ՎՎԺՄՎՈԵԹՎՈԶՔ ՄԱԵԹՎՈՑԺՐՍՎՈՐ ՎՄԱՑՍՍԵՍԻ ԱՊԱՅՐԱԿԻՄ ՆՎԵՌԻՇՈ

HAЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ APMEHUЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

Տալաստանի քիմիական հանդես

Химический журнал Армении 67, №4, 2014 Chemical Journal of Armenia

УДК 547.565.2

СИНТЕЗ И ИЗУЧЕНИЕ БИОЛОГИЧЕСКОЙ АКТИВНОСТИ N-АРОИЛ-β-АРИЛ-β-АЛАНИНОВ

Г. А. ГЕВОРГЯН $^{\rm a}$, Н. З. АКОПЯН $^{\rm a}$, О. А. ПАПОЯН $^{\rm a}$, Г. М. СТЕПАНЯН $^{\rm a}$, Р. В. ПАРОНИКЯН $^{\rm a}$ и Г. А. ПАНОСЯН $^{\rm 6}$

Научно-технологический центр органической и фармацевтической химии НАН Республики Армения

^а Институт тонкой органической химии им. А.Л. Мнджояна Армения, 0014, Ереван, пр. Азатутян, 26 E-mail: qyulqev@gmail.com

^б Центр исследования строения молекулы НАН Республики Армения Армения, 0014, Ереван, пр. Азатутян, 26

Поступило 7 V 2014

Взаимодействием β-арил-β-аланинов с ароилхлоридами в присутствии щелочи получили N-ароил-β-арил-β-аланины. Согласно биологическим испытаниям, синтезированные соединения обладают умеренной антибактериальной активностью.

Библ. ссылок 4.

Повышенный интерес к аминокислотам и их синтетическим производным в аспекте синтеза и разработки новых фармацевтических препаратов связан с тем, что введение фрагмента аминокислоты в молекулу соединения может привести к появлению новых полезных свойств и созданию определенных преимуществ по сравнению с исходным веществом [1, 2].

Учитывая, что амиды аминокислот, применяющиеся в медицинской практике, обладают широким спектром биологической активности (вальсартан — N-[n-(o-1H-тетразол-5-илфенил)бензил]-N-валерил-L-валин, и каптоприл — 1-[(2S)-3-меркапто-2-метилпропионил]-L-пролин, — антигипертензивного действия, N-ацетил-L-цистеин — муколитического действия и т. д.), нами получен новый ряд N-ароил- β -арил- β -аланинов [3].

Взаимодействием водного раствора β-арил-β-аланинов (1) в присутствии NaOH с ароилхлоридами (2), растворенными в сухом ацетоне, и дальнейшим подкислением соляной кислотой синтезированы N-ароил-β-арил-β-аланины (3-17) по схеме:

 $R=2\text{-}ClC_6H_4$, $R'=4\text{-}FC_6H_4$ (3); $R'=4\text{-}CH_3OC_6H_4$ (4); R'=2-фурил (5); $R=2,4\text{-}Cl_2C_6H_3$, $R'=4\text{-}FC_6H_4$ (6); $R'=4\text{-}CH_3OC_6H_4$ (7), R'=2-фурил (8); $R=(C_6H_5)_2CH$, $R'=4\text{-}FC_6H_4$ (9); $R'=4\text{-}CH_3OC_6H_4$ (10); R'=2-фурил (11); $R=4\text{-}ClC_6H_4CH_2$, $R'=4\text{-}FC_6H_4$ (12); $R'=4\text{-}CH_3OC_6H_4$ (13); R'=2-фурил (14); R=2-фурил, $R'=4\text{-}FC_6H_4$ (15); $R'=4\text{-}CH_3OC_6H_4$ (16); R'=2-фурил (17).

Состав и строение синтезированных соединений подтверждены методами ТСХ, данными элементного анализа, ЯМР 1 Н и ИК-спектроскопии.

Противомикробную активность соединений **3-17** изучали методом "диффузии в агаре" при бактериальной нагрузке 20 млн микробных тел на 1мл среды [4] в отношении грамположительных стафилококков (Staphylococcus aureus 209 p, 1) и грамотрицательных палочек (Sh. dysenterial Flexneri 6858, E coli 0-55). Соединения испытывали в разведении 1:20 с диметилсульфоксидом.

Учет результатов производили по величине диаметра зон отсутствия роста микроорганизмов на месте нанесения соединений (d, мм) после суточного выращивания в термостате при 37°С. В качестве положительного контроля использовали известный лекарственный препарат фуразолидон [3].

Исследования показали, что испытуемые вещества обладают разной степенью антибактериальной активности. Так, соединения **5**, **6**, **8**, **15-17** проявляют умеренную антибактериальную активность в отношении всех использованных штаммов, подавляя рост микробов в зоне диаметром 13-18 *мм*. Среди них несколько активнее оказались вещества, содержащие в структуре фурановое кольцо (d = 14-20 *мм*). Остальные соединения обладают слабой антибактериальной активностью только в от-

ношении грамотрицательных штаммов (d=11-12~mm), однако все они по активности значительно уступают контрольному препарату фуразолидону (d=24-25~mm).

Экспериментальная часть

ИК-спектры сняты на спектрометре "Nicolet Avatar 330 FT-IR", спектры ЯМР 1 Н — на "Мегсигу VX-300" с резонансной частотой 300.08 $M\Gamma u$ в растворе ДМСО- d_6 ; внутренний стандарт — ТМС. Температуры плавления полученных веществ определялась на приборе "Boetius". Контроль индивидуальности веществ проводили с помощью ТСХ на пластинках "Silufol-254" в системе хлороформ — этанол (1:1), проявитель — 0.5% спиртовый раствор нингидрина.

N-Ароил-β-арил-β-аланины (3-17). При интенсивном перемешивании к 20~ $\mathit{мл}~$ водного раствора 0.0026~ $\mathit{моля}~$ β -арил- β -аланинов $\mathbf{1}~$ и 0.2~ $\mathit{c}~$ (0.0051~ $\mathit{моля})$ гидроксида натрия медленно прикапывают раствор 0.0026~ $\mathit{моля}~$ хлорангидрида соответствующей кислоты $\mathbf{2}~$ в 5~ $\mathit{мл}~$ сухого ацетона при 0° С и продолжают интенсивное перемешивание реакционной смеси в течение 2~ $\mathit{ч}~$ при той же температуре. Содержимое оставляют на ночь при комнатной температуре. Далее раствор подкисляют водным раствором HCl до слабокислой реакции и ставят в холодильник на 2~ $\mathit{ч}.$ Выпавший осадок отфильтровывают, многократно промывают водой до нейтральной реакции и перекристаллизовывают из смеси этанол-вода (1:1).

N-(2-Хлорбензоил)-β-(4-фторфенил)-β-аланин (3). Выход 56%, т.па. 224-227°С, R_f 0.65. ИК-спектр, v, $c M^{-1}$: 3264 (NH), 1707 (COOH), 1645, 1510 (CONH). Спектр ЯМР 1 H, δ , м.д., Γu : 2.68 (дд, 1H, CH_2 , $^2J = 15.5$, $^3J = 6.4$); 2.81 (дд, 1H, CH_2 , $^2J = 15.5$, $^3J = 8.2$); 5.41 (ддд, 1H, CH, $^3J = 8.4$, $^3J = 8.2$, $^3J = 6.4$); 7.03 (м, 2H, H-(3,5) C_6H_4F); 7.29-7.48 (м, 6H, C_6H_4C 1 и H-(2,6) C_6H_4F); 8.69 (д, 1H, NH, $^3J = 8.4$); 11.52 (ш, 1H, COOH). Найдено, %: C 59.79; H 4.03; N 4.37. $C_{16}H_{13}ClFNO_3$. Вычислено, %: C 59.73; H 4.07; N 4.35.

N-(2-Хлорбензоил)-β-(4-метоксифенил)-β-аланин (4). Выход 50%, т.па. 173-175°С, R_f 0.67. ИК-спектр, v, $c M^{-1}$: 3325 (NH), 1705 (COOH), 1640, 1525 (CONH). Спектр ЯМР 1 H, δ , м.д., ΓU : 2.65 (дд, 1H, CH_2 , $^2 J = 15.4$, $^3 J = 6.5$); 2.79 (дд, 1H, CH_2 , $^2 J = 15.4$, $^3 J = 8.2$); 3.78 (с, 3H, OCH₃); 5.76 (ддд, 1H, CH, $^3 J = 8.4$, $^3 J = 8.2$, $^3 J = 6.5$); 6,83 (м, 2H, H-(3,5) $C_6 H_4 O C H_3$); 7.28-7.40 (м, 6H, $C_6 H_4 C I$ и H-(2,6) $C_6 H_4 O C H_3$); 8.60 (д, 1H, NH, $^3 J = 8.4$); 11.88 (ш, 1H, COOH). Найдено, %: C 61.23; H 4.80; N 4.18. $C_{17} H_{16} C I NO_4$. Вычислено, %: C 61.18; H 4.83; N 4.20.

N-(2-Хлорбензоил)-β-фуран-2-ил-β-аланин (5). Выход 49%, т.пл. 183-184°С, R_f 0.68. ИК-спектр, ν , $c M^{-1}$: 3255 (NH),1693 (COOH), 1640, 1540 (CONH). Спектр ЯМР 1 Н, δ , м.д., Γu : 2.79 (дд, 1H, CH_2 , 2J = 15.7, 3J =

7.5); 2.82 (дд, 1H, CH₂, $^2J=15.7$, $^3J=6.7$); 5.50 (ддд, 1H, CH, $^3J=8.5$, $^3J=7.5$, $^3J=6.7$); 6.27 (дд, 1H, H(3) фур., $^3J=3.3$, $^4J=0.8$); 6.32 (дд, 1H, H(4) фур., $^3J=3.3$, $^3J=1.8$); 7.29-7.43 (м, 4H, C₆H₄); 7.42 (дд, 1H, H(5) фур., $^3J=1.8$, $^4J=0.8$); 8.57 (д, 1H, NH, $^3J=8.5$); 11.80 (ш, 1H, COOH). Найдено, %: C 57.20; H 4.16; N 4.73. C₁₄H₁₂ClNO₄. Вычислено, %: C 57.25; H 4.12; N 4.77.

N-(2,4-Дихлорбензоил)-β-(4-фторфенил)-β-аланин (6). Выход 46%, т.па. 145-146°C, R_f 0.58. ИК-спектр, v, cw^{-1} : 3269 (NH), 1705 (COOH), 1630, 1510 (CONH). Найдено, %: С 53.89; Н 3.45; N 3.89. $C_{16}H_{12}Cl_2FNO_3$. Вычислено, %: С 53.95; Н 3.40; N 3.93.

N-(2,4-Дихлорбензоил)-β-(4-метоксифенил)-β-аланин (7). Выход 40%, т.пл. 200-202°С, R_f 0.52. ИК-спектр, v, $c M^{-1}$: 3309 (NH), 1702 (COOH), 1638, 1515 (CONH.). Спектр ЯМР 1 Н, δ , м.д., ΓU : 2.66 (дд., 1H, CH_2 , $^2 J = 15.5$, $^3 J = 6.5$); 2.78 (дд., 1H, CH_2 , $^2 J = 15.5$, $^3 J = 8.3$); 3.77 (с, 3H, OCH₃); 5.34 (ддд., 1H, CH, $^3 J = 8.4$, $^3 J = 8.3$, $^3 J = 6.5$); 6.82 (м, 2H, H-(3,5) $C_6 H_4$); 7.31 (м, 2H, H-(2,6) $C_6 H_4$); 7.33 (дд., 1H, H-(5) $C_6 H_3$, $^3 J = 8.2$, $^4 J = 1.8$); 7.38 (д., 1H, H-(6) $C_6 H_3$, $^3 J = 8.2$); 7.42 (д., 1H, H-(3) $C_6 H_3$, $^4 J = 1.8$); 8.65 (д., 1H, NH, $^3 J = 8.4$); 11.99 (ш., 1H, COOH). Найдено, %: C 55.50; H 4.17; N 3.78. $C_{17} H_{15} Cl_2 NO_4$. Вычислено, %: C 55.45; H 4.11; N 3.80.

N-(2,4-Дихлорбензоил)-β-фуран-2-ил-β-аланин (8). Выход 63%, т.пл. 133-135°С, R_f 0.55. ИК-спектр, v, cm^{-1} : 3300 (NH), 1700 (COOH), 1645, 1520 (CONH). Найдено, %: С 51.29; Н 3.33; N 4.25. $C_{14}H_{11}Cl_2NO_4$. Вычислено, %: С 51.24; Н 3.38; N 4.27.

N-Дифенилацетил-β-(4-фторфенил)-β-алании (9). Выход 47%, т.пл. 196-197°С, R_f 0.57. ИК-спектр, v, $c M^{-1}$: 3288 (NH), 1703 (COOH), 1645, 1520 (CONH). Спектр ЯМР 1 H, δ , м.д., Γy : 2.61 (дд, 1H, CH_2 , $^2J = 15.6$, $^3J = 6.5$); 2.71 (дд, 1H, CH_2 , $^2J = 15.6$, $^3J = 8.0$); 4.94 (с, 1H, CH_2); 5.25 (ддд, 1H, CH_2), $^3J = 8.1$, $^3J = 8.0$, $^3J = 6.5$); 6.96 (м, 2H, H-(3,5) C_6H_4); 7.11-7.27 (м, 10H, C_6H_5); 7.29 (м, 2H, H-(2,6) C_6H_4); 8.56 (д, 1H, NH, $^3J = 8.1$); 11.85 (ш, 1H, COOH). Найдено, %: C 73.27; H 5.29; N 3.73. $C_{23}H_{20}FNO_3$. Вычислено, %: C 73.20; H 5.34; N 3.71.

N-Дифенилацетил-β-(4-метоксифенил)-β-аланин (10). Выход 40%, т.пл. 187-188°С, R_f 0.54. ИК-спектр, v, $c M^{-1}$: 3317 (NH), 1697 (COOH), 1650, 1525 (CONH). Спектр ЯМР 1 H, δ , м.д., Γy : 2.60 (дд., 1H, CH_2 , 2J = 15.5, 3J = 6.7); 2.70 (дд., 1H, CH_2 , 2J = 15.5, 3J = 7.9); 3.75 (с, 3H, OCH₃); 4.93 (с, 1H, CH_2); 5.21 (ддд., 1H, CH_2), 3J = 8.2, 3J = 7.9, 3J = 6.7); 6.77 (м, 2H, H-(3,5) C_6H_4); 7.11-7.29 (м, 12H, H-(2,6) C_6H_4 и C_6H_5); 8.46 (д, 1H, NH, 3J = 8.2); 11.80 (ш, 1H, COOH). Найдено, %: С 74.00; H 5.90; N 3.63. $C_{24}H_{23}NO_4$. Вычислено, %: С 74.02; H 5.95; N 3.60.

N-Дифенилацетил-β-фуран-2-ил-β-аланин (11). Выход 38%, т.пл. 177-179°С, R_f 0.58. ИК-спектр, v, $c w^{-I}$: 3250 (NH), 1717 (COOH), 1654, 1559 (CONH). Спектр ЯМР 1 Н, δ , м.д., $\Gamma \psi$: 2.69 (дд, 1H, CH_2 , 2J = 15.7, 3J = 7.3); 2.74 (дд, 1H, CH_2 , 2J = 15.7, 3J = 6.8); 4.95 (с, 1H, CHPh₂); 5.36 (дддд,

1H, <u>CH</u>CH₂, ${}^{3}J$ = 8.3, ${}^{3}J$ = 7.3, ${}^{3}J$ = 6.8, ${}^{4}J$ = 0.8); 6.09 (дад, 1H, H(3) фур., ${}^{3}J$ = 3.2, ${}^{4}J$ = 0.8); 6.27 (да, 1H, H(4) фур., ${}^{3}J$ = 3.2, ${}^{3}J$ = 1.8); 7.14-7.29 (м, 10H, C₆H₅); 7.38 (да, 1H, H(5) фур., ${}^{3}J$ = 1.8, ${}^{4}J$ = 0.8); 8.47 (д, 1H, NH, ${}^{3}J$ = 8.3); 11.88 (ш, 1H, COOH). Найдено, %: С 72.14; H 5.53; N 4.04. С₂₁H₁₉NO₄. Вычислено, %: С 72.19; H 5.48; N 4.01.

N-[2-(4-Хлорфенил)ацетил]-β-(4-фторфенил)-β-аланин (12). Выход 50%, т.пл. 202-204°С, R_f 0.70. ИК-спектр, v, $c M^{-1}$: 3270 (NH), 1701 (COOH), 1655, 1535 (CONH). Спектр ЯМР 1 H, δ , м.д., ΓU : 2.59 (дд., 1H, $CH\underline{CH}_2$, $^2J=15.5$, $^3J=6.4$); 2.69 (дд., 1H, $CH\underline{CH}_2$, $^2J=15.5$, $^3J=8.2$); 3.38 (д., 1H, $CH_2C_6H_4$, $^2J=14.1$); 3.42 (д., 1H, $CH_2C_6H_4$, $^2J=14.1$); 5.17 (ддд., 1H, $CH_3C_6H_4$); 7.31 (м., 2H, H-(2,6) C_6H_4F); 8.39 (д., 1H, NH, $^3J=8.2$); 11.65 (ш., 1H, COOH). Най-дено, %: C 60.77; H 4.53; N 4.13. $C_{17}H_{15}CIFNO_3$. Вычислено, %: C 60.81; H 4.50; N 4.17.

N-[2-(4-Хлорфенил)ацетил]-β-(4-метоксифенил)-β-аланин (13). Выход 56%, т.па. 166-167°С, R_f 0.65. ИК-спектр, v, $c M^{-1}$: 3300 (NH), 1702 (COOH), 1640, 1510 (CONH). Спектр ЯМР 1 Н, δ , м.д., $\Gamma \psi$: 2.58 (дд, 1H, $CHCH_2$, $^2J=15.3$, $^3J=6.6$); 2.68 (дд, 1H, $CHCH_2$, $^2J=15.3$, $^3J=8.0$); 3.38 (д, 1H, $CH_2C_6H_4$, $^2J=14.2$); 3.40 (д, 1H, $CH_2C_6H_4$, $^2J=14.2$); 3.76 (с, 3H, OCH₃); 5.14 (ддд, 1H, CH, $^3J=8.3$, $^3J=8.0$, $^3J=6.6$); 6.79 (м, 2H, H-(3,5) $C_6H_4OCH_3$); 7.21 (м, 2H, H-(2,6) $C_6H_4OCH_3$); 7.23 (с, 4H, C_6H_4Cl); 8.29 (д, 1H, NH, $^3J=8.3$); 11.85 (ш, 1H, COOH). Найдено, %: C 62.20; H 5.20; N 4.05. $C_{18}H_{18}ClNO_4$. Вычислено, %: C 62.16; H 5.22; N 4.03.

N-[2-(4-Хлорфенил)ацетил]-β-фуран-2-ил-β-аланин (14). Выход 49%, т.пл. 156-158°C, R_f 0.68. ИК-спектр, v, $c M^{-1}$: 3270 (NH), 1698 (COOH), 1649, 1540 (CONH). Спектр ЯМР 1 Н, δ , м.д., $\Gamma \psi$: 2.67 (дд., 1H, $CH\underline{CH_2}$, 2J =15.6, 3J =7.4); 2.71 (дд., 1H, $CH\underline{CH_2}$, 2J =15.6, 3J =6.8); 3.41 (д., 1H, $\underline{CH_2}C_6H_4Cl$, 2J =14.2); 3.42 (д., 1H, $\underline{CH_2}C_6H_4Cl$, 2J =14.2); 5.28 (ддд., 1H, CH_1 , 3J =8.5, 3J =7.4, 3J =6.8); 6.14 (ддд., 1H, H(3) фур., 3J =3.3, 4J =0.9, 4J =0.9); 6.29 (дд., 1H, H(4) фур., 3J =3.3, 3J =1.8); 7.21-7.28 (м., 4H, C_6H_4); 7.39 (дд., 1H, H(5) фур., 3J =1.8, 4J =0.9); 8.30 (д., 1H, NH, 3J =8.5); 11.95 (ш., 1H, COOH). Найдено, %: C 58.51; H 4.62; N 4.50. $C_{15}H_{14}CINO_4$. Вычислено, %: C 58.55; H 4.59; N 4.55.

N-(Фуран-2-карбонил)-β-(4-фторфенил)-β-аланин (15). Выход 54%, т.пл. 173-174°С, R_f 0.68. ИК-спектр, v, c_M^{-1} : 3270 (NH), 1704 (COOH), 1640, 1515 (CONH). Спектр ЯМР 1 Н, δ , м.д., Γy : 2.71 (дд., 1H, CH_2 , 2J = 15.8, 3J = 6.1); 2.91 (дд., 1H, CH_2 , 2J = 15.8, 3J = 8.2); 5.39 (ддд., 1H, CH_3 , 3J = 8.5, 3J = 8.2, 3J = 6.1); 6.50 (дд., 1H, CH_3 , 3J = 3.4, 3J = 1.8); 7.00 (м., 2H, H-(3,5) C_6H_4); 7.02 (дд., 1H, CH_3 , 3J = 3.4, 4J = 0.9); 7.43 (м., 2H, H-(2,6) C_6H_4); 7.62 (дд., 1H, CH_3 , 3J = 1.8, 4J = 0.9); 8.54 (д., 1H, CH_3 , 3J = 8.5); 11.75 (ш., 1H, CH_3 , 3J = 1.8, 4J = 0.9); 8.54 (д., 1H, CH_3 , 3J = 8.5); 11.75 (ш., 1H, CH_3 , 3J = 1.8, 4J = 0.9); 8.54 (д., 1H, CH_3 , 3J = 8.5); 11.75 (ш., 1H, CH_3 , CH_3 , CH_3 , CH_4 , CH_3 , CH_4

N-(Фуран-2-карбонил)-β-(4-метоксифенил)-β-аланин (16). Выход 60%, т.пл. 183-184°С, R_f 0.70. ИК-спектр, v, $c w^{-1}$: 3258 (NH), 1702 (COOH), 1634, 1535 (CONH). Спектр ЯМР 1 H, δ , м.д., Γu : 2.70 (дд., 1H, CH_2 , $^2 J = 15.6$, $^3 J = 6.1$); 2.89 (дд., 1H, CH_2 , $^2 J = 15.6$, $^3 J = 8.1$); 3.75 (с, 3H, OCH₃); 5.36 (ддд., 1H, CH_3 , $^3 J = 8.4$, $^3 J = 8.1$, $^3 J = 6.1$); 6.49 (дд., 1H, H(4) фур., $^3 J = 3.4$, $^3 J = 1.7$); 6.80 (м., 2H, H-(3,5) C_6H_4); 7.01 (дд., 1H, H(3) фур., $^3 J = 3.4$, $^4 J = 0.9$); 7.31 (м., 2H, H-(2,6) C_6H_4); 7.61 (дд., 1H, H(5) фур., $^3 J = 1.7$, $^4 J = 0.9$); 8.40 (д., 1H, NH, $^3 J = 8.4$); 11.80 (ш., 1H, COOH). Найдено, %: C 62.33; H 5.17; N 4.86. $C_{15}H_{15}NO_5$. Вычислено, %: C 62.28; H 5.23; N 4.84.

N-(Фуран-2-карбонил)-β-фуран-2-ил-β-аланин (17). Выход 53%, т.па. 170-172°C, R_f 0.67. ИК-спектр, v, $c M^{-1}$: 3278 (NH), 1701 (COOH), 1640, 1510 (CONH). Спектр ЯМР 1 H, δ , м.д., Γy : 2.83 (дд., 1H, CH_2 , 2J = 16.0, 3J = 6.5); 2.87 (дд., 1H, CH_2 , 2J = 16.0, 3J = 7.1); 5.50 (ддд., 1H, CH_3 , 3J = 8.8, 3J = 7.1, 3J = 6.5); 6.22 (д., 1H, H(3) фур., 3J = 3.3); 6.30 (дд., 1H, H(4) фур., 3J = 3.3, 3J = 1.9); 6.50 (дд., 1H, H(4) фур., 3J = 3.5, 3J = 1.8); 7.07 (д., 1H, H(3) фур., 3J = 3.5); 7.40 (д., 1H, H(5) фур., 3J = 1.9); 7.62 (д., 1H, H(5) фур., 3J = 1.8); 8.33 (д., 1H, NH, 3J = 8.8); 11.15 (ш., 1H, COOH). Найдено, %: C 57.87; H 4.41; N 5.60. $C_{12}H_{11}NO_5$. Вычислено, %: C 57.83; H 4.45; N 5.62.

N-ԱՐՈՒԼ-β-ԱՐՒԼ-β-ԱԼԱՆԻՆՆԵՐԻ ՍԻՆԹԵԶԸ ԵՎ ԿԵՆՍԱՔԱՆԱԿԱՆ ԱԿՑԻՎՈՒԹՅԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ

Գ. Ա. ԳԵՎՈՐԳՅԱՆ, Ն. Ձ. ՏԱԿՈԲՅԱՆ, Օ. Ա. ՊԱՊՈՅԱՆ, Տ. Մ. ՍՏԵՓԱՆՅԱՆ, Ռ. Վ. ՊԱՐՈՆԻԿՅԱՆ և Տ. Ա. ՓԱՆՈՍՅԱՆ

Տարբեր կառուցվածքի կարբոնախխուների քլորանՀիդրիդների փոխազդեցուխյամբ β-արիլ-β-ալանինների Հետ ջրային լուծույխում նատրիումի Հիդրոքսիդի առկայուխյամբ և առաջացած նատրիումական աղի Հետագա խխվեցումով աղախխվով ստացվել են N-արոիլ-β-ալանինները։ Ուսումնասիրվել է սինխեղված միացուխյունների Հակա-մանրէական ակտիվուխյունը և ցույց է տրվել, որ վերջիններս օժտված են միջին ակտիվուխյամբ։

SYNTHESIS AND STUDY OF BIOLOGICAL ACTIVITY OF N-AROYL-β-ARYL-β-ALANINES

G.A. GEVORGYAN^a, N.Z. HAKOBYAN^a, O.A. PAPOYAN^a, H. M. STEPANYAN^a, R.V. PARONIKYAN^a and H.A. PANOSYAN^b

The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA

^aA. L. Mnjoyan Institute of Fine Organic Chemistry 26, Azatutyan Str., Yerevan, 0014, Armenia

E-mail: gyulgev@gmail.com

^b Molecule Structure Research Center NAS RA 26, Azatutyan Str., Yerevan, 0014, Armenia

A series of N-aroyl- β -aryl- β -alanines has been synthesized. The synthesis is realized by interaction of β -aryl- β -alanines with a number of carboxylic acid chlorides in alkaline solution and further acidification by hydrochloric acid. The structure of N-aroyl- β -aryl- β -alanines is confirmed by IR and NMR 1 H spectroscopic methods. The antibacterial activity of the synthesized compounds has been studied and it is shown that they have moderate activity. Among them the compounds containing furan ring in their structure turned out to be more active.

ЛИТЕРАТУРА

- [1] Агабабян А.Г., Геворгян Г.А., Тумаджян А.Е., Акопян Р.А., Аристакесян С.А. // Хим.-фарм. ж., 2009, т. 43, №1, с. 14.
- [2] Малакян М.Г., Вардеванян Л.А., Егиазарян Д.Э., Баджинян С.А., Агабабян А.Г., Геворгян Г.А. // Хим.-фарм.ж., 2010, т. 44, №8, с. 19.
- [3] *Машковский М.Д.* Лекарственные средства. М., Новая волна, 2007, сс. 363, 437, 444, 854.
- [4] Егоров Н.С. Основы учения об антибиотиках. М., Высшая школа, 1979, с.171.