ՏԱՅԱՍՏԱՆԻ ՏԱՆՐԱՊԵՏՈԻԹՅԱՆ ԳԻՏՈԻԹՅՈԻՆՆԵՐԻ ԱՉԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

՝ Հայաստանի քիմիական հանդես

Химический журнал Армении 70, №1-2, 2017 Chemical Journal of Armenia

АСИММЕТРИЧЕСКИЙ СИНТЕЗ НОВЫХ ГЕТЕРОЦИКЛИЧЕСКИ ЗАМЕЩЕННЫХ АНАЛОГОВ α-АМИНОМАСЛЯНОЙ КИСЛОТЫ, СОДЕРЖАЩИХ ЗАМЕЩЕННЫЕ ТРИАЗОЛЬНЫЕ ГРУППЫ В БОКОВОМ РАДИКАЛЕ

А. С. САГИЯН^{а,б}, Л. Ю. СААКЯН^{*а,б}, А. М. СИМОНЯН^{а,б}, С. Г. ПЕТРОСЯН^{а,б}, А. Ф. МКРТЧЯН^{а,б}, М. А. САМВЕЛЯН^а, Т. В. КОЧИКЯН^а и П. ЛАНГЕР^в

^а Ереванский государственный университет Институт фармации Армения, 0025, Ереван, ул. А. Манукяна, 1 Факс: (+37460) 710410 E-mail: lusine_sahakyan@ysu.am ^б Научно-производственный центр "Армбиотехнология" НАН Республики Армения Армения, Ереван, 0056, ул. Гюрджяна, 14 Факс: (+37410) 654180 ^вУниверситет Ростока, Институт катализа Германия, 18059, Росток, ул. Альберта Энштейна, 29а

Поступило 25 I 2017

Разработан метод асимметрического синтеза энантиомерно обогащенных β-гетероциклически замещенных производных (2S, 3S)-allo-α-аминомасляной кислоты, содержащих 5тиоксо-1,2,4-триазольные группы с различными заместителями в положениях 3 и 4 путем присоединения соответствующих нуклеофилов триазольного ряда к С=С связи (Е)- и (Z)-дегидроаминомасляной кислоты в Ni^{II}-комплексах их основания Шиффа с хиральным вспомогательным реагентом (S)-2-[N-(N'-бензилпролил)амино]бензофеноном, с последующим разложением смеси диастереомерных комплексов и выделением целевых аминокислот. Энантиомерный избыток (*ee*) выделенных гетероциклически замещенных аналогов (*2S, 3S)-allo-*α-аминомасляной кислоты превышает 97%.

Рис. 2, табл. 1, библ. ссылок 18.

Прогресс в фармацевтической промышленности характеризуется непрерывным поиском и созданием новых химических молекул с эффективными и более совершенными биодинамическими свойствами. За последние годы, после установления энантиоспецифичного характера взаимодействия между рецептором и лекарством, значительно возрос интерес к хиральным лекарственным средствам. К числу подобных соединений относятся также энантиомерно чистые α-аминокислоты, молекулы которых биосовместимы с натуральными лигандами и появление цитотоксичности при их применении менее вероятно [1].

С другой стороны, в ряду биологически активных соединений особый интерес представляют препараты на основе 1,2,4-триазолов. В настоящее время существует ряд известных препаратов, содержащих в структуре триазольные фрагменты, в частности, анастрозол, ризатриптан, нефазодон, ворозол, рибавирин, флуконазол, летрозол, униконазол и др. [2]. Несомненно, интересную биологическую активность могут проявлять производные α-аминомасляной кислоты с содержанием в боковом радикале триазольных заместителей, которые могут обладать физиологической активностью за счет как гетероцикла, так и аминокислоты [3]. Интерес к подобным соединениям обусловлен также наличием в их структуре второго хирального центра, что делает возможным получение стереоизомеров с новыми физиологическими свойствами.

Ранее были разработаны методы асимметрического синтеза β-гетероциклически замещенных аналогов (*S*)-аланина, содержащих в боковом радикале различные алифатически и ароматически замещенные 5тиоксо-1,2,4-триазольные группы [4-8]. Были синтезированы также 1,2,4триазолсодержащие гетероциклически замещенные производные (2*S*, *3S*)-allo-α-аминомасляной кислоты, содержащие в положениях 3 и 4 триазольного цикла аллильную и фенильную группы [9-11].

По ранее разработанной методике в настояшей работе были синтезированы новые β-гетероциклически замещенные аналоги α-аминомасляной кислоты с содержанием в положениях 3 и 4 1,2,4-триазольного цикла тиофен-2-ил-, пропил-, фуран-2-илметил- и бутильные заместители.

Для этого осуществили асимметрическое присоединение по Михаэлю соответствующих дизамещенных 5-тиоксо-1,2,4-триазолов к электрофильной С = С связи остатка дегидроаминокислоты в плоскоквадратных Ni^{II}-комплексах их основания Шиффа дегидроаминомасляной кислоты с хиральным вспомогательным реагентом (S)-2-[N-(N'-бензилпролил)амино]бензофеноном — Ni^{II}-(S)-BPB-(E)-Δ-Aba (1) и Ni^{II}-(S)-BPB-(Z)-Δ-Aba (2). Комплексы 1 и 2 были синтезированы согласно [12].

Присоединение замещенных триазолов **a-d** к C=C связи дегидроаминокислотного остатка комплексов **1** и **2** успешно протекает в среде CH₃CN и безводного K₂CO₃, при температуре 50-60°C (см. схему). Реакция присоединения исследовалась также в средах ДМФА, ТГФ, в присутствии NaOH, KOH и Na₂CO₃ в качестве основания. Однако наилучшие результаты как по стереоселективности, так и по степени конверсии исходного количества дегидроаминомасляной кислоты наблюдались в среде CH₃CN/K₂CO₃ (безводный).

За ходом реакции нуклеофильного присоединения следили методом TCX на SiO₂ в системе растворителей CHCl₃:CH₃COCH₃ (3:1) по исчезновению следов исходных комплексов **1** и **2**. Основные диастереоизомеры продуктов нуклеофильного присоединения с меньшим значением R_f на SiO₂ (комплексы **3a-d**) были хроматографированы [SiO₂, 30×40 *см*, CHCl₃:CH₃COCH₃ (3:1)], их строения и абсолютные конфигурации установлены современными методами спектрального анализа (см. экспериментальную часть).

Абсолютная конфигурация α-углеродного атома аминокислотного остатка комплексов определялась по знаку оптического вращения при длине волны 589 *нм*, как это было сделано ранее для других аналогично построенных комплексов аминокислот [13]. Положительное значение оптического вращения основных диастереомерных комплексов **3a-d** в этой области свидетельствует об (*S*)-абсолютной конфигурации α-углеродного атома их аминокислотных остатков [(*S*,*S*,*S*)-диастереомеры].

Абсолютную конфигурацию β-углеродного атома фрагмента α-аминомасляной кислоты комплексов определяли методом ЯМР ¹Н по значениям химических сдвигов сигналов их β-метильных протонов. Как было показано ранее на примере аналогично построенных комплексов других β-замещенных производных α-аминомасляной кислоты (О-метилтреони-

на, О-этилтреонина и т.д.) [14], в случае (2S,3S)-allo-абсолютной конфигурации аминокислотного остатка химический сдвиг сигналов протонов СН₃ группы располагается в относительно сильных полях, а в случае (2S,3R)-threo-конфигурации — в слабых полях. Аналогичное расположение химических сдвигов сигналов β-метильных протонов аминокислотного остатка было обнаружено также в спектрах ЯМР ¹Н синтезированных диастереомерных комплексов 3a-d, откуда следует, что фрагмент α аминомасляной кислоты основных диастереоизомеров продуктов присоединения (комплексы **За-d**) содержит (S)-β-углеродный атом и имеет (2S,3S)-allo-абсолютную конфигурацию. Такое различие в химических сдвигах β-метильных протонов диастереоизомеров объясняется пространственным расположением СН3 группы аминомасляного остатка в координационной сфере центрального иона металла. Сдвиг сигналов метильных протонов в сторону слабых полей в спектрах ЯМР ¹Н, по-видимому, является следствием влияния магнитной анизотропии иона Ni²⁺, расположенного непосредственно над CH₃ группой аминокислотного остатка в случае его (2S,3R)-threo-абсолютной конфигурации (рис. 1).

Рис. 1. Пространственное расположение боковой группы аминокислотного остатка диастереоизомеров комплекса За.

Диастереоселективность реакции присоединения нуклеофилов **a-d** к комплексам **1** и **2** была оценена методами TCX и ЯМР ¹Н (по соотношению интегралов сигналов метиленовых протонов N-бензильного остатка диастереомерных комплексов в интервале 3.55-3.70 и 4.35-4.44 p.p.m.).

Для реакции присоединения нуклеофила **b** к комплексу **1** удалось определить также энантиомерный избыток целевой аминокислоты **4b** методом хирального ВЭЖХ анализа выделенной смеси (до кристаллизации). Результаты приведены в таблице.

Таблица

№	Нуклеофил	Соотношение, % **			Время, <i>ч</i>	Химический выход, %***
		(S,S,S)	(S,R,S)	(S, S, R)		
1	3-(тиофен-2-ил)-4-пропил-5- тиоксо-1,2,4-триазол (a)	95.4	2.6	2.0	8	95
2	3-бутил-4-(фуран-1-ил-ме- тил)-5-тиоксо-1,2,4-триазол (b)*	95.2 (94.18)	1.9 (2.37)	2.9 (3.45)	7	97
3	3-бутил-4-пропил-5-тиоксо- 1,2,4-триазол (с)	94.2	2.4	3.4	7,5	97
4	3-бутил-4-(2-метил-аллил)-5- тиоксо-1,2,4-триазол (d)	96.5	1.8	1.7	7,5	95

Результаты нуклеофильного присоединения замещенных триазолов (a-d) к хиральному комплексу 1 в среде CH₃CN/K₂CO₃ при 50-60°C

* — в скобках соотношение диастереомеров на основании данных хирального ВЭЖХ анализа аминокислоты, полученной после разложения смеси диастереомерных комплексов и ионообменной деминерализации аминокислоты; ** — соотношение диастереомеров на основании данных ЯМР ¹Н; *** — химический выход смеси диастереомерных комплексов на стадии нуклеофильного присоединения по данным TCX.

Одновременно была исследована реакционная способность отдельных комплексов (Е)- и (Z)-дегидроаминомасляной кислоты (1 и 2) в реакциях нуклеофильного присоединения с использованием в качестве нуклеофила b. Полученные данные свидетельствуют о том, что присоединение количественно происходит только в случае использования комплекса (Е)-дегидроаминомасляной кислоты (1). При использовании комплекса (Z)-дегидроаминомасляной кислоты (2) присоединение нуклеофила происходит очень медленно (~10% в течение 30 дней). Это обусловлено стерическими факторами. Как было показано ранее [15,16], в подобных системах присоединение к аминокислотному остатку предпочтительно происходит со si стороны плоскости основания Шиффа, т. к. ее re сторона экранирована фенильной группой N-бензилпролинового остатка. В случае присоединения 3,4-дизамещенных триазолов к С = С связи комплекса (Z)-дегидроаминомасляной кислоты (2) si сторона плоскости основания Шиффа дополнительно экранирована метильной группой дегидроаминомасляного фрагмента (рис. 26); такое экранирование отсутствует в случае присоединения нуклеофилов к комплексу (Е)-дегидроаминомасляной кислоты (1) (рис. 2*a*).

Рис. 2. Пространственное затруднение при присоединении нуклеофилов к комплексам 1(а) и 2(б).

Выделение целевых аминокислот из смеси диастереомерных комплексов проводилось по стандартной методике [17]. Для этого реакционная смесь непосредственно была разложена обработкой 2N HCl при температуре 45-50°C (схема). Из гидролизатов целевые аминокислоты были деминерализированы с использованием катионита Ky-2x8 в H⁺форме (элюент 5% NH₄OH) и перекристаллизированы из водных растворов этанола. В чистом кристаллическом виде удалось получить только аминокислоты **4а-с.** Аминокислотная смесь, выделенная из гидролизата кислотного разложения комплекса **3d**, получилась маслообразного вида, из которого выделить индивидуально чистую кристаллическую аминокислоту **4d** не удалось.

Получены новые оптически активные гетероциклически замещенные производные (S)-аминомасляной кислоты — (2S, 3S)-β-[3-(тиофен-2ил)-4-пропил)-5-тиоксо-1,2,4-триазол-1-ил]-α-аминомасляная кислота (4а), (2S, 3S)-β-[3-бутил-4-(фуран-2-илметил)-5-тиоксо-1,2,4-триазол-1-ил]-α-аминомасляная кислота (4b) и (2S, 3S)-β-[3-бутил-4-пропил)-5-тиоксо-1,2,4-триазол-1-ил]-α-аминомасляная кислота (4с), с химическими выходами 31.85, 45 и 35%, соответственно (в расчете на исходное количество комплекса 1). Энантиомерная чистота (*ee*) аминокислоты 4b, по данным хирального ВЭЖХ анализа, составляет 98%. При этом исходный хиральный вспомогательный реагент (S)-ВРВ регенерируется с количественным химическим выходом и полным сохранением исходной оптической чистоты, что позволяет его использовать повторно в реакциях асимметрического синтеза аминокислот.

Экспериментальная часть

В работе использовались аминокислота "Reanal" (Будапешт), силикагель L-40/100µ "Chemapol Praha" (Прага), ионообменная смола Ky-2x8, Na₂CO₃, NaOH, KOH K₂CO₃, ДМФА, ТГФ, CH₃OH, CHCl₃, (CH₃)₂CO, C₂H₅OH, CH₃CN, HCl, NH₄OH «Реахим». Дизамещенные 5-тиоксо-1,2,4триазолы (**a-d**) были синтезированы на кафедре органической химии ЕГУ. Все использованные растворители очищали согласно [18]. Спектры ЯМР ¹Н и ЯМР ¹³С снимали на приборе "Mercury-300 Varian" (300 *МГц*), оптическое вращение $[\alpha]_D^{20}$ измеряли на поляриметре "Perkin Elmer-341". Хиральный ВЭЖХ анализ аминокислот проводили на приборе "Waters separations module 2690" с колонкой "Диасфер-110-Chirasel-E" (6,0 *мкм*, 4.0×250 *мм*), с использованием градиентного метода, в течение 40 *мин*, применяли подвижную фазу метанол и воду с рН 3.0 (хлорная кислота), использовали УФ-детектор при 254 *нм*.

Присоединение нуклеофилов a-d к двойной связи комплекса 1. К раствору 2.62 г (0,005 моля) комплекса 1 в 20 мл CH₃CN добавляли 1.38 г (0.01 моля) K₂CO₃ и 0.0075 моля нуклеофила (1.6875 г а, 1.777 г b, 1.4925 г с или 1.5825 г d, соответственно). Смесь перемешивали при температуре 50-60°С. За ходом реакции присоединения следили методом TCX [SiO₂, СНСl₃:СН₃СОСН₃ (3:1)] по исчезновению следов исходного комплекса 1 и установлению термодинамического равновесия между диастереоизомерами продуктов присоединения (комплексов 3a-d). Затем реакционную смесь отфильтровали, осадок промывали ацетонитрилом и фильтрат упарили досуха под вакуумом. Небольшую часть смеси (~0.05 г) хроматографировали на SiO₂ [20×30 см, CHCl₃:CH₃COCH₃ (3:1)], получили диастереомерно чистые комплексы **За-d** и исследовали их структуру и абсолютную конфигурацию физико-химическими методами анализа. Основную часть диастереомерной смеси комплексов 3a-d подвергали кислотному разложению с целью выделения целевых аминокислот (см. ниже).

Комплекс **3а:** т.пл. = 247-250°С. $[\alpha]_D^{20} = +878.0°$ (с 0.11, MeOH). Спектр ЯМР ¹H (CDCl₃/CCl₄), δ , м.д., $\Gamma \mu$: 1.05 (3H, т, J=7.4, CH₃); 1.36 (3H, д, J=7.1, <u>CH₃</u>CH); 1.55-1.67 (1H, м) и 1.83-2.07 (3H, м); 2.24-2.39 (1H, м) и 2.49-2.65 (2H, м); 3.33 (1H, дд, J=9.9, 6.0, α -H Pro); 3.30-3.39 (1H, м); 3.56 (1H, д, J= 12.6, <u>CH₂Ph</u>); 4.18 (1H, ддд, м, J=13.8, 10.6, 5.5); 4.21 (1H, д, J=3.7, CH); 4.39 (1H, д, J=12.6, CH₂Ph); 4.44 (1H, ддд, J=13.8, 10.6, 5.8); 5.46 (1H, кд, J=7.1, 3.7, <u>CH</u>CH₃); 6.63-6.74 (2H, м, H-3.4 C₆H₄); 7.12-7.20 (3H, м, Ar); 7.25-7.34 (3H, м, Ar); 7.51-7.57 (4H, м, Ar); 7.59 dd (1H, J=3.7, 1.0, 3-CH Tph); 7.65-7.70 (1H, м, Ar); 7.91-7.96 (2H, м, H-2.2' Ph); 8.45 (1H, $\Delta \lambda_r$ J=8.7, 10, H-6, C₆H₄).

Спектр ЯМР ¹³С (CDCl₃): 11.2 (<u>CH₃CH₂CH₂</u>); 16.9 (<u>CH₃CH)</u>; 22.0 (<u>CH₂CH₃</u>); 23.4 (γ-CH₂ Pro); 31.0 (β-CH₂ Pro); 47.6 (N<u>CH₂CH₂CH₂CH₃); 56.9 (δ-CH₂ Pro); 57.3 (<u>CH</u> CH₃); 63.1(<u>CH₂ Ph)</u>; 70.4 (α-CH Pro); 72.9 (N<u>CH</u>CH); 120.5 (C(4) C₆H₄); 123.3 (C(6) C₆H₄); 126.1, 127.0, 127.3 (CH); 128.0 (CH); 128.8 (3.3'-CH Ph); 128.9 (CH); 129.0 (CH); 129.1 (CH); 129.1 (CH); 129.2 (CH); 129.9 (CH); 131.7 (2.2'-CH Ph); 132.7 (C(3) C₆H₄); 133.2, 134.0 (C(5) C₆H₄); 134.5; 143.4; 145.7; 169.8; 173.2; 175.6; 180.2.</u>

Комплекс **3b:** т.пл. = 160-165°С. [α]²⁰_D = +1046.0° (с 0.12, MeOH). Спектр ЯМР ¹H (CDCl₃), δ, м.д., *Гų*: 0.94 (3H, т, J=7,3, CH₃Bu); 1.22 (3H,

77

 A_{1} J=7,1, <u>CH₃</u>CH); 1.37-1.49 (2H, M, <u>CH₂</u>CH₃); 1.65-1.76 (3H, M, <u>CH₂</u>C₂H₅ u γ-CH Pro); 1.89-1.99 (1H, M); 2.19-2.33 (1H, M); 2.47-2.59 (1H, M); 2.67-2.78 (1H, M); 2.77-2.82 (2H, M, <u>CH₂</u>C₃H₇); 3.27-3.35 (1H, M); 3.31 (1H, AA, J=10.2, 6.3, α-H Pro); 3.59 (1H, A, J=12.7, CH₂Ph); 4.16 (1H, A, J=3.6, NHC=O); 4.41 (1H, A, J=12.7, CH₂Ph); 5.26 (1H, A, J=15.6) H 5.39 (1H, A, J=15.6, CH₂fur); 5.43 (1H, KA, J=7.1, 3.6, <u>CH</u>CH₃); 6.35 (1H, AA, J=3.2, 1.8, 4-CHfur); 6.54 (1H, A, J=3.2, 3-CHfur); 6.63-6.73 (2H, M, 3,4-CH C₆H₄); 7.13-7.21 (2H, M, Ar); 7.23-7.37 (4H, M, Ar); 7.46-7.61 (4H, M, Ar); 7.89-7.94 (2H, M, Ar); 8.44 (1H, ym., J=8.7, 6-CH C₆H₄).

Спектр ЯМР ¹³С (CDCl₃): 13.8; 17.0; 22.3; 23.1; 25.5; 28.1; 30.6; 41.1; 56.5; 57.5; 62.8; 70.2; 73.1; 110.7; 111.3; 120.5; 123.4; 126.2; 127.3; 128.8; 128.9; 129.0; 129.1; 131.7; 132.7; 133.0; 133.9; 134.5; 142.6; 143.4; 148.0; 151.5; 169.4; 172.8; 175.7; 180.2.

Комплекс 3с: т.пл. = 110-115°С. $[\alpha]_{D}^{20}$ = +1729.0° (с 0.1, MeOH). Спектр ЯМР ¹Н (*DMSO-d₆/CCl₄:1/3*), δ , м.д., *Г* μ : 0.95 (3H, т, J = 7.3, <u>CH₃</u>C₃H₇); 1.01 (3H, т, J=7.4, <u>CH₃</u>C₂H₅); 1.24 (3H, д, J=7.1, <u>CH₃</u>CH); 1.36-1.49 (2H, м, CH₂); 1.65-2.06 (7H, м); 2.33-2.49 (1H, м, β-CH₂Pro); 2.59-2.77 (3H, м, CH₂ µ β-CH₂Pro); 2.84-3.00 (1H, м); 3.37 (1H, дд, J=10.3, 6.5, α-CHPro); 3.33-3.42 (1H, м, δ-CH₂ Pro); 3.60 (1H, д, J = 12.7, <u>CH₂Ph); 3.81-3.95 (1H, м, NCH₂); 4.10-4.20 (1H, м, NCH₂); 4.17 (1H, д, J=4.0, NCH); 4.42 (1H, д, J=12.7, <u>CH₂Ph); 5.53 (1H, кд</u>, J=7.1, 4.0 <u>CH</u>CH₃); 6.63-6.73 (2H, м, 3.4-CH C₆H₄); 7.12-7.21 (2H, м, Ar); 7.25-7.35 (м); 7.50-7.59 (4H, м, Ar); 7.92-7.96 (2H, м, Ar); 8.43 (1H, дд, J=8.7, 1.1, 6-CH C₆H₄).</u>

Спектр ЯМР ¹³С (CDCl₃): 11.4 (<u>CH</u>₃C₂H₅); 13.8(<u>CH</u>₃C₃H₇); 17.0 (<u>CH</u>₃CH); 21.9 (CH₂); 22.4 (γ -CH₂Pro); 23.5(CH₂); 25.5(CH₂ C₃H₇); 28.4 (CH₂); 30.7 (β -CH₂Pro); 46.4 (N<u>CH</u>₂C₂H₅); 56.6 (δ -CH₂Pro); 57.2 (<u>CH</u>CH₃); 62.9 (CH₂Ph); 70.3 (α -CHPro); 73.1 (N<u>CH</u>CHCH₃); 120.5 (4-CHC₆H₄); 123.4 (6-CH C₆H₄); 126.1; 127.4 (CH); 128.8 (3.3'- CHPh); 128.9 (CH); 129.0 (CH); 129.1(CH); 129.8 (CH); 131.7 (2.2'-CHPh); 132.6 (5-CHC₆H₄); 133.1; 133.9 (3-CH C₆H₄); 134.6; 143.4; 151.1; 168.9; 172.7; 175.7; 180.1:

Комплекс 3d: т.пл. = 135-140°С. $[\alpha]_{D}^{20}$ = + 1488.0° (с 0.2, MeOH). Спектр ЯМР ¹H (*CDCl*₃), δ , м.д., *Г* μ : 0.92 (3H, т, J=7.3, CH₃Bu); 1.24 (3H, д, J=7.1, <u>CH₃CH</u>); 1.33-1.45 (2H, м, <u>CH₂CH₃</u>); 1.64-1.75 (2H, м, <u>CH₂C₂H₅</u>); 1.78 (3H, уш., = CCH₃); 1.89-2.00 (2H, м); 2.35-2.50 (1H, м, β-HaPro); 2.56-2.63 (2H, м, CH₂C₃H₇); 2.65-2.77 (1H, м, β-H_bPro); 3.05-3.16 (1H, м, γ -H₆ Pro); 3.39 (1H, дд, J=10.4, 6.4, α-HPro); 3.43-3.51 (1H, м, δ -H₆ Pro); 3.56 (1H, д, J=12.7, CH₂Ph); 4.19 (1H, д, J=5.0, NCHC=O); 4.42 (1H, д, J=12.7, CH₂Ph); 4.50 (1H, д, J=16.1, N<u>CH₂C</u>=CH₂); 4.63 (1H, уш., =CH₂); 4.85 (1H, д, J=16.1, N<u>CH₂C</u>=CH₂); 4.94 (1H, уш., =CH₂); 5.74 (1H, кд, J=7.1, 5.0, <u>CH</u>CH₃); 6.66 (1H, ддд, J=8.3, 6.5, 1.1, 4-CHC₆H₄); 6.70 (1H, дд, J=8.3, 2.1, 3-CHC₆H₄); 7.15 (1H, ддд, J=8.7, 6.5, 2.1, 5-CHC₆H₄); 7.17 (1H, TT, J=7.2, 1.2, para-CHPh); 7.26-7.34 (3H, м, Ar); 7.48-7.58 (4H, м, Ar); 7.95-8.00 (2H, м, orto-CHPh); 8.39 (1H, ддд, J=8.7, 1.1, 6-CHC₆H₄). Спектр ЯМР ¹³С (CDCl₃): 13.8; 17.1; 20.4; 22.3; 23.7; 25.4; 28.0; 30.8; 49.6; 57.0; 57.6; 63.1; 70.5; 73.0; 105.6; 112.8; 120.5; 123.4; 126.2; 127.6; 127.8 (2CH); 128.9; 129.0; 129.1; 129.3; 129.9; 131.7 (2CH); 132.7; 133.3; 134.0; 134.5; 138.8; 143.3; 151.7; 169.2; 172.6; 175.6 и 180.3.

Разложение комплексов 3а-d и выделение целевых аминокислот 4а-d. Целевые аминокислоты 4а-с были выделены из реакционной смеси по следующей стандартной методике. Сухой остаток комплексов 3а-с растворяли в 50 мл CH₃OH и медленно добавляли к 50 мл нагретого до 50°C раствора 2N HCl. После исчезновения характерной для комплексов красной окраски раствор концентрировали под вакуумом, добавляли 50 мл воды и фильтровали исходный (S)-ВРВхНСl. Из водного слоя аминокислоту деминерализовали пропусканием раствора через ионообменную колонку с катионитом Ky-2×8 в H⁺-форме, аминокислоту элюировали 5% раствором NH₄OH. Элюат концентрировали под вакуумом, аминокислоту кристаллизовали из водно-спиртового раствора (1/1).

Получено 0.43 г (0.0013 ммоля) (2S, 3S)-β-[3-(тиофен-2-ил)-4-пропил)-5тиоксо-1,2,4-триазол-1-ил]-α-аминомасляной кислоты (**4a**), 1.5 г (0.044 ммоля) (2S, 3S)-β-[3-бутил-4-(фуран-2-илметил)-5-тиоксо-1,2,4-триазол-1ил]-α-аминомасляной кислоты (**4b**) и 0.525 г (2S, 3S)-β-[3-бутил-4-пропил)-5-тиоксо-1,2,4-триазол-1-ил]-α-аминомасляной кислоты (**4c**), что соответствует 31.85, 45 и 35% химическим выходам, соответственно, рассчитанным на количество исходного комплекса **1**.

Аминокислоту **4d** не удалось кристаллизовать из маслообразной смеси, полученной после выпаривания аммиачного элюата, и ее структура не была идентифицирована.

Аминокислота 4a: $T.ПА = 204-205^{\circ}C.$ $[\alpha]_D^{20} = +10.232^{\circ}$ (с 0.43, 2N HCl). Спектр ЯМР ¹H (DMSO/CCl₄ 1/3), δ , м.д.: 0.98 (3H, T, J=7.4, CH₃); 1.46 (3H, A, J=7.0, <u>CH₃CH</u>); 1.72-1.86 (2H, м, <u>CH₂CH₃</u>); 3.86 (1H, A, J=4.0, CHNH₂); 4.05-4.22 (2H, м, NCH₂); 5.41 (1H, KA, J=7.0, 4.0, NCHCH₃); 7.21 (1H, AA, J=5.1, 3.7, 4-CH Tph); 7.60 (1H, AA, J=3.7, 1.1, 3-CH Tph); 7.69 AA (1H, J=5.1, 1.1, 5-CH Tph); NH₂ и COOH уш.

Спектр ЯМР ¹³С (DMSO/CCl₄ 1/3): 10.6 (CH₃); 12.6 (CH₃); 21.0 (CH₂); 46.1 (NCH₂); 54.1 (CH); 56 (CH); 125.9; 127.4 (CH); 128.9 (CH); 129.2 (CH); 144.5; 165.9; 168.5.

Аминокислота 4b: т.пл. = 197-199°С. $[\alpha]_D^{20}$ = -30.36° (с 0.43, 2N HCl). Спектр ЯМР ¹H (DMSO/CCl₄ 1/3), δ , м.д.: 0.95 (3H, т, J=7.3, CH₃); 1.39 (3H, д, J=6.8, <u>CH₃</u>CH); 1.36-1.48 (2H, м, <u>CH₂CH₃); 1.61-1.72</u> (2H, м, <u>CH₂C₂H₅); 2.71 (2H, т, J=7.6, <u>CH₂C₃H₇); 3.77</u> (1H, д, J=3.7, <u>CHNH₂) 5.21 (1H, д, J=15.9, NCH₂); 5.28 (1H, д, J=15.9, NCH₂); 5.27-5.36 (1H, м, N<u>CH</u>CH₃); 6.35 (1H, дд, J=3.3, 1.8, 4-H Fur); 6.43 (1H, уш., J=3.3, 3-H Fur); 7.44 (1H, дд, J=1.8, 0.8, 5-H Fur).</u></u>

Спектр ЯМР ¹³С (DMSO/CCl₄ 1/3): 12.8 (CH₃); 13.3 (CH₃); 21.5 (CH₂); 24.3 (CH₂); 27.1 (CH₂); 40.4(NCH₂); 53.8 (CH); 56.3 (CH); 109.1 (4-CH Fur); 110.2 (3-CH Fur); 142.0; 147.9; 150.8; 165.4 и 168.8. Аминокислота 4с: т.пл. = 204.5°С. $[\alpha]_D^{20}$ = -10.67° (с 0.3, H₂O). Спектр ЯМР ¹H (DMSO/CCl₄ 1/3), δ , м.д.: 0.62 (3H, т, J=7.4, CH₃); 0.63 (3H, т, J=7.4, CH₃); 1.05-1.14 (2H, м, CH₂); 1.32 (3H, д, J=7.1, <u>CH₃CH</u>); 1.36-1.50 (4H, м, 2-CH₂); 2.47 (2H, дд, J=8.1, 7.1, CH₂); 3.68 (2H, м, NCH₂); 4.21 (1H, д, J=5.0, <u>CH</u>COOH); 5.31 (1H, кд, J=7.1, 5.0, <u>CH</u>CH₃).

Спектр ЯМР ¹³С (DMSO/CCl₄ 1/3): 10.1 (CH₃); 12.8 (CH₃); 14.5 (CH₃); 21.0 (CH₂); 21.3 (CH₂); 24.2 (CH₂); 27.7 (CH₂); 46.2 (NCH₂); 52.5 (CH); 55.6 (CH); 154.3; 164.7; 168.6.

ԿՈՂՔԱՅԻՆ ՌԱԴԻԿԱԼՈԻՄ ՏԵՂԱԿԱԼՎԱԾ ՏՐԻԱԶՈԼԱՅԻՆ ԽՄԲԵՐ ՊԱՐՈԻՆԱԿՈՂ α- ԱՄԻՆԱԿԱՐԱԳԱԹԹՎԻ ՆՈՐ, ՆԵՏԵՐՈՑԻԿԼԻԿ ՏԵՂԱԿԱԼՎԱԾ ԱՆԱԼՈԳՆԵՐԻ ԱՍԻՄԵՏՐԻԿ ՍԻՆԹԵԶ

Ա. Ս. ՍԱՂՅԱՆ, Լ. Յու. ՍԱ৲ԱԿՅԱՆ, ৲. Մ. ՍԻՄՈՆՅԱՆ, Ս. Ղ. ՊԵՏՐՈՍՅԱՆ, Ա. Ֆ. ՄԿՐՏՉՅԱՆ, Մ. Ա. ՍԱՄՎԵԼՅԱՆ, Տ. Վ. ՂՈՉԻԿՅԱՆ և Պ. ԼԱՆԳԵՐ

 U_2 ակվել է էնանԹիոմերապես Հարստացված, 3 և 4 դիրջերում տարբեր տեղակալիչներ պարունակող 5-Թիօքսո-1,2,4-տրիազոլային խմբեր պարունակող β-Հետերոցիկլիկ տեղակալված (2S, 3S)-allo-α-ամինակարագաԹԹվի ածանցյալների ասիմետրիկ սինԹեդի մեԹոդ` Ni^{II}-իոնի Հետ (E)- և (Z)-դեՀիդրոամինոկարագաԹԹվի և (S)-2-N-(N'-բենդիլարոլիլ)ամինաբենդոֆենոն քիրալային օժանդակ ռեագենտի Շիֆի Հիմքի առաջացրած կոմպլեքսի դեՀիդրոամինաԹԹվային մնացորդի էլեկտրոֆիլ C=C կապին Համապատասխան տրիազոլային չարքի նուկլեֆիլների ասիմետրիկ միացմամբ և առաջացած կոմպլեքսների դիաստերեոմեր խառնուրդի Հետագա քայքայմամբ և նպատակային ամինաԹԹուների առանձնացմամբ: Անջատված Հետերոցիկլիկ տեղակալված (2S, 3S)-allo-α-ամինակարագաԹԺվի անալոգների էնանԹիոմերային ավելցուկը (ee) գերազանցում է 97%- ը:

ASYMMETRIC SYNTHESIS OF NEW HETEROCYCLE SUBSTITUTED ANALOGS OF α-AMINOBUTYRIC ACID CONTAINING SUBSTITUTED TRIAZOLE GROUPS IN THE SIDE CHAIN RADICAL

A. S. SAGHYAN^{a,b}, L. Yu. SAHAKYAN^{a,b}, H. M. SIMONYAN^{a,b}, S. Gh, PETROSYAN^{a,b}, A. F. MKRTCHYAN^{a,b}, M. A. SAMVELYAN^a, T. V. GHOCHIKYAN^a and P. LANGER^c

^aYerevan State University, Institute of Pharmacy
1, A. Manoukyan Str., Yerevan, 0025, Armenia
Fax: (+37460) 710410 E-mail: lusine_sahakyan@ysu.am
^bScientific and Production Center "Armbiotechnology" NAS RA
14, Gyurjyan Str., Yerevan, 0056, Armenia
^c Institute of Chemistry, University of Rostock
3a, Albert-Einstein-Str., 18059, Rostock, Germany

Asymmetric synthesis method for enantiomerically enriched β -heterocycle substituted derivatives of (2S, 3S)-allo- α -aminobutyric acid containing 5-thioxo1,2,4-triazole groups with different radicals in 3 and 4 positions via addition of relevant triazole-nucleophiles to C=C bond of (E)- and (Z)-dehydroaminobutyric acid moiety of Ni^{II} complex of its Shiff's base with chiral auxiliary S)-2-N-(N'-benzylprolyl)amino-benzophenone was developed and through further decomposition of diastereomeric

complexes a mixture of the target amino acids was isolated. Enantiomeric excess (*ee*) of isolated heterocyclic substituted aminoacids is over 97%.

ЛИТЕРАТУРА

- Priyanka S., Krishnananda S., Sanjit K.D., Gautam P. // Org. Biomol. Chem., 2014, №12, p. 6297.
- [2] Samir M. // Molecules, 2010, №15, p. 6759.
- [3] Солдатенков А.Т., Колядина Н.М., Шендрик И.В. Основы органической химии лекарственных веществ, М., Химия, 2001, с. 36.
- [4] Saghyan A.S., Mkrtchyan G.M., Dadayan A.S., Petrosyan S.G., Geolchanyan A.V., Simonyan H.M., Mkrtchyan A.F., Mkrtchyan S., Gevorgyan A., Iaroshenko V.O., Langer P. // Tetrahedron: Asymmetry, 2013, v. 24, №4, p. 229.
- [5] Saghyan A.S., Simonyan H.M., Stepanyan L.A., Ghazaryan S.G., Geolchanyan A.V., Manasyan L.L., Ghochikyan V.T., Ghochikyan T.V., Hovhannisyan N.A., Gevorgyan A., Iaroshenko V.O., Langer P. // Tetrahedron: Asymmetry, 2012, v. 23, p. 891.
- [6] Сагиян А.С., Симонян А.М., Петросян С.Г., Акопян К.В., Хачатрян Л.В., Геолчанян А.В., Кочикян Т.В., Арутюнян В.С. // Хим. ж. Армении, 2011, т. 64, №3, с. 352.
- [7] Симонян А.М. // Ученые записки ЕГУ, 2011, №3, с. 7.
- [8] Сагиян А.С., Симонян А.М., Акопян К.В., Товмасян А.Г., Геолчанян А.В., Кочикян В.Т. // Хим. ж. Армении, 2009, т. 62, №3-4, с. 362.
- [9] Сагиян А.С., Геолчанян А.В., Манасян Л.Л., Мкртчян Г.М., Мартиросян Н.Р., Дадаян С.А., Кочикян Т.В., Арутюнян В.С., Аветисян А.А., Тараров В.И., Малеев В.И., Белоконь Ю.Н. // Изв. РАН, Сер. хим., 2004, №4, с. 894.
- [10] Сагиян А.С., Геолчанян А.В., Григорян А.А., Мартиросян Н.Р., Дадаян С.А., Тараров В.И., Белоконь Ю.Н., Кочикян Т.В., Арутюнян В.С., Аветисян А.А. // Хим. ж. Армении, 2004, т.57, №1-2, с. 85.
- [11] Сагиян А.С., Манасян Л.Л., Геолчанян А.В., Дадаян С.А., Мартиросян Н.Р., Вардапетян С.М., Кочикян Т.В., Арутюнян В.С., Аветисян А.А., Белоконь Ю.Н. // Хим. ж. Армении, 2003, т. 56, №1-2, с. 64.
- [12] Belokon' Yu.N., Bulychev A.G., Vitt S.V., Struchkov Yu.T., Batsanov A.S., Timofeeva T.V., Tsyryapkin V.A., Ryzhov M.G., Lysova L.A., Bakhmutov V.I., Belikov V.M. // J. Am. Chem. Soc., 1985, v. 107, p. 4252.
- [13] Belokon' Yu.N., Saghiyan A.S., Djamgaryan S.M., Bakhmutov V.I., Struchkov Yu.T., Belikov V.M. // J. Chem Soc. Pekin Trans., 1, 1990, p. 2301.
- [14] Belokon Yu.N., Saghyan A.S., Djamgaryan S.M., Bakhmutov V.I., Vitt S.V., Batsanov A.S., Struchkov Yu.T., Belikov V.M. // J. Chem. Soc., Perkin Trans. 1. 1990, issue 8, p. 2301.
- [15] Сагиян А.С., Геолчанян А.В., Вардапетян С.В., Аветисян А.А., Тараров В.И., Кузьмина Н.А., Белоконь Ю.Н., Норт М. // Хим.ж.Армении, 2000, т.53, №3-4, с. 37.
- [16] Сагиян А.С., Геолчанян А.В., Джамгарян С.М., Вардапетян С.М., Тараров В.И., Кузьмина А.Н., Иконников Н.С., Белоконь Ю.Н., Норт М. // Изв. РАН, Сер.хим., 2000, №8, с.1467.
- [17] Belokon' Yu.N., Tararov V.I., Maleev V.I., Savel'eva T.F., Ryzhov M.G. // Tetrahedron: Asymmetry, 1998, v. 9, p. 4249.
- [18] Гордон А., Форд Р. Спутник химика. М., Наука, 1976.