ՎՎԺՄՎՈԵԳՎՈՑՎՔ ՄՍԵԳՎՈՑԺԱՐՄՍՇ ՎՄՍՑՍՍԵՍՇ ԱՎՄԺՀՍԻՍ ԱՎԵՍՔՉՍ

HAЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ APMEHUЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

Տայասփանի քիմիական հանդես

Химический журнал Армении 68, №1, 2015 Chemical Journal of Armenia

УДК 547.883.83

НИТРОВАНИЕ 2-(4-АЛКОКСИФЕНИЛ)ИМИДАЗО[1,2-а]ПИРИДИНОВ

М. А. ИРАДЯН 1 , Н. С. ИРАДЯН 1 и Г. А. ПАНОСЯН 2

Научно-технологический центр органической и фармацевтической химии НАН Республики Армения

¹Институт тонкой органической химии им. А.Л.Мнджояна Армения, 0014, Ереван, пр. Азатутян, 26

²Центр исследования строения молекулы НАН Республики Армения Армения, 0014, Ереван, пр. Азатутян, 26

Е-mail: NANRAIFOK 54@ mail. ru

Поступило 5 Х 2014

Исследованы реакции 2-(4-алкоксифенил)имидазо[1,2-а]пиридинов с азотной кислотой различной концентрации. Установлено, что при кипячении с 3 или 4 μ азотной кислотой образуются соответствующие азотнокислые соли, а с 19.09 μ (d₄²⁰ 1.46) или 16.14 μ (d₄²⁰ 1.42) азотной кислотой получаются 2-(4-алкокси-3-нитрофенил)-3-нитроимидазо[1,2-а]пиридины.

Библ. ссылок 4.

Ранее нами было осуществлено взаимодействие 4(5)-(4-алкоксифенил) имидазолов с 3 *н* азотной кислотой в условиях кипячения реакционной смеси, приводящее к соответствующим продуктам нитрования как в гетероцикле, так и в бензольном кольце с образованием 4(5)-(4-алкоксифенил)-5(4)-нитроимидазолов (55-60%) и 4(5)-(4-алкокси-3-нитрофенил) имидазолов (17-18%) [1]. Эта реакция использована для избирательного введения нитрогруппы в 5-ое положение 4-(4-алкоксифенил) имидазолов, содержащих заместитель в положении 1 гетероцикла [2,3].

В представленной работе исследовано нитрование 2-(4-алкоксифенил)имидазо[1,2-а]пиридинов (1-3) азотной кислотой различной концентрации с целью получения нитропроизводных, представляющих потенциальный интерес для синтеза биологически активных веществ.

В отличие от 4(5)-(4-алкоксифенил)имидазолов при попытке нитрования 2-(4-алкоксифенил)имидазо[1,2-а]пиридинов 3 μ азотной кислотой получаются азотнокислые соли 4-6. Найдено, что с повышением нор-

мальности азотной кислоты до 4 $\it H$ повышается также и выход азотно-кислой соли.

OR¹

$$3 \text{ HNO}_{3}$$

$$1 - 3$$

$$4 - 6$$

$$R^{1} = CH_{3} - C_{3}H_{7}$$

Структура солей **4-6** доказана данными масс-спектров и ЯМР¹Н. Ниже на схеме приведены фрагменты распада молекулярного иона солей **5** и **6**, протекающего с элиминированием этилена (соединение **5**), пропилена (соединение **6**), с образованием иона с m/z 210, иона пиридиния (m/z 79) и последующим распадом последних.

$$R^1 = C_2 H_5, C_3 H_7$$

Нитрование соединений **1-3** 19.09 μ (d₄²⁰ 1.46) азотной кислотой при температуре реакционной смеси 60-65°C приводит к 2-(4-алкокси-3-нитрофенил)-3-нитроимидазо[1,2-а]пиридинам (**7-9**), структуры которых доказаны данными ЯМР 1 Н.

OR¹

$$19.09 \text{ H HNO}_{3}$$

$$16.14 \text{ H HNO}_{3}$$

$$1 - 3$$

$$7 - 9$$

$$R^{1} = \text{CH}_{3}\text{-C}_{3}\text{H}_{7}$$

Динитропроизводные **7-9** получены также нитрованием 2-(4-алкоксифенил)имидазо[1,2-а]пиридинов (**1-3**) 16.14 μ (d₄ 20 1.42) азотной кислотой при тех же температурных условиях (60-65 $^{\circ}$ C).

При нитровании азотнокислой соли **4** (R = CH_3) в серной кислоте, по данным ЯМР 1 H, получается смесь нитропроизводных.

Экспериментальная часть

Спектры ЯМР 1 Н зарегистрированы на приборе "Varian Mercury-300 VX" в ДМСО- d_6 , внутренний эталон — ТМС. Масс-спектры сняты на спектрометре "МХ-1321 А" с прямым вводом вещества в ионный источник при энергии ионизации 60 $_9B$, m/z (I $_0mh$, %). Температуры плавления определены на микронагревательном столике "Боэциус" в $^{\rm o}$ С, а ТСХ соединений $^{\rm 7-9}$ проведена на пластинках "Silufol UV-254" в хлороформе.

Общая методика синтеза азотнокислых солей 2-(4-алкоксифенил)имидазо[1,2-а]пиридинов (4-6). Смесь 0.002 моля соединений 1-3 [4] и 15 мл 3 или
4 и азотной кислоты кипятят с обратным холодильником 8-10 мин и
оставляют на ночь. Выпавший осадок отфильтровывают и перекристаллизовывают из этанола. Выходы солей рассчитаны для реакции с 4 и
азотной кислотой.

Азотнокислая соль 2-(4-метоксифенил) имидазо[1,2-а] пиридина (4). Выход 91%, т. пл. 172-174°С. Найдено, %: С 58.36; Н 4.43; N 14.58. С $_{14}$ Н $_{13}$ N $_{3}$ О $_{4}$. Вычислено, %: С 58.53; Н 4.56; N 14.63. Спектр ЯМР 1 Н, δ , м.д., Γ $_{4}$: 3.87 (с, 3H, OCH $_{3}$), 7.00-7.40 (м, 2H, С $_{6}$ Н $_{4}$ OCH $_{3}$), 7.40 (ддд, 1H, J $_{1}$ =7.1, J $_{2}$ =6.7, J $_{3}$ =1.1, С $_{5}$ Н $_{4}$ N), 7.81-7.88 (м, 3H, С $_{6}$ Н $_{4}$ OCH $_{3}$ и С $_{5}$ Н $_{4}$ N), 7.98 (уш.д., 1H, J $_{2}$ =9.0, С $_{5}$ Н $_{4}$ N), 8.68 (с, 1H, =CHN), 8.87 (уш.д., 1H, J $_{2}$ =6.7, С $_{5}$ Н $_{4}$ N).

Азотнокислая соль 2-(4-этоксифенил)имидазо[1,2-а]пиридина (5). Выход 83%, т. пл. 167-169°С. Найдено, %: С 59.88; Н 4.92; N 13.85. $C_{15}H_{15}N_3O_4$. Вычислено, %: С 59.79; Н 5.02; N 13.94. Спектр ЯМР 1 Н, δ , м.д., $\varGamma \psi$: 1.43 (т, 3H, J=6.9, CH₃), 4.11 (к, 2H, J=6.9, CH₂), 6.97-7.08 (м, 2H, $C_6H_4OC_2H_5$), 7.40 (дад, 1H, J_1 =7.0, J_2 = 6.7, J_3 =1.1, C_5H_4N), 7.77-7.88 (м, 3H, $C_6H_4OC_2H_5$ и C_5H_4N), 7.98 (уш.д., 1H, J=9.0, C_5H_4N), 8.66 (с, 1H, =CHN), 8.88 (дт, 1H, J_1 =6.7. J_2 =1.0, C_5H_4N). Масс-спектр, m/z (I отн, 150

%): 238(100) M⁺, 210(55), 209(32), 208(8), 193(6), 192(6), 186(17), 185(8), 181(18), 179(7), 170(7), 132(7), 131(8), 129(6), 118(5), 90(7), 79(20), 78(5), 52(6), 47(28).

Азотнокислая соль 2-(4-пропоксифенил)имидазо[1,2-а]пиридина (6). Выход 84%, т. пл. 128-130°С. Найдено, %: С 60.83; Н 5.20; N 13.23. С $_{16}$ Н $_{17}$ N $_{3}$ О $_{4}$. Вычислено, %: С 60.94; Н 5.34; N 13.33. Спектр ЯМР 1 Н, $_{5}$ М.Д., $_{7}$ $_{4}$! 1.07 (т, 3H, J=7.4, CH $_{3}$), 1.83 (кт, 2H, J $_{1}$ =7.4, J $_{2}$ =6.5, CH $_{2}$), 4.01 (т, 2H, J=6.5, OCH $_{2}$), 7.02-7.07 (м, 2H, С $_{6}$ Н $_{4}$ ОС $_{3}$ Н $_{7}$), 7.39 (ддд, 1H, J $_{1}$ =7.0, J $_{2}$ =6.7, J $_{3}$ =1.0, С $_{5}$ Н $_{4}$ N), 7.81-7.87 (м, 3H, С $_{6}$ Н $_{4}$ ОСС $_{3}$ Н $_{7}$ и С $_{5}$ Н $_{4}$ N), 7.98 (уш.д., 1H, J=9.0, С $_{5}$ Н $_{4}$ N), 8.65 (с, 1H, =CHN), 8.87 (дт, 1H, J $_{1}$ =6.7, J $_{2}$ =1.0, С $_{5}$ Н $_{4}$ N). Масс-спектр, m/z ($_{7}$ отн, %) : 252(55)М $_{7}$, 210 (100), 209(16), 181(13), 132(4), 79(5), 78(25), 77(5), 63(6), 52(7).

Общая методика синтеза 2-(4-алкокси-3-нитрофенил)-3-нитроимидазо[1,2-а]пиридинов (7-9). Смесь 0.002 моля соединений 1-3 и 7 мл 19.09 н азотной кислоты (${\rm d_4}^{20}$ 1.46) при температуре $60\text{-}65^{\circ}\mathrm{C}$ перемешивают 30 мин и выливают в воду. Выпавший осадок отфильтровывают и перекристаллизовывают из диметилформамида.

2-(4-Метокси-3-нитрофенил)-3-нитроимидазо[1,2-а]пиридин (7). Выход 58%, т. пл. 265-267°С, R_f 0.67. Найдено, %: С 53.40; Н 3.12; N 17.98. $C_{14}H_{10}N_4O_5$. Вычислено, %: С 53.51; Н 3.21; N 17.83. Спектр ЯМР 1 Н, δ , м.д., Γu : 4.07 (с, 3H, OCH $_3$), 7.47 (тд, 1H, J_1 =6.9, J_2 =1.5, C_5H_4N), 7.48 (д. 1H, J=8.8, C_6H_3), 7.83 (ддд, 1H, J1=8.8, J2=6.9, J3=1.2, C_5H_4N), 7.91 (дт. 1H, J1=8.9, J2=1.1, C_5H_4N), 8.21 (дд, 1H, J1=8.8, J2=2.2, C_6H_3), 8.42 (д. 1H, J2=2.2, J3=1.1, J4-1, J5-1, J5-1, J6-1, J7-1, J8-1, J8-1, J8-1, J8-1, J9-1, J9-1

2-(4-Этокси-3-нитрофенил)-3-нитроимидазо[1,2-а]пиридин (8). Выход 56%, т. пл. 212-213°С, R_f 0.64. Найдено, %: С 54.79; Н 3.56; N 17.21. $C_{15}H_{12}N_4O_5$. Вычислено, %: С 54.88; Н 3.68; N 17.07. Спектр ЯМР 1 Н, δ , м.д., Γu : 1.52 (т, 3H, J=7.0, CH₃), 4.34 (к, 2H, J=7.0, OCH₂), 7.37 (д, 1H, J=8.9, C_6H_3), 7.42 (тд, 1H, J_1 =7.0, J_2 =1.4, C_5H_4N), 7.78 (ддд, 1H, J_1 =8.8, J_2 =7.0, J_3 =1.2, C_5H_4N), 7.87 (дт, 1H, J_1 =8.8, J_2 =1.2, C_5H_4N), 8.19 (дд, 1H, J_1 =8.9, J_2 =2.3, C_6H_3), 8.42 (д, 1H, J_2 =2.3, J_3 =1.1, J_3 =3.4 (дт, 1H, J_3 =7.0, J_3 =1.1, J_3 =1.1, J_3 =3.5 (дл, 1H, J_3 =3.7), 9.48 (дт, 1H, J_3 =7.0, J_3 =1.1, J_3 =1.1, J_3 =3.1, J_3 =1.1, J_3 =3.1, J_3 =3.3, J_3 =3.4, J_3 =3.4, J_3 =4.5, J_3 =4.5, J_3 =4.7, J_3 =5.7, J_3 =6.7, J_3 =7.0, J_3 =7.0, J_3 =7.0, J_3 =7.0, J_3 =7.1, J_3 =7.0, J_3 =7.1, J_3 =7.0, J_3 =7.1, J_3 =7.0, J_3 =7.1, J_3

2-(4-Пропокси-3-нитрофенил)-3-нитроимидазо[1,2-а]пиридин (9). Выход 61%, т. пл. 159-160°С, R_f 0.66. Найдено, %: С 56.05; Н 4.96; N 16.56. $C_{16}H_{14}N_4O_5$. Вычислено, %: С 56.14; Н 4.12; N 16.37. Спектр ЯМР ¹H, δ , м.д., Γ ψ : 1.12 (т, 3H, J=7.4, CH₃), 1.91 (кт, 2H, J₁=7.4, J₂=6.3, CH₂), 4.22 (т, 2H, J=6.3, OCH₂), 7.36 (д, 1H, J=8.9, C₆H₃), 7.42 (тд, 1H, J₁=7.0, J₂=1.4, C₅H₄N), 7.78 (ддд, 1H, J₁=8.9, J₂=7.0, J₃=1.2, C₅H₄N), 7.87 (дт, 1H, J₁=8.9, J₂=1.2, C₅H₄N), 8.19 (дд, 1H, J₁=8.9, J₂=2.3, C₆H₃), 8.43 (д, 1H, J=2.3, C₆H₃), 9.48 (дт, 1H, J₁=7.0, J₂=1.1, C₅H₄N).

2-(4-ԱԼԿՕՔՍԻՖԵՆԻԼ)ԻՄԻԴԱԶՈ[1,2-a]ՊԻՐԻԴԻՆՆԵՐԻ ՆԻՏՐԱՅՈՒՄԸ Մ. Ա. ԻՐԱԴՅԱՆ, Ն. Ս. ԻՐԱԴՅԱՆ և Տ. Ա. ՓԱՆՈՍՅԱՆ

Ուսումնասիրված է 2-(4-ալկօքսիֆենիլ)իմիդազո[1,2- $\alpha]$ պիրիդինների նիտրացումը տարբեր կոնցենտրացիաների ազոտական ԹԹվի Հետ։ Ցույց է տրված, որ 3 կամ 4 ն ազոտական ԹԹվի Հետ եռացնելիս ստացվում են ազոտական ԹԹվի աղեր, իսկ 19.09 ն $({d_4}^{20}\ 1.46)$ կամ 16.14 ն $({d_4}^{20}\ 1.42)$ իստուԹյամբ ազոտական ԹԹվով նիտրացումը Հանդեցնում է 2-(4-այկօքսի-3-նիտրոֆենիլ)-3-նիտրոիմիդագո[1,2- $\alpha]$ պիրիդինների առաջացմանը:

NITRATION OF 2-(4-ALKOXYPHENYL)IMIDAZO[1,2-a]PYRIDINES

M. A. IRADYAN¹, N. S. IRADYAN¹ and H. A. PANOSYAN²

The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA

¹ A.L.Mnjoyan Institute of Fine Organic Chemistry 26, Azatutyan Str., Yerevan, 0014, Armenia E-mail nanraifok 54 @ mail. Ru

² Molecule Structure Research Center NAS RA 26, Azatutyan Str., Yerevan, 0014, Armenia

Nitration of 2-(4-alkoxyphenyl)imidazo[1,2-a]pyridines by nitric acid of different concentrations has been investigated. It has been shown that when boiling with 3 or 4 n nitric acid nitric salts are obtained and nitration with 19.09 n (d_4^{20} 1.46) or 16.14 n (d_4^{20} 1.42) nitric acid proceeds to 2-(4-alkoxy-3-nitrophenyl)-3-nitroimidazo[1,2-a]pyridines.

ЛИТЕРАТУРА

- [1] Ирадян М.А., Торосян А.Г., Мирзоян Р.Г., Ароян А.А. // ХГС, 1977, №10, с. 1384.
- [2] *Ирадян М.А., Торосян А.Г., Агабабян Р.В., Ароян А.А.* // Арм. хим. ж., 1977, т. 30, №9, с. 756.
- [3] Ирадян М.А., Торосян А.Г., Мирзоян Р.Г., Бадалянц И.П., Исаакян З.С., Манучарян Д.Ш., Даян М.Х., Саканян Г.С., Джагацпанян И.А., Акопян Н.Е., Тер-Захарян Ю.З., Ароян А.А. // Хим.-фарм. ж., 1977, т. 11, №10, с. 42.
- [4] *Ирадян М.А., Ирадян Н.С., Пароникян Р.В., Степанян Г.М. //* Хим. ж. Армении, 2008, т. 61, №2, с. 273.