ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ

HAЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ APMEHUЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

Տայաստանի քիմիական հանդես

Химический журнал Армении 69, №4, 2016 Chemical Journal of Armenia

УДК 666. 3/7

СИНТЕЗ И СВОЙСТВА КОРДИЕРИТ-МУЛЛИТОВЫХ КОМПОЗИЦИОННЫХ КЕРАМИЧЕСКИХ МАТЕРИАЛОВ

А. К. КОСТАНЯН *, А. Г. МАНУКЯН и К. А. САРКСЯН

Институт общей и неорганической химии им. М.Г. Манвеляна НАН Республики Армения Армения, 0051, Ереван, ул. Аргутян, 2 пер., дом 10 Факс: (374-10) 231275, E-mail:aram_kostanyan@yahoo.com

Поступило I VIII 2016

Изучены закономерности синтеза и определены свойства кордиеритового и композиционного кордиерит-муллитового керамических материалов с использованием прекурсоров, полученных золь-гель методом. Синтез кордиерита из таких ксерогелей протекает через образование промежуточных фаз μ-кордиерита, кристобалита, сапфирина и муллита. В эквимолекулярной смеси ксерогелей муллита и кордиерита в процессе обжига последовательно образуются фазы муллита, шпинели, кристобалита и при температуре около 1300°С происходит кристаллизация β-кордиерита. Определены характеристики кордиерит-муллитовых керамических материалов при спекании, температурный коэффициент линейного расширения, прочность на изгиб и электрическое сопротивление при различном соотношении компонентов.

Рис. 4, табл. 2, библ. ссылок 9.

Кордиеритовая керамика, благодаря низкому температурному коэффициенту линейного расширения (ТКЛР), химической стойкости, высокой термостойкости и хорошим электроизоляционным свойствам, находит широкое применение [1]. Однако синтез кордиерита сопряжен с рядом трудностей, таких, как образование побочных фаз (при синтезе твердофазной реакцией из природных сырьевых материалов), небольшой интервал спекания, а также сравнительно высокая температура синтеза [2]. Путями преодоления этих трудностей являются применение золь-гель технологии и создание композиционных керамических материалов на основе кордиерита [3-5].

Значительное место в технологии кордиеритовой керамики занимают вопросы синтеза, т. к. реакция кордиеритообразования зависит от

ряда технологических факторов: температуры и длительности выдержки, природы и дисперсности компонентов, вида и количества минерализаторов, чистоты исходных компонентов и т. д.

Интерес к получению и применению золь-гель продуктов возрос в связи с возможностью получения композиционных материалов с широким спектром разнообразных свойств. Главным преимуществом зольгель метода является возможность получения ультрагомогенных порошков сложного состава, снижение температуры синтеза и спекания, контролируемая морфология и фазовый состав материала [6]. Все это сделало золь-гель технологию одним из наиболее перспективных методов получения высокочистых, ультрадисперсных, активных при спекании порошков кордиерита, а также керамики на их основе. В данной работе рассмотрены закономерности синтеза кордиеритивой и кордиерит-муллитовой композицинной керамики с применением золь-гель технологии получения керамических прекурсоров.

Экспериментальная часть

Гели кордиеритового и кордиерит-муллитового составов получали смешением раствора ТЭОС (тетраэтилортосиликат — $C_8H_{20}O_4Si)$ с растворами $Al(NO_3)_3 \cdot 9H_2O$ и $Mq(NO_3)_2 \cdot 3H_2O$ в безводном этаноле. Расчетные количества растворов сливались в стеклянный реактор с мешалкой, в который по каплям добавляли 20% водный раствор NH₄OH до достижения pH = 6.8-7.2. Полученные гели высушивали при 105°C и далее прокаливали при $600^{
m oC}$ для разложения нитратов. Для получения керамики ксерогели предварительно прокаливали при 1300°C в свободно насыпном состоянии в течение 1 ч для протекания процессов образования муллита и кордиерита и дополнительно размалывали до прохождения через сито №005. Далее из полученного материала готовили пресс-порошок (с добавлением ~8-10% водного раствора поливинилового спирта) и методом полусухого прессования под давлением 100 МРа получали штабики $(5 \times 5 \times 50 \text{ мм})$ и диски $(\emptyset = 20, h = 2 \text{ мм})$ для последующего спекания и измерения механических и электрических свойств, соответственно. Обжиг полученных ксерогелей при различных температурах для исследований и получения образцов керамики проводили в воздушной среде в печи «Nabertherm-LHT 08/17», термический анализ — на дериватографе «Q-1500» со скоростью нагрева 15°*С/мин*, рентгенофазовый анализ — на приборе «URD-63» в СиК излучении. Удельное объемное электрическое сопротивление (p_v) образцов измеряли с использованием терраомметра «Е6-13А» в температурном интервале 20-300°С. Механические свойства измерялись на разрывной машине «ZD-10/90». Температурный коэффициент линейного расширения измеряли на приборе «ДКВ-4А».

Обсуждение результатов

Дериватографические исследования шихты кордиеритого состава показали, что на кривой ДТА (рис.1) наблюдается ряд экзотермических эффектов. При 820-890°C образуется фаза μ -кордиерита (MgO·Al₂O₃·3SiO₂), что подтверждается рентгенофазовым анализом (рис. 2, кр. 1). На рентгенограмме образца, обожженного при 900°C, проявляются линии отражения, характерные для μ -кордиерита (20 = 25.885, 48.86, 56.91 и др.).

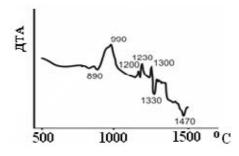


Рис. 1. Кривая ДТА кордиеритовой шихты.

Тепловой эффект при температуре 960-990°С, очевидно, связан с образованием фазы сапфирина (4MgO·5Al $_2$ O $_3$ ·2SiO $_2$), т.к. на рентгенограмме образца, обожженного при 1100°С, появляются несколько новых линий отражения, характерных для сапфирина (2 θ = 31.48, 36.63, 44.83, 65.67).

Два эффекта на кривой ДТА при 1210 и 1230°C связаны с кристаллизацией муллита и кристобалита. Экзотермический эффект при 1300°C соответствует кристаллизации β-кордиерита, а эндотермический эффект при 1330°С, вероятно, связан с образованием расплава эвтектического состава 20.3% MqO; 18.3% Al₂0₃; 64.4% SiO₂ [7]. Эта фаза имеет низкую вязкость, количество её с повышением температуры возрастает, что и обусловливает короткий интервал спекшегося состояния кордиерита. На рентгенограмме образца, обожженного при 1250°C, проявляются все линии отражения сапфирина, а также линии отражения кристобалита $(2\theta = 21.76, 30.66, 35.91)$ и наиболее интенсивная линия отражения муллита ($2\theta = 26.34$). Дальнейшее повышение температуры обжига до 1300°C (и далее вплоть до температуры плавления кордиерита) приводит к появлению линий отражения β-кордиерита и исчезновению линий отражения других кристаллических фаз. В работах [4,8] авторами указывается, что на начальном этапе кристаллизации гелей кордиеритового состава может образоваться петалитовая фаза взамен µ-кордиерита. В наших экспериментах образование петалитовой фазы отмечено не было, но отмечено образование промежуточных фаз сапфирина, кристобалита и, вероятно, муллита. При дальнейшем повышении температуры

кордиерит инконгруентно плавится при 1470°С с образованием муллита и магнезиального стекла. Рентгенограмма шихты, обожженной при 1300°С, показывает наличие только одной кристаллической фазы β-кордиерита (рис. 2, кр. 4). Многочисленные исследования в области синтеза кордиерита показывают, что при получении из механической смеси природных материалов, таких, как каолинит, тальк, а также кристаллических форм оксида алюминия, температура начала кордиеритообразования находится в области температур 1160-1270°С, а спекание протекает через образование фазы шпинели и завершается при температурах 1420-1450°С в течение 20 и более часов [9]. Кроме того, полученный таким способом кордиерит содержит значительное количество (порой до 20%) примесных фаз шпинели, муллита, клиноэнстатита и других, которые ухудшают эксплутационные свойства кордиеритовой керамики.

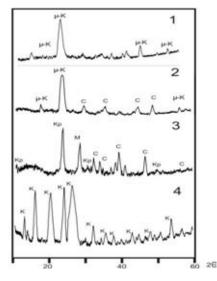


Рис. 2. Рентгенограммы образцов кордиеритовой шихты, обожженных при: $1-900,\ 2-1100,\ 3-1250$ и 4- при 1430^{0} С, соответственно.

Большой интерес представляют материалы на основе смесей высокоогнеупорных оксидов в двойных и тройных системах, кривые ликвидуса которых лежат в области высоких температур. Они дают возможность получать широкий спектр высококачественных материалов с разнообразными свойствами, изменение которых в определенных пределах можно контролировать и регулировать. Одним из перспективных термостойких материалов является кордиерито-муллитовая композиционная керамика. Известно [9], что добавление муллита к кордиеритовой керамике увеличивает коэффициент трещиностойкости, повышает термоударную вязкость и температуру размягчения. Нами были изучены свойства кордиерит-муллитовых композиционных материалов при разных соотношениях компонентов. На рис. 3 приведена кривая ДТА шихты состава кордиерит + муллит при мольном соотношении 1:1.

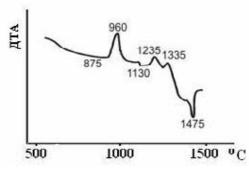


Рис. 3. Кривая ДТА шихты кордиерит+муллит.

В отличие от шихты чистого кордиерита, здесь наблюдается кристаллизация муллитовой фазы при температуре 960°С, при 1130°С образуется фаза шпинели (20 = 36.85, 44.82, 59.37, 65.25 и др.), а при 1235°С кристаллизуется кристобалит (рис. 4). Взаимодействие этих фаз приводит к образованию кордиерита при 1335°С, который далее плавится при 1475°С. Некоторое повышение температур кристаллизации и плавления кордиерита объясняется наличием фазы муллита.

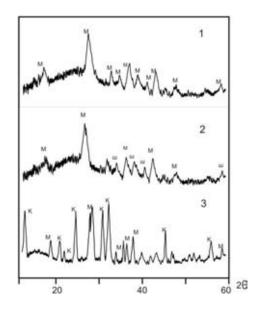


Рис. 4. Рентгенограммы образцов кордиерит-муллитовой шихты с мольным отношением 1:1, обожженных при: 1-1000, 2-1100 и 3-1430°C, соответственно.

Изучение образцов керамики показало (табл. 1 и 2), что после обжига при 1430°С образцы характеризуются довольно высокой общей и открытой пористостью, что характерно для керамики, полученной зольгель методом. Это объясняется тем, что развитая поверхность очень мелких частиц шихты адсорбирует и прочно удерживает на своей поверхности молекулы газовой фазы, для удаления которых необходимо применять специальные технические приемы (обжиг в вакууме, горячее прессование). Отметим довольно низкое значение ТКЛР для образца чистого кордиерита (6.0·10·7 K-1 в интервале 25-600°С), что объясняется

использованием в экспериментах особо чистых материалов. В результате отсутствия примесей, которые играют роль минерализаторов при синтезе некоторых побочных фаз, в частности шпинели, в конечном продукте обжига они не образуются, что не приводит к увеличению ТКЛР материала.

Таблица 1 Данные по спекаемости кордиерит-муллитовой керамики

Nº	Масс. отно-		Кажущая-	Водопог-	Порист	ость, %
образ- ца	шение	Линейная	ся плот-	лоще-		
	кор./мул-	усадка, %	ность,	ние,	откр.	общая
	ЛИТ		г/см ³	%		
1	_	16.7	2.21	4.2	9.2	13.7
2	1:6.5	20.9	1.81	12.0	21.7	34.0
3	1:1.7	21.2	2.51	8.2	20.6	33.8
4	1:0,7	20.9	2.42	7.0	16.9	28.0
5	1:0,3	22.3	2.25	5.9	13.3	19.5

Предел прочности на изгиб как наиболее характерная величина, определяющая механические свойства образцов, уменьшается с увеличением количества муллита в составе композиционного материала, что объясняется относительно низкой температурой спекания для муллита.

Таблица 2 Свойства кордиерит-муллитовой керамики

№ образ ца	Предел проч- ности на изгиб, <i>МПа</i>	ТКЛР, 10 ⁻⁷ К ⁻¹ в интервале 25-600°C	Логарифм объемного эл. сопротивления при 100°С, <i>Ом ·см</i>
1	88,2	6,0	>14
2	41,4	42,4	11,8
3	65,5	34,1	12,4
4	75,9	25,6	13,5
5	79,3	17,5	>14

Состав образцов соответствует данным табл. 1.

Однако уровень прочности достаточно высок для практических применений.

Сочетание хороших механических, электроизоляционных (в частности для образцов 1, 4, 5) свойств, а также низкого ТКЛР образцов керамики создает возможность использования их в качестве электрических (ленточных) нагревательных элементов, предохранителей, подложек для выпрямителей, конструкционных элементов печей, сушилок и т. д.

Таким образом, установлено, что в условиях проведенных исследований синтез кордиерита из ксерогелей, полученных золь-гель методом, протекает через образование промежутоных фаз µ-кордиерита, кристобалита, сапфирина и муллита. Начало образования кордиерита отмечается при температуре около 820° C (μ -кордиерит (MqO·Al₂O₃·3SiO₂)). Выше 1300°С в продукте обжига единственной кристаллической фазой является β-кордиерит. В эквимолекулярной смеси муллита и кордиерита в процессе обжига последовательно образуются фазы муллита, шпинели, кристобалита, и при температуре около 1300°С происходит кристаллизация β-кордиерита. Состав композиционного материала, состоящего фаз муллита кордиерита, И онжом представить как $\text{n}\cdot\text{2MgO}\cdot\text{2Al}_2\text{O}_3\cdot\text{5SiO}_2 + \text{m}\cdot\text{3Al}_2\text{O}_3\cdot\text{2SiO}_2$).

ՄՎԵՍՄԺՐԺԵՍ ՄՈՎԵՎԶՈՐ ՄՈՒ ՄՎԵՍՑՎԼՎՈՄ-8ՎԴԺՎՐՈՌ ՆՅՈՒԹԵՎՄԵՍ ՀԵԶԱՐ ԵՎ ԴԱՅԱՐՈՒԵՄ ՎՐԺԺՎՈԵՄ

Ա. Կ. ԿՈՍՏՄՆՅԱՆ, Հ. Գ. ՄԱՆՈԻԿՅԱՆ և Կ. Ա. ՍԱՐԳՍՅԱՆ

Ուսումնասիրված են զոլժել եղանակով ստացված նախանյուժերից կորդիերիտային և կորդիերիտ-մուլիտային կոմպոզիցիոն խեցեղենային նյուժերի սինժեզը և Հատկուժյուն-ները։ Կորդիերիտի սինժեզը այդպիսի կսերոժելերից ընժանում է μ-կորդիերիտի, կրիստոբալիտի, սապֆիրինի և մուլիտի միջանկյալ ֆազերի առաջացմամբ։ Մուլիտի և կորդիերիտի կսերոժելերի էկվիմոլյար խառնուրդում ժրծման ժամանակ Հաջորդաբար առաջանում են մուլիտ, չպինել, կրիստոբալիտ, իսկ 1300°С-ից բարձր ջերմաստիճաններում տեղի է ունենում β-կորդիերիտի բյուրեղացում։ Որոչված են կորդիերիտ-մուլիտային խեցեղենային նյուժերի ժրծման բնուժադրերը, գծային ընդարձակման գործակիցը, ծռման ամրուժյունը և էլեկտրական դիմադրուժյունը` կոմպոնենտների տարբեր Հարաբերուժյունների դեպքում։

SYNTHESIS AND PROPERTIES OF CORDIERITE-MULLITE CERAMIC COMPOSITES

A. K. KOSTANYAN, H. G. MANUKYAN and K. A. SARGSYAN

M.G.Manvelyan Institute of General and Inorganic Chemistry NAS RA Bild. 10, II Lane, Argutyan Str., Yerevan, 0051, Armenia E-mail: aram kostanyan@yahoo.com

The synthesis conformities and properties of cordierite and cordierite-mullite ceramic composites obtained from precursors by sol-gel method are studied. Synthesis of cordierite from such xerogels proceeds through formation of intermediate phases of μ -cordierite, cristobalite, sapphirine and mullite. The calcination of equimolecular mixtures of mullite and cordierite xerogels leads to sequential formation of mullite, spinel, cristobalite phases and at 1300°C the crystallization of β -cordierite takes place. The specifications of cordierite-mullite ceramic composites at sintering, tec, flexural strength and electrical resistance at various ratios of components are determined.

ЛИТЕРАТУРА

- [1] Аввакумов Е.Г., Гусев А.А. Кордиерит перспективный керамический материал. Новосибирск: Издательство СО РАН, 1999, 166 с.
- [2] *Аввакумов Е.Г., Лепезин Г.Г., Горбачев Д.В., Винокурова О.Б. //* Огнеупоры и техническая керамика, 2013, №1-2, с. 57.
- [3] *Суворов С.А., Русинов А.В., Фищев Н.В.* // Отнеупоры и техническая керамика, 2013, №2, с.8.
- [4] Camerucci M.A., Urretavizcaya G., Casro M.S., Cavalieri A.L. // Journal of the European Ceramic Society, 2001, v. 21, Issue 16, p. 2917.
- [5] Порозова С.Е. // Огнеупоры и техническая керамика, 2004, №5, с.32.
- [6] Ebatzadeh T., Lee W.E. // Journal of the European Ceramic Society, 1998, v 18, Issue 7, p. 837.
- [7] Абдель Гавад Сафаа Рамадан Махмоуд. Автореф. дисс. «Кордиеритовая керамика из порошков, полученных золь-гель методом» канд. тех. наук. М., МХТИ им. Менделеева, 2006, с. 5.
- [8] Галахов А.В., Шевченко В.Я., Стребунов А.А. // Огнеупоры, 1991, №6, с.17.
- [9] Дятлова Е.М, Подболотов К.Б., Красовская Ю.А. // Огнеупоры и техническая керамика, 2012, №9, с. 45.