ ); 7.95-8.00 (2H, м,  $C_6H_5$ ); 8.07 (1H, дд, J=8.2, 2.3, 0.9,  $C_6H_4$ ); 8.43 (1H, дд, J=2.3, 1.6,  $C_6H_4$ ); 9.53 (1H, уш. c, NH); 9.83 (1H, уш. c, NH).

Гидразид N-4-метилбензоил-О-метил- $\alpha$ ,β-дегидротирозина (28). Выход 76.4%, т.пл. 223-225°C, R<sub>f</sub> (A) 0.41. ИК-спектр,  $\nu$ ,  $c M^{-1}$ : 1632 (СО-амидн.), 3202,3313 (NH). Спектр ЯМР  $^1$ H,  $\delta$ , м. д.: 2.43 (3H, c,CH<sub>3</sub>); 3.77 (3H, c,OCH<sub>3</sub>); 4.18 (2H, уш. c,NH<sub>2</sub>); 6.79-6.84 (2H,м,C<sub>6</sub>H<sub>4</sub>OCH<sub>3</sub>);7.15(1H, уш. c,=CH); 7.23-7.27 (2H, м,C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>); 7.46-7.50 (2H, м,C<sub>6</sub>H<sub>4</sub>OCH<sub>3</sub>); 7.89-7.93 (2H, м, C<sub>6</sub>H<sub>4</sub>CH<sub>3</sub>); 9.16 (1H, уш. c,NH); 9.49 (1H, уш. c,NH).

Гидразид N-2-бромбензоил- $\alpha$ ,β-дегидрофенилаланина (29). Выход 78.5%, т.пл. 225-227°C, R<sub>f</sub> (Б) 0.78. ИК-спектр, ν,  $c m^{-1}$ : 1656 (СО-амидн.), 3215,3335 (NH). Спектр ЯМР  $^1$ H,  $\delta$ , м. д.: 4.23 (2H, уш. c, NH<sub>2</sub>);7.13 (1H, уш. c, = CH); 7.24-7.45 (5H, м, C<sub>6</sub>H<sub>5</sub>); 7.59-7.65 (4H, м, C<sub>6</sub>H<sub>4</sub>); 9.12 (1H, уш. c, NH); 9.72 (1H, уш. c, NH).

Гидразид N-4-бромбензоил-О-метил- $\alpha$ ,β-дегидротирозина (30). Выход 84.7%, т.пл. 208-210°С, R<sub>f</sub> (Б) 0.70. ИК-спектр, v, cм<sup>-1</sup>: 1634 (СО-амидн.), 3220, 3355 (NH). Спектр ЯМР <sup>1</sup>H, δ, м. д.: 3.77 (3H, c, OCH<sub>3</sub>); 4.18 (2H, уш. c, NH<sub>2</sub>); 6.79-6.84 (2H, м, C<sub>6</sub>H<sub>4</sub>OMe); 7.19 (1H, уш. c, =CH); 7.44-7.49 (2H, м, C<sub>6</sub>H<sub>4</sub>OMe); 7.58-7.63 (2H, м, C<sub>6</sub>H<sub>4</sub>Br); 7.94-7.99 (2H, м, C<sub>6</sub>H<sub>4</sub>Br); 9.26 (1H, c, NH); 9.67 (1H, уш. c, NH).

Гидразид N-4-бромбензоил-3,4-диоксиметилен- $\alpha$ ,β-дегидрофенилаланина (31). Выход 86.2%, т.па. 128-130°С, R<sub>f</sub> (Б) 0.48. ИК-спектр, v, cm<sup>-1</sup>: 1659 (СО-амидн.), 3183,3292,3393 (NH). Спектр ЯМР <sup>1</sup>H, δ, м. д., Г $\mu$ : 4.19 (2H, уш. c, NH<sub>2</sub>); 5.96 (2H, c, OCH<sub>2</sub>); 6.76 (1H, д, J = 8.1, C<sub>6</sub>H<sub>3</sub>); 7.01 (1H, дд, J = 8.1, 1.7, C<sub>6</sub>H<sub>3</sub>); 7.08 (1H, д, J = 1.7, C<sub>6</sub>H<sub>3</sub>); 7.15 (1H, уш. c, CH); 7.58-7.63 (2H, м, C<sub>6</sub>H<sub>4</sub>); 7.93-7.98 (2H, м, C<sub>6</sub>H<sub>4</sub>); 9.31 (1H, уш. c, NH); 9.68 (1H, уш. c, NH).

Гидразид N-4-бромбензоил-4-хлор- $\alpha$ ,β-дегидрофенилаланина (32). Выход 86.9%, т.пл. 209-211°C, R<sub>f</sub> (A) 0.83. ИК-спектр,  $\nu$ ,  $c M^{-1}$ : 1642 (CO-амидн.), 3169, 3250, 3291 (NH). Спектр ЯМР  $^{1}$ H,  $\delta$ , м. д.: 4.22 (2H, уш. c, NH<sub>2</sub>); 7.17 (1H, уш. c, = CH); 7.25-7.30 (2H, м, C<sub>6</sub>H<sub>4</sub>Cl); 7.47-7.52 (2H, м, C<sub>6</sub>H<sub>4</sub>Cl);7.58-7.62 (2H, м, C<sub>6</sub>H<sub>4</sub>Br); 7.91-7.95 (2H, м, C<sub>6</sub>H<sub>4</sub>Br); 9.44 (1H, уш. c, NH);9.76 (1H, уш. c, NH).

Гидразид N-4-бромбензоилстирил- $\alpha$ ,β-дегидроаланина (33). Выход 73.5%, т.пл. 212-214°C,  $R_f$  (Б) 0.66. ИК-спектр,  $\nu$ ,  $c M^{-1}$ : 1637 (СО-амидн.), 3262,3333 (NH).

Гидразид N-4-бромбензоилфурил- $\alpha$ , $\beta$ -дегидроаланина (34). Выход 65.1%, т.пл. 206-209°С, R<sub>f</sub> (Б) 0.46. ИК-спектр, ν,  $c m^{-1}$ : 1677 (СО-амидн.), 3249,3314 (NH). Спектр ЯМР  $^1$ Н, δ, м. д.,  $\Gamma u$ : 4.22 (2H, уш. c, NH<sub>2</sub>);6.44 364

(1H, дд, J = 3.4, 1.8,  $C_4H_3O$ ); 6.58 (1H, д, J = 3.4,  $C_4H_3O$ ); 7.14 (1H, уш. c, = CH); 7.53 (1H, дд, J = 1.8, 0.7,  $C_4H_3O$ ); 7.60-7.64 (2H, м,  $C_6H_4Br$ ); 7.96-8.00 (2H, м,  $C_6H_4Br$ ); 9.35 (1H, уш. c, NH); 9.60 (1H, уш. c, NH).

Гидразид N-2-хлорбензоил-О-метил- $\alpha$ ,β-дегидротирозина (35). Выход 81.4%, т.пл. 176-178°C, R<sub>f</sub> (Б) 0.80. ИК-спектр,  $\nu$ ,  $c M^{-1}$ : 1661 (СО-амидн.), 3224, 3294 (NH). Спектр ЯМР  $^1$ H,  $\delta$ , м. д.: 3.81 (3H, c, OCH<sub>3</sub>);4.23 (2H, уш. c, NH<sub>2</sub>);6.85-6.90 (2H, м, C<sub>6</sub>H<sub>4</sub>OMe); 7.14 (1H, уш. c, = CH);7.36-7.47 (3H, м, C<sub>6</sub>H<sub>4</sub>Cl);7.55-7.60 (2H, м, C<sub>6</sub>H<sub>4</sub>OMe);7.66-7.70 (1H, м, C<sub>6</sub>H<sub>4</sub>Cl); 9.00 (1H, уш. c,NH);9.61 (1H, уш. c,NH).

Гидразид N-2-хлорбензоил-3,4-диоксиметилен- $\alpha$ , $\beta$ -дегидрофенилаланина (36). Выход 90.0%, т.пл. 203-204°С,  $R_f$  (A) 0.70. ИК-спектр,  $\nu$ ,  $c M^{-1}$ : 1670 (СО-амидн.), 3172,3228,3324 (NH). Спектр ЯМР  $^1$ Н,  $\delta$ , м.  $\Delta$ .,  $\Gamma \mu$ : 4.20 (2H, уш. c, NH<sub>2</sub>); 6.00 (2H, c, OCH<sub>2</sub>); 6.80 (1H,  $\Delta$ , J = 8.1,  $C_6H_3$ ); 7.06 (1H,  $\Delta$ , J = 8.2, 1.7,  $C_6H_3$ ); 7.08 (1H, уш. c, =CH); 7.26 (1H,  $\Delta$ , J = 1.7,  $C_6H_3$ ); 7.35-7.46 (3H, м,  $C_6H_4$ ); 7.64-7.68 (1H, м,  $C_6H_4$ ); 9.03 (1H, c, NH); 9.61 (1H, уш. c, NH).

Гидразид N-2,4-дихлорбензоил-О-метил- $\alpha$ ,β-дегидротирозина (37). Выход 82.5%, т.пл. 119-121°С, R<sub>f</sub> (A) 0.38. ИК-спектр,  $\nu$ ,  $c M^{-1}$ : 1670 (СО-амидн.), 3187,3275,3321 (NH). Спектр ЯМР <sup>1</sup>H,  $\delta$ , м. д.,  $\Gamma \mu$ : 3.81 (3H, c, OCH<sub>3</sub>); 4.20 (2H, уш. c, NH<sub>2</sub>); 6.84-6.89 (2H, м, C<sub>6</sub>H<sub>4</sub>); 7.12 (1H, c, = CH);7.40 (1H, дд, J = 8.3, 1.9,C<sub>6</sub>H<sub>3</sub>); 7.48 (1H, д, J = 1.9, C<sub>6</sub>H<sub>3</sub>); 7.52-7.57 (2H, м, C<sub>6</sub>H<sub>4</sub>); 7.74 (1H, д, J = 8.3, C<sub>6</sub>H<sub>3</sub>); 9.10 (1H, уш. c, NH); 9.67 (1H, уш. c, NH).

Гидразид N-3-нитробензоил- $\alpha$ ,β-дегидрофенилаланина (38). Выход 87.6%, т.па. 207-209°C, R<sub>f</sub> (A) 0.36. ИК-спектр,  $\nu$ ,  $c \omega^{-l}$ : 1643 (СО-амидн.), 3307, 3336 (NH). Спектр ЯМР  $^1$ H,  $\delta$ , м. д.,  $\Gamma u$ : 4.22 (2H, уш. c, NH<sub>2</sub>);7.22-7.33 (3H, м, C<sub>6</sub>H<sub>5</sub>); 7.24 (1H, уш. c, = CH); 7.50-7.55 (2H, м, C<sub>6</sub>H<sub>5</sub>); 7.73 (1H, т,J = 8.0, C<sub>6</sub>H<sub>4</sub>); 8.35-8.41 (2H, м, C<sub>6</sub>H<sub>4</sub>);8.93 (1H, уш. c, C<sub>6</sub>H<sub>4</sub>); 9.49 (1H, уш. c, NH);10.12 (1H, уш. c, NH).

Гидразид N-3-нитробензоил-О-изопропил- $\alpha$ ,β-дегидротирозина (39). Выход 84.1%, т.пл. 214-216°С, R<sub>f</sub> (A) 0.55. ИК-спектр, v, cм<sup>-1</sup>: 1640(СО-амидн.), 3270,3328 (NH). Спектр ЯМР <sup>1</sup>H,δ, м. д., Г $\psi$ : 1.29 (6H, д, J = 6.0, CH<sub>3</sub>);4.21 (2H, уш. c,NH<sub>2</sub>); 4.56 (1H, сеп., J = 6.0, OCH);6.75-6.80 (2H, м,C<sub>6</sub>H<sub>4</sub>);7.22 (1H, c,=CH); 7.43-7.48 (2H, м,C<sub>6</sub>H<sub>4</sub>);7.74 (1H, дд, J = 8.2, 7.8, C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>);8.37 (1H, ддд, J = 8.2, 2.3, 1.0, C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>);8.42 (1H, уш. д, J = 7.8, C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>); 8.95 (1H, дд, J = 2.3, 1.2, C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>);9.38 (1H, уш. с, NH);10.03 (1H, уш. c,NH).

Гидразид N-3-нитробензоил-3-нитро- $\alpha$ ,β-дегидрофенилаланина (40). Выход 75.4%, т.па. 203-204°С,  $R_f$  (A) 0.42. ИК-спектр,  $\nu$ ,  $c \omega^{-1}$ : 1649 (СО-амидн.), 3184, 3310 (NH). Спектр ЯМР  $^1$ Н,δ, м. д.,  $\Gamma \psi$ : 4.31 (2H, уш. с,NH<sub>2</sub>); 7.36 (1H, уш. с, = CH); 7.56 (1H, дд, J = 8.2, 7.8, C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>); 7.75 (1H, т, J = 8.0, C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>); 7.90 (1H, уш. д, J = 7.8, C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>); 8.08 (1H, дд, J = 8.2, 2.3, 1.0, C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>); 8.35-8.42 (3H, м, C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>); 8.89 (1H, дд, J = 2.3, 1.5, C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>); 9.67 (1H, уш. с, NH); 10.25 (1H, уш. с, NH).

Определение антирадикалных свойств. Кинетику взаимодействия гидразидов **21-40** и соединений **41**, **42**, а также витамина C и галловой кислоты с  $\Delta\Phi\Pi\Gamma^{\bullet}$  при 25°C исследовали спектрофотометрически на спектрофотометре "Specord UV-VIS"(Германия) по изменению оптической плотности  $\Delta\Phi\Pi\Gamma^{\bullet}$  во времени при 520  $\mu$ . Исходные концентрации  $\Delta\Phi\Pi\Gamma^{\bullet}-0.0255\times10^{-5}$  моль/л, соединений **21-42** –  $1.25\times10^{-5}$  моль/л.

К 2.0~m раствора  $\Delta\Phi\Pi\Gamma^{\bullet}$  в абсолютном метаноле добавляли 0.04~m метанольного раствора исследуемого вещества и после перемешивания измеряли оптическую плотность смеси от 1 до 40~mи.

Определение значений  $IC_{50\%}$  осуществляли вышеуказанным методом варьированием соотношения  $\Delta\Phi\Pi\Gamma^{\bullet}$ -исследуемые соединения от 1:1 до 1:0.025. При этом использованы данные измерений через 10 *мин* после приготовления смеси.

### (Z)-N-ՔԵՆԶՈՒԼ-α,β-ԴԵՎԻԴՐՈԱՄԻՆ ԱԳՅԻՎԻՐԻ ՀԻԴՐԱԶԻԴՆԵՐԻ ՄԻՆԹԵԶՆ ՈՒ ՀԱԿԱԴԻԿԱԱՄԻՆ ԱԿՏԻՎՈՒՅՅՈՒՆ ՈՒՍՈՒՄՆՍՍՄՄ ԴՈՒԵԹՅՈՒՆԸ

Վ. Օ. ԹՈՓՈՐԶՅԱՆ, Մ. Մ. ԽԱԼԱԹՅԱՆ, Ա. Ա. ՏՈՎՏԱՆՆԻՍՅԱՆ, Լ. Խ. ԳԱԼՍՏՅԱՆ և Ա. Ռ. ՄԱՆՎԵԼՅԱՆ

ՉՀադեցած 5(4H)-օքսազոլոնների և ՀիդրագինՀիդրատի փոխազդեցությամբ իրականացվել է N-տեղակալված α,β-դեՀիդրոամինաթթեուների Հիդրագիդների սինթեդը։ Ուսումնասիրվել է վերջինների Հակառադիկալային ակտիվությունը նրանց փոխազդեցությամբ դիֆենիլ-1-պիկրիլՀիդրագիլ կայուն ռադիկալի (ԴՖՊՀ) Հետ։ Բոլոր սինթեդը ված Հիդրագիդների Համար Հաչվարկվել են ռեակցիայի առաջնային արադություններն ու ռադիկալի կիստարդելակման ժամանակը։ Պարդվել է, որ N-տեղակալված α,β-դեՀիդ-ըոտիրոդինի ածանցյալները ցուցաբերում են Համեմատաբար բարձր արդելակիչ Հատկություն ԴՖՊՀ-ի Հանդեպ։

# SYNTHESIS AND STUDY OF ANTIRADICAL ACTIVITY OF HYDRAZIDES OF (Z)-N-BENZOYL- $\alpha,\beta$ -DEHYDROAMINO ACIDS

#### V. O. TOPUZYAN<sup>1</sup>, M. M. KHALATYAN<sup>1</sup>, A. A. HOVHANNISYAN<sup>1</sup>, L. Kh. GALSTYAN<sup>2</sup> and A. R. MANVELYAN<sup>1</sup>

<sup>1</sup>The Scientific Technological Center of Organic and Pharmaceutical Chemistry NAS RA 26, Azatutyan Str., Yerevan, 0014, Armenia <sup>2</sup>Yerevan State University 1, A. Manoukyan Str., Yerevan, 0025, Armenia E-mail: vtop@web.am

A series of corresponding hydrazides of N-substituted  $\alpha,\beta$ -dehydroamino acids have been obtained by interaction of unsaturated 5(4H)-oxazolones and hydrazine hydrate. The antiradical activity of the hydrazides of N-substituted  $\alpha,\beta$ -dehydroamino acids has been investigated by their interaction with 2,2-diphenyl-1-picrylhydrazyde

stable radical (DPPH). The primary velocity of the reaction and the time of the semi–deceleration of the radical have been computed for all synthesized hydrazides. IC $_{50}$  was determined for relatively active hydrazides – N-benzoyl-3-methoxy- $\alpha$ , $\beta$ -dehydrotyrosine and N-benzoyl -3-ethoxy- $\alpha$ , $\beta$ -dehydrotyrosine. IC $_{50}$  is the concentration of a substance at which 50% of DPPH is inhibited. According to our findings, IC $_{50}$  of these two hydrazides are sufficiently close to the IC $_{50}$  of Vitamin C, while they are less than the IC $_{50}$  of gallic acid. It is also considered that the donor of the proton is amino group of the hydrazide residue.

#### ЛИТЕРАТУРА

- [1] *Машенцева А.А., Сейтенбетов Т.С.* // Журнал сибирского федерального университета. Сер. хим., 2010, т. 3, №2, с. 183.
- [2 Karamac M., Kosinska A., Pegg R.B. // Polish Journal of Food and Nutrition Sciences, 2005, v. 14, №2, p. 165.
- [3] Velez-Gonzalez F., Ortegon –Reyna D., Ramos-Organillo A.A. // Arkivoc, 2008, p. 55.
- [4] Агаджанян В.С., Оганесян Э.Т., Абаев В.Т. // Хим.-фарм.ж., 2010, т. 44, №7, с. 21.
- [5] Wei Q.Y., Jiang H., Zhang J.X. // Med. Chem. Res., 2012, v. 21, p. 1905.
- [6] Топузян В.О. // Хим. ж. Армении, 2007, т.60, №4, с.731.
- [7] Alonso A.M., Domiangue Z.C., Guillean D., Barroso C.B. // J. Agric. Food Chem., 2002, v.50, p.3112.
- [8] Топузян В.О., Тосунян С.Р. // Хим. ж. Армении, 2012, т. 65, №3, с. 369.
- [9] Топузян В.О., Арутюнян Л.Г., Оганесян А.А. // ЖОрХ, 2007, т. 43, вып. 6, с. 870.
- [10] Топузян В.О., Арутюнян Л.Г., Оганесян А.А., Паносян Г. // ЖОрХ, 2008, т. 44, вып. 3, с. 474.