ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈԻԹՅԱՆ ԳԻՏՈԻԹՅՈԻՆՆԵՐԻ ԱՉԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

Гијшиџшնի քիմիшկшն հшնդես Химический журнал Армении **69**, №1-2, **2016** Chemical Journal of Armenia

УДК 537.8:678.7

РЕЛАКСАЦИОННЫЕ ПРОЦЕССЫ В РАДИАЦИОННО-МОДИФИЦИРОВАННОМ ПОЛИЭТИЛЕНЕ ВЫСОКОГО ДАВЛЕНИЯ

С. С. САРКИСЯН

Армянский государственный педагогический университет им. Х. Абовяна Армения, 0010, Ереван, пр. Тигран Меци, 17 E-mail: Sargsyan_Susan@yahoo.com

Методом диэлектрической спектроскопии исследованы релаксационные процессы в широком температурном (130÷430 *K*) и частотном (10²÷10⁵ *Гц*) интервалах в радиационно-модифицированных полиэтиленах высокого давления (ПЭВД), облученных ү-излучением дозами 1, 5, 15, 25 и 35 *Мрад*. Из полученных температурно-частотных зависимостей диэлектрических потерь (tg⁵) и проницаемостей (*ε*') выявлены области релаксации в радиационно-модифицированном ПЭВД. Полученные результаты показали, что ү - излучение приводит к резкому изменению релаксационных параметров, особенно в области выше температуры стеклования. Они также послужили основой для установления режима сшивания ПЭВД с довольно высокой степенью сшивки (Г= 79%).

Рис. 2, табл. 2, библ. ссылок 9.

Развитие ядерной энергетики предъявляет серьезные требования к кабельной технике в связи с изготовлением и разработкой специальных кабельных изделий, в первую очередь, проводов и кабелей, обеспечивающих длительную, надежную и безопасную работу как ядерных энергетических установок (ЯЭУ), так и систем контроля, управления и защиты ядерного реактора. Как известно, в этом случае (в ЯЭУ и АЭС) провода и кабели подвергаются воздействию различных видов излучений с сочетанием изменения температуры, давления, влажности и т. д., что отрицательно сказывается на эксплуатационных свойствах изделий. При этом наблюдаемые структурные изменения происходят в основном из-за влияния *ү*-излучений. Последнее вызывает возникновение дефектов кристаллической решетки, изменение строения из-за трансформации химических связей и т.д. В связи с этим актуальна задача по разработке изоляционных материалов с учетом требуемых электрических, 160 физико-механических и технологических эксплуатационных свойств [1-3]. С этой точки зрения весьма перспективными электроизоляционными полимерными материалами с наперед заданными свойствами являются сшитый с помощью перекиси дикумила и особенно радиационно-модифицированный полиэтилены, термостабилизированные специальными добавками.

Следует отметить, что при облучении в некоторых полимерах (политетрафторэтилене, полиизобутилене, полиметилметакрилате и т.д.) преобладают деструкционные процессы, а в полиэтилене (а также в полипропилене, полистироле и т.д.), по крайней мере в определенных пределах дозы облучения, преобладают процессы сшивания, вследствие чего улучшаются свойства ПЭ [4]. При облучении полиэтилена гамма-излучением атомы водорода отщепляются от полимерных цепочек, а нескомпенсированные свободные связи атомов углерода тут же стремятся вновь вступить в реакцию, но уже не с водородом, а друг с другом, "сшиваясь", образуя между собой дополнительную прочную связь. "Лишние" атомы водорода также взаимодействуют между собой, выделяясь в виде молекулярного водорода (Н₂). Так, в процессе облучения увеличивается транс-виниловая ненасыщенность, повышается длинноцепочечная разветвленность и появляется прочная трёхмерная сеть из полимерных цепочек этилена. Вследствие влияния радиаций сшивание и, следовательно, образованная сеточная структура ограничивает подвижность макромолекул, особенно в аморфной фазе, а в кристаллических областях происходит разрушение кристаллитов, возникает беспорядок, разуплотнение и повышается подвижность цепей в кристаллах. Радиационно-индуцированные структурные изменения влияют как на физико-механические, так и диэлектрические свойства сшитого ПЭ[5]. После сшивки полиэтилен приобретает новое ценное свойство — "память" формы, нагревостойкость при электрических перегрузках и повышенную эластичность (даже при температуре 423К сохраняет упругость), что используется в производстве термоусаживаемых изделий. Кроме этого, следует иметь в виду, что получение сшитого ПЭ с помощью радиационного облучения обладает двумя важными для промышленного производства преимуществами — высокой производительностью и технологичностью.

Радиационно-сшитый ПЭ приобретает все возрастающее применение как в современной кабельной промышленности, так и в других отраслях[6], поэтому исследование диэлектрических свойств облученного ПЭВД представляет определенный научный и практический интерес. Учитывая вышеизложенное, с целью получения нагрево- и радиационно-стойких изоляционных полиэтиленовых покрытий с более улучшенными электрофизическими свойствами методом релаксационной спектрометрии были исследованы диэлектрические свойства модифицированного ПЭ(МПЭ) γ-излучением, а также установлены зависимости обнаруженных релаксационных областей от молекулярной структуры ПЭ.

Экспериментальная часть и обсуждение результатов

В качестве объекта исследования выбрали радиационно-сшитые образцы полиэтилена. Для этого полученные нами исходные образцы ПЭВД марки 107-02К в виде пленок толщиною 50мкм подвергали гаммаоблучению дозами 1, 5, 15, 25 и 35 Мрад. Для оценки электрофизических свойств МПЭ определили степень сшивания исследуемых образцов ПЭВД по методике прямого кипячения в пара-ксилоле и в зависимости от дозы облучения получили следующие значения: Г=0, 54, 66, 70 и 79%. Такие сравнительно низкие значения степени сшивания связаны с разветвленностью ПЭВД, где радиационно-деструкционные процессы имеют заметно больший вклад (в местах разветвлений происходят деструкционные процессы) в сравнении с линейными полимерами [7]. Дополнительно было исследовано изменение молекулярной структуры модифицированно-сшитых образцов ПЭВД в зависимости от дозы облучения методом ИК-спектроскопии. Сопоставление данных по ИК-спектру МПЭ показало, что наблюдается прямая корреляция между дозой облучения и процессом сшивания. Как видно, полученные указанными методами данные совпадают и самая высокая степень сшивки получается у облученного ПЭВД с дозой 35 Mpad. Предполагается, что полученный результат связан с особенностями исходной структуры ПЭВД. Кроме этого, анализ ИК-спектров исходного и облученных образцов ПЭ показал резкое увеличение полярных групп с повышением дозы облучения. Влияние радиационной сшивки на электрофизические свойства для всех образцов МПЭ проводили методом диэлектрической спектроскопии при температурах 120÷440 К и частотах 10^2 ÷ $10^5 \Gamma \mu$ на мосте переменного тока TR-9701. Полученные экспериментальные данные и детальное исследование действия ү-излучения на ПЭВД при разных дозах облучения показали, что при малых дозах (1-5 Mpad), хотя и происходят физико-химические процессы, но наблюдаемые изменения незначительны.

Рис. 1. Зависимости ε' (f=10 *кГц*) и tgč от температуры для ПЭВД (доза15 *Мрад*) при частотах 1, 10 и 50 *кГц*.

В данной работе мы сочли целесообразным представить результаты диэлектрических измерений МПЭ при дозах облучения 15 и 35 Mpad. Полученные температурно-частотные зависимости диэлектрических потерь(tgð) для радиационно-сшитого ПЭВД с дозой 15 *Мрад* при фиксированных частотах 0.5, 5, 10 и 50 $\kappa\Gamma u$, а также температурная зависимость диэлектрической проницаемости (ε') при частоте 10 κΓμ представлены на рис.1, из которого видно, что действие у-излучения приводит к резкому изменению интенсивности, температурного положения и полуширины максимумов наблюдаемых релаксационных переходов. Сравнение диэлектрических спектров исходного(необлученного)[8] и облученных (рис. образцов ПЭВД показывает, что максимум релаксационного
уперехода смещается в область более высоких температур ($160 \div 213 K$), увеличивается высота и полуширина максимума диэлектрических потерь (tgo), а также повышаются значения диэлектрической проницаемости(ε'), что связано с увеличением плотности и появлением ненасыщенности в ПЭ. Полученные данные позволяют предположить, что изменение характера кривых tq $\delta = f(T)$ в области γ -перехода связано с полярными группами, в частности, карбонильных С=О и метильных СН₃-групп в ходе окислительно-деструкционных процессов. Как известно, рост концентрации групп С=О повышает дипольно-групповые потери, не изменяя положение максимума tqð по температуре и частоте, а увеличение метильных групп приводит к повышению диэлектрических потерь и времени релаксации вследствие увеличения межмолекулярных взаимодействий и, следовательно, к смещению максимума tqo к более высокой температуре [9], что наблюдалось в релаксационных спектрах ПЭВД, приведенных на рис. 1. Следует отметить также, что радиационные процессы, в частности сшивание, образуют сеточную структуру, что приводит к росту дефектности (образование дефектов как в аморфной фазе, так и в конце цепей в кристаллитах), степени разветвленности и локальных напряжений в полимерной системе. Таким образом, сшивка ограничивает движение макромолекул, особенно в аморфной фазе, и приводит к температурному сдвигу максимума Урелаксации, а также увеличению энергии активации низкотемпературного перехода. Энергия активации, вычисленная из наклона прямой $lgf_{M} = \phi(1/T)$, для γ -релаксации U = 53.6 *кДж/моль* (табл. 1). Основные параметры обнаруженных релаксационных переходов для МПЭВД при дозе 15 Мрад представлены в табл. 1. Учитывая вышеизложенное и обобщая полученные данные, можно прийти к выводу, что γ -релаксация обусловлена дипольно-групповыми потерями в аморфной фазе, т. е. движением коротких отрезков основной цепи, содержащей 3 - 4последовательно расположенные группы СН₂(движение типа коленчатого вала), переориентацией инородных полярных групп в боковых ответвлениях и концевых метильных групп в аморфной фазе, а также дефектами в кристаллической фазе, появление которых связано с движением концов цепей. Кроме этого, исследования показали, что увеличение разветвленности вследствие облучения повышает как подвижность, так и число кинетических единиц, участвующих в молекулярной релаксации. Из рис.1 также видно,что в диэлектрических спектрах об- $258 \div 318 K$ лученного ПЭВД в области температур проявляется отчетливо выраженный максимум eta-релаксации. Исходя из данных, полученных нами, для необлученного ПЭВД [8] было предположено, что молекулярный механизм eta-релаксации объясняется движением сравнительно больших сегментов, боковых привесков, концов цепей, узлов ветвлений и вращением цепей как в основной аморфной фазе, так и в межфазных областях. Из полученных данных для облученного ПЭВД на температурных зависимостях диэлектрических потерь tqδ наблюдается смещение температурного положения максимума $oldsymbol{eta}$ -релаксации в область высоких температур, резко увеличиваются диэлектрические потери и значения диэлектрической проницаемости. Такие изменения диэлектрических свойств именно в области β -перехода объясняются тем, что изменение подвижности кинетических единиц, окисление, деструкция и сшивка, в первую очередь, происходят в аморфной фазе. В облученном ПЭ возрастает межламелярное пространство с увеличением степени разветвленности, в связи с чем β -релаксация становится значи-164

тельно выраженной. Из температурных зависимостей диэлектрических потерь (рис.1) также видно, что β -переход имеет кооперативный характер и связан с процессом стеклования. Вычисляя энергию активации для β -перехода, получили U=175 кДж/моль (табл.1). Такое значение энергии активации указывает на кооперативность движения молекулярных цепей, как и в случае перехода температуры стеклования в область менее высоких температур. С повышением температуры нами также обнаружена асимметричность кривой в области В-максимума вследствие наложения *a*₁-релаксации со стороны высоких температур. Форма кривых (рис.1) показывает, что облучение оказывает специфичное влияние также в области *а*₁-перехода. Сравнение диэлектрических спектров образцов исходного (рис. 1) [8] и сшитого ПЭВД (рис.1) показывает, что вследствие облучения положение *а*1-релаксации значительно смещается в сторону высоких температур и проявляется в области 313+348К с одновременным уменьшением его высоты. Кроме этого, следует отметить, что интенсивность молекулярной релаксации уменьшается с увеличением частоты. Этот факт объясняется сшивкой в межфазной зоне на поверхностях складок, вследствие чего уменьшаются подвижность цепей в складках и, следовательно, интенсивность *а*1-максимума. Оценка энергии активации $lpha_1$ -процесса по данным диэлектрических измерений (рис. 1) имеет значение U=92 кДж/моль (табл. 1). Из полученных данных следует, что с повышением частоты α_1 - и β -релаксационные процессы становятся лучше разрешенными, и существует ограниченный интервал температуры и частоты, при которой можно наблюдать оба процесса в МПЭВД. Из вышеизложенного становится ясно, что движение (переориентация) петель складок и вращательно-поступательное движение цепей в межфазной зоне ПЭ при α_1 -релаксации влияют на подвижность цепей и дефектов в кристаллической фазе и с повышением температуры больше втягивают в движение соответствующие кинетические единицы, что приводит к появлению α_2 -максимума в релаксационных спектрах ПЭ в области температур 373÷403 К (табл. 1). α_2 -Переход по существу отвечает началу релаксационных явлений, приводящих к плавлению ПЭ, и указывает на повышение температуры плавления МПЭ.

Таблица 1

ПЭВД	МПЭ-2 (15 <i>Мрад</i>) степень сшивки, (%)- 66										
часто- та, кГц	дипольно-групп. редаксация			дипольно-сегмент. редаксация			α ₁ -релаксация				
	энергия актив., кДж/моль-53.6			энергия актив., <i>кДж/моль</i> -175			энергия актив., <i>кДж/моль</i> - 92				
	Т, К	tgδ ×10 ⁴	ε'	Т, К	tgδ ×10 ⁴	ε'	Т, К	tgδ ×10 ⁴	ε'		
5	181	3.5	2.292	282	7.25	2.169	317.5	5.5	2.085		
10	184	3.7	2.292	285	7.0	2.163	325	4.6	2.072		
50	194	4.85	2.286	292	8.65	2.143	343	4.9	2.007		

Основные характеристики облученного ПЭВД(Д=15Мрад)

С точки зрения технологической значимости особый интерес представляет исследование облученных образцов ПЭВД, обладающих максимальной степенью сшивания (Д=35 Мрад, Г=79%). Поэтому были проведены диэлектрические измерения образцов ПЭВД, облученных дозой 35*Мрад*, в широком температурном интервале 120÷440К при фиксированных частотах 0.5, 5, 10, 50 и 100 кГц. Полученные температурные зависимости диэлектрических потерь tgδ и диэлектрической проницаемости ε' МПЭ приведены на рис. 2, а релаксационные параметры наблюдаемых процессов в МПЭ представлены в табл. 2. Сравнение диэлектрических спектров (рис. 1 и 2) в указанном температурном интервале показывает, что наблюдается резкое повышение интенсивности релаксационных процессов, что объясняется образованием и накоплением в облученном ПЭ полярных кислородсодержащих групп. Сопоставление экспериментальных данных по определению степени сшивания и ИК-спектроскопии показало, что увеличение дозы облучения повышает количество полярных групп и гель- фракции. Так, на температурно-частотных зависимостях диэлектрических потерь МПЭ проявляется широкий низкотемпературный максимум в области температур 163÷203К. На представленных кривых tgδ=f(T) наблюдаются температурный сдвиг максимума У-перехода в сторону высоких температур(аморфизация), а также увеличение высоты и полуширины үмаксимума. На основе полученных результатов было установлено, что у-релаксация имеет комплексную природу, т. е. состоит из двух у₂- и γ_{κ} -релаксационных процессов, при этом γ_{a} -релаксация связана с локальным (мелкомасштабным) движением в аморфной фазе, а Ук- релаксация - с движением дефектов в кристаллических областях. Следует отме-166

тить, что температурный сдвиг и асимметричность у-максимума указывают на сложность структуры у-релаксации. Предполагается, что смещение температурного положения У-максимума связано с воздействием радиации на кристаллические области ПЭ, что приводит к изменению соотношения между вкладами Уа- и Ук-релаксации в суммарный Умаксимум. Как видно из кривых $tg\delta = f(T)$ на рис. 2, при повышении дозы облучения радиационно-индуцированные изменения становятся существенными в области высоких температур. Так, наблюдаются смещение температуры β -максимума в сторону низких температур (относительно $T_{M}\beta$ -перехода при $\Delta = 15 Mpad$) и искажение формы кривых со стороны высоких температур, вследствие чего увеличивается проявляемая асимметричность. Следует отметить, что в зависимости от дозы облучения по мере увеличения степени разветвленности цепей в МПЭ увеличиваются диэлектрические потери, а также величина температурного сдвига meta-максимума. Кроме этого, с увеличением частоты электрического поля сильно меняются интенсивность и ширина максимума β релаксации. Полученные данные по исследованию структурных изменений в МПЭ показывают, что количества полярных групп и гель-фракции увеличиваются с увеличением поглощенной дозы, что приводит к изменению диэлектрических свойств, а изменение формы кривых обусловлено увеличением аморфной фазы, конформоционной подвижностью участков основных цепей между точками разветвления или узлами пространственной сетки, большим количеством боковых фрагментов макроцепей и уменьшением сдерживающего влияния кристаллитов. Повышение поглощенной дозы усиливает кооперативность движения цепей в аморфной фазе МПЭ. Влияние увеличения дозы облучения проявляется и в области 🛛 -релаксации. Так, 🕰 -максимум вследствие увеличения степени сшивания сдвигается в сторону высоких температур и проявляется в интервале 318+348К. При этом с увеличением частоты повышается интенсивность α_1 -релаксации с одновременным уменьшением значений диэлектрической проницаемости. Это обстоятельство объясняется тем, что в межфазной зоне на приповерхностях кристаллитов происходят как сшивающие, так и деструкционные процессы с образованием полярных групп, вследствие чего изменяется отношение взаимодействий внутри- и межмолекулярных сил. Расчетное значение энергии активации получено 87.7кДж/моль. Кроме этого, следует отметить, что уменьшение энергии активации релаксации с повышением температуры указывает на постепенное уменьшение кооперативности движения вследствие уменьшения межмолекулярного взаимодействия. В области *а*₁-релаксации размораживание движений в складках кристаллитов способствует повышению подвижности цепей в кристаллических областях и при повышении температуры обусловливает дальнейшее развивающееся движение цепей в кристаллических фазах. Поэтому с повышением температуры в диэлектрических спектрах ПЭ в области $393 \div 413K$ проявляется ещё один высокотемпературный максимум, связанный с движением цепей в кристаллических областях. Согласно предположению, температурная область данного максимума соответствует началу плавления кристаллитов ПЭ. Из кривых $tg\delta = f(T)$ видно, что при повышении дозы облучения температурное положение перехода сдвигается в сторону более высоких температур, что означает повышение температуры плавления ПЭ.

Рис. 2. Зависимости €'(f=10кГц) и tgō от температуры для ПЭВД (доза 35 *Мрад*) при частотах 1,10 и 50 кГц.

120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440

Таблица 2

ПЭВД	МПЭ-4 (35 <i>Mpad</i>) степень сшивки, (%) - 79										
часто- та, кГц	дипольно-групп. редаксация			дип	ольно-сеги	1ент. я	α ₁ -релаксация				
	энергия актив.,			энергия актив., кЛас/иоль-219			энергия				
	КД,Ж/МОЛВ-40			КД,Ж/МОЛВ-215							
	Т, К	եցծ ×10 ⁴	ε'	Т, К	tgδ× 10 ⁴	ε'	Т, К	եցծ ×10 ⁴	ε'		
5	183.5	4.85	2.305	280	9.6	2.208	321	7.6	2.115		
10	187.6	5.15	2.305	283	10	2.205	329	7.5	2.093		
50	200	6.8	2.305	287	12.5	2.203	346	8.8	2.031		

Основные характеристики облученного ПЭВД (Д=35 Mpad)

543210

Обобщая полученные результаты МПЭВД, было установлено, что образцы ПЭВД более чувствительны к *у*-излучению, чем линейные полимеры, и при облучении с дозой 35 *Мрад* степень сшивания в ПЭ принимает максимальное значение. Это приводит к улучшению свойств ПЭ, в частности к повышению температуры плавления, т. е. теплостойкости МПЭ. Так, для получения ПЭ с улучшенными диэлектрическими свойствами был выбран метод радиационного сшивания в инертной среде с дозой облучения 35 *Мрад* при 293 *К*.

ՌԵԼԱՔՍԱՅԻՈՆ ՊՐՈՅԵՍՆԵՐԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒՄԸ ՃԱՌԱԳԱՅԹԱՅՆՈՐԵՆ ՄՈԴԻՖԻԿԱՑՎԱԾ ԲԱՐՉՐ ՃՆՇՈՒՄԱՅԻՆ ՊՈԼԻԷԹԻԼԵՆՆԵՐՈՒՄ (ԲՃՊԷ)

Ս. Ս. ՍԱՐԳՍՅԱՆ

Դիէլեկտրիկական մեխոդով пւսումնասիրվել է տարբեր դողաներով (1, 5, 15, 25 և 35 Մոադ) գամմա-ճառագայթեման ազդեցությունը ռելաջսացիոն պրոցեսների վրա բարձր ճնչումային պոլիէթիլենններում (ԲՃՊԷ) 130÷430 Կ ջերմաստիճանային և 10^2 ÷ 10^5 Հց Հաճախականությունների լայն տիրույթներում։ Ստացված դիէլեկտրիկական կորուստների (tg) և թափանցելիության (દ՛) ջերմաստիճանաՀաճախականային կախվածություններից բացաՀայտվել են ռելաջսացիոն տիրույթները ճառագայթայնորեն մոդիֆիկացված ԲՃՊԷ-ում, ինչպես նաև դրանց կախվածությունը Հետաղոտվող պոլիէթիլենների մոլեկուլային կառուցվածջից։ Ստացված արդյունջներից Հետևում է, որ γ-ճառագայթման աղդեցության Հետևանջով կտրուկ փոփոխվում են ռելաջսացիոն բնութադայթման ել թավականին բարձր կարման աստիճանով օժտված ճառագայթայնորեն մոդիֆիկացված ԲՃՊԷ-ի կարման ռեժիմ։

RELAXATION PROCESSES IN RADIATION MODIFIED HIGH PRESSURE POLYETHYLENE

S. S. SARGSYAN

Kh. Abovyan Armenian State Pedagogical University
 17, Tigran Mets Str., Yerevan, 0010, Armenia
 E-mail: <u>Sargsyan Susan@yahoo.com</u>

The molecular relaxation behaviour of the radiation modified high-pressure polyethylene (HPPE), exposed gamma radiation by various absorbed doses (1, 5, 15, 25 and 35 *Mrad*), has been investigated in large temperature $(130 \div 430K)$ and frequency $(10^2 \div 10^5 Hz)$ ranges by dielectric loss (tan δ) analysis. The obtained temperature-frequency dependencies of dielectric loss (tg δ) and permittivity (ϵ ') allow us to reveal the relaxation areas of radiation-modified HPPE, as well as their dependence on the molecular structure of irradiated PE. The results showed that γ -radiation led to a sharp change in the relaxation parameters, especially those above the glass transition temperature (in high temperature region T > T_g), and also served as a basis for setting the mode of HPPE high degree of crosslinking (Γ = 79%).

ЛИТЕРАТУРА

- Suarez J.C.M., Mano E.B., Bonelli C.M.C. // J. Polymer Eng. & Sci., 1999, v. 39, p.1398.
- [2] Fel E., Khrouz L., Massardier V., Bonneviot P.C. // J. Polymer, 2016, v. 82, p. 217.
- [3] Ferreira L.M., Falcãoa A.N., Gil M.H. // Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2005, v. 236, p. 513.
- [4] Тареев Б.М. Физика диэлектрических материалов. М., 1982, с. 283.
- [5] Carlos R. López-Barrón, Peter J. Beltramo, Yun Liu, Sung-Min Choi, Min-Jae Lee // J. Polymer, 2016, v. 87, p. 300.
- [6] Audran G., Dorey S., Dupuy N., Gaston F., Marque S. // J. Polymer Degradation and Stability, 2015, v. 122, p. 169.
- [7] Suljovrujic E. // Radiation Physics and Chemistry, 2010, v. 79, № 7, p. 751.
- [8] Саркисян С.С. // Ученые записки АГПУ им. Х. Абовяна, 2014, №1(20), с. 110.
- [9] Михайлов Г.П., Борисова Т.И. // Успехи химии, 1961, т. 30, №7, с. 895.