ՎԴԺՄԺՎՈԵՅՎՈՁՎՔ ՄԱԵՅՎՈՁԺՐՍԴՄԱՐ ՎՄԱՑՍԱՑԱՐ ԱՎԱԳՐԱԿՄ ՎԳԵԱՔԸՄ

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ APMEHUЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

Տայասփանի քիմիական հանդես

Химический журнал Армении 67, №2-3, 2014 Chemical Journal of Armenia

УДК 547.747

СИНТЕЗ 2-ФЕНИЛПИРРОЛИДИНОВ И КОНДЕНСИРОВАННЫХ НА ИХ ОСНОВЕ ГЕТЕРОЦИКЛОВ

С. П. ГАСПАРЯН, А. О. МАРТИРОСЯН и Г. А. ПАНОСЯН

Научно-технологический центр органической и фармацевтической химии НАН Республики Армения Институт тонкой органической химии им. А.Л.Мнджояна Армения, 0014, Ереван, пр. Азатутян, 26 E-mail: q sahak@yahoo.com

Поступило 7 II 2014

Конденсацией 5-хлоризатового ангидрида с 2-фенилпирролидин-2-карбоновой кислотой, разработанному синтезированной ПО ранее методу, получен 7-хлор-11а-фенил-2,3,5,10,11,11а-гексагидро-1*H*-бензо[е]пирроло[1,2-а][1,4]диазепин-5,11-дион. Ацилированием этил-2-(3-хлорпропиламино)-2-фенилацетата 2-(1,3-диоксо-2,3-дигидро-1*H*-2-изоиндолил)ацетилхлоридом и 3-(1,3-диоксо-2,3-дигидро-1*H*-2-изоиндолил)пропионилхлоридом с последующей внутримолекулярной циклизацией в условиях межфазного катализа синтезированы этил-1-[2-(1,3-диоксо-2,3-дигидро-1*H*-2-изоиндолил)ацетил]- и 1-[3-(1,3-диоксо-2,3-дигидро-1*H*-2изоиндолил)пропионил]-2-фенил-2-пирролидинкарбоксилаты. Обработкой последних гидразингидратом получены 8а-фенилгексагидропирроло[1,2-а]пиразин-1,4-дион и 9а-фенилпергидропирроло[1,2-а][1,4]диазепин-1,5-дион, соответственно.

Библ. ссылок 12.

Интерес к психоактивным соединениям непрерывно растет, что вызывает необходимость создания новых эффективных медикаментов против различных нарушений деятельности центральной нервной системы. Наиболее употребимыми в медицинской практике препаратами являются транквилизаторы, среди которых производные 1,4-бенздиазепина и родственные им системы занимают ведущее положение. Спектр их фармакологического действия характеризуется многообразием терапевтических эффектов, что позволяет применять эти препараты в различных областях медицины.

В литературе известны различные методы синтеза производных 1,4-бенздиазепина, которые различаются стратегией синтеза. В число этих

методов входят, в частности, реакции изатового ангидрида и его замещенных аналогов с пролином, эфирами L-пролина и глицина [1-5], восстановительная циклизация N-(о-нитробензоил)-L-2-пирролидинальдегида и циклизация амино- или тиоацеталей [6-9].

В продолжение исследований в этом направлении нами осуществлен синтез 7-хлор-11а-фенил-2,3,5,10,11,11а-гексагидро-1*H*-бензо[е]пир-роло[1,2-*a*][1,4]диазепин-5,11-диона (2), 8а-фенилгексагидропирроло[1,2-*a*]пиразин-1,4-диона (5) и 9а-фенилпергидропирроло[1,2-*a*][1,4]диазепин-1,5-диона (7).

Ранее нами был предложен метод синтеза 2-фенилпирролидин-2-карбоновой кислоты (1) на основе фенилглицина [10]. В настоящей работе конденсацией 1 с 5-хлоризатовым ангидридом в ДМФА получен 7-хлор-11а-фенил-2,3,5,10,11,11а-гексагидро-1H-бензо[е]пирроло[1,2-a][1,4]диазепин-5,11-дион (2) (схема 1).

Для синтеза двух других производных пирролидина, в частности, 8а-фенилгексагидропирроло[1,2-*a*]пиразин-1,4-диона (5) и 9а-фенилпергидропирроло[1,2-*a*][1,4]диазепин-1,5-диона (7), также применен метод [10], но с использованием иных ацилирующих агентов.

Так, ацилирование этил-2-(3-хлорпропиламино)-2-фенилацетата (3) 2-(1,3-диоксо-2,3-дигидро-1*H*-2-изоиндолил)ацетилхлоридом и 3-(1,3-диоксо-2,3-дигидро-1*H*-2-изоиндолил)пропионилхлоридом в присутствии карбоната калия и последующая внутримолекулярная циклизация в присутствии хлорида триэтилбензиламмония в качестве межфазного катализатора привели к этил-1-[2-(1,3-диоксо-2,3-дигидро-1*H*-2-изоиндолил)ацетил]- (4) и 1-[3-(1,3-диоксо-2,3-дигидро-1*H*-2-изоиндолил)пропионил]-2-фенил-2-пирролидинкарбоксилатам (6), соответственно (схема 2).

Дальнейшая обработка соединений **4** и **6** гидразингидратом привела к целевым продуктам — 8а-фенилгексагидропирроло[1,2-a]пиразин-1,4-диону (**5**) и 9а-фенилпергидропирроло[1,2-a][1,4]диазепин-1,5-диону (**7**).

Таким образом, в результате проведенных исследований нами синтезированы новые конденсированные гетероциклы 2, 5 и 7 с хорошими выходами. Биологические данные будут опубликованы отдельно.

Экспериментальная часть

ИК-спектры зарегистрированы на спектрометре "Avatar" в вазелиновом масле. Спектры ЯМР 1 Н, 13 С сняты на приборе "Varian Mercury-300VX" при 303К с частотой 300.078 и 75.46 MГ $^{\prime}$ $_{\prime}$, соответственно. При отнесении сигналов использованы методы двойного резонанса, DЕРТ и НМQС. Химические сдвиги приведены в м.д. относительно внутреннего ТМС для растворов ДМСО- d_{6} /СС l_{4} 1/3. Ход реакций и чистоту веществ контролировали с помощью тонкослойной хроматографии на пластинках "Silufol UV-254", в системах элюентов ацетон—нонан, 2:1 (а), ацетон—петролейный эфир, 1:2 (б), ацетон—петролейный эфир, 1:1 (в) и ацетон—нонан, 1:1 (г); проявление — парами йода.

Синтез 7-хлор-11а-фенил-2,3,5,10,11,11а-гексагидро-1Н-бензо[е]пирроло [1,2-а][1,4]диазепин-5,11-диона (2). Смесь 1.91 ε (10 ммолей) 2-фенилпирролидин-2-карбоновой кислоты (1) [10] и 1.97 ε (10 ммолей) 5-хлоризатового ангидрида в 5 мл ДМФА кипятят с обратным холодильником 2 ι . По охлаждении реакционную смесь разбавляют водой, образовавшийся осадок фильтруют, промывают водой и сушат. Получают 2.2 ε (68%) соединения 2, т.пл. 227°С (с разл.), R_f 0.45 (а). ИК-спектр, v, cm^{-l} : 1644 (C=O),

1715 (C=O), 3300 (NH). Спектр ЯМР 1 Н, δ , м.д., \varGamma ψ : 1.82-2.00 (м, 3H) и 3.21-3.31 (м, 1H, CH $_{2}$ CH $_{2}$); 3.77-3.88 (м, 1H) и 4.01-4.09 (м, 1H, NCH $_{2}$); 6.81 (д, 1H, C $_{6}$ H $_{3}$, J=8.7); 6.92-6.96 (м, 2H, C $_{6}$ H $_{5}$); 6.99-7.12 (м, 4H, C $_{6}$ H $_{5}$ и С $_{6}$ H $_{3}$); 7.46 (д, 1H, C $_{6}$ H $_{3}$, J=2.5); 10.64 (с, 1H, NH). Найдено, %: С 66.45; Н 4.35; N 8.81; Cl 10.69. С $_{18}$ H $_{15}$ ClN $_{2}$ O $_{2}$. Вычислено, %: С 66.16; Н 4.63; N 8.57; Cl 10.85.

Синтез этил-1-[2-(1,3-диоксо-2,3-дигидро-1Н-2-изоиндолил)ацетил]-2-фенил-2-пирролидинкарбоксилата (4). К смеси 2.92 г (10 ммолей) гидрохлорида этил-2-(3-хлорпропиламино)-2-фенилацетата (3) в 30 мл 1,2-дихлорэтана и $1.4~\varepsilon$ (10 ммолей) сухого K_2CO_3 при $10-15^{\circ}C$ постепенно прибавляют 2.2 ε (10 ммолей) 2-(1,3-диоксо-2,3-дигидро-1H-2-изоиндолил)ацетилхлорида [11]. Реакционную смесь перемешивают при комнатной температуре 30 мин, а затем 2 ч при 40-45°С, после чего охлаждают, добавляют 20 мл 1,2-дихлорэтана, промывают несколько раз водой и сушат CaCl₂. Растворитель отгоняют, к остатку добавляют 1.4 г (10 ммолей) сухого K₂CO₃, 0.1 г (5 ммолей) хлористого триэтилбензиламмония, 20 мл ацетонитрила, и реакционную смесь перемешивают при 45-50°C в течение 4 ч. Реакционную массу фильтруют, фильтрат упаривают при пониженном давлении, остаток растворяют в хлороформе, промывают водой и сушат CaCl₂. Растворитель отгоняют, остаток растирают в эфире и образовавшийся осадок фильтруют. Получают 3.2 ε (80%) соединения **4**, т.пл. 128-129°С (с разл.), R_f 0.36 (б). ИК-спектр, v, $c M^{-1}$: 1671 (C=O), 1723 (C=O), 1774 (C=O). Спектр ЯМР 1 Н, δ , м.д., Γy : 1.21 (т, 3H, CH₃, J=7.1); 1.70-1.86 (м, 1H) и 2.05-2.16 (м, 1H, NCH₂CH₂CH₂); 2.27 (ддд, 1H, J=12.2, J=12.26.2, J = 2.4) и 2.54 (ДДД, 1H, NCH₂CH₂CH₂, J = 12.2, J = 11.2, J = 6.5); 3.85-4.14 (м, 2H, NC \underline{H}_2 CH $_2$ CH $_2$); 4.04 (к, 2H, OCH $_2$, J=7.1); 4.53 (д, 1H, J= 16.8) и 4.69 (д. 1H, NCH₂, J = 16.8); 7.20-7.33 (м. 5H, C₆H₅); 7.80-7.89 (м, 4H, C₆H₄). Найдено, %: С 67.59; Н 5.35; N 6.70. С₂₃H₂₂N₂O₅. Вычислено, %: С 67.97; Н 5.46; N 6.89.

Синтез 8а-фенилгексгидропирроло[1,2-а]пиразин-1,4-диона (5). К 4 ε (10 $\mathit{ммолей}$) соединения 4 в 30 $\mathit{мл}$ этанола прибавляют 1 ε гидразингидрата и кипятят на водяной бане 2 ι . Этанол удаляют на роторном испарителе, остаток растворяют в хлороформе, промывают водой и сушат CaCl₂. После удаления растворителя остаток растирают в эфире и образовавшийся осадок фильтруют. Получают 1.5 ε (65%) соединения 5, т.пл. 197-198°C (EtOH), R_f 0.40 (в). ИК-спектр, \mathbf{v} , $\mathbf{c} \mathbf{m}^{-1}$: 1669 (C=O), 3180 (NH). Спектр ЯМР 1 Н, δ , м.д., $\Gamma \mathbf{u}$: 1.54-1.70 (м, 1H) и 1.84-1.95 (м, 1H, NCH₂CH₂CH₂); 2.25 (ддд, 1H, J = 12.7, J = 6.6, J = 2.3) и 2.51 (ддд, 1H, NCH₂CH₂CH₂, J = 12.7, J = 11.5, J = 7.3); 3.52 (уш.д, 1H, J = 15.6) и 3.55 (1H уш.дд, NHCH₂, J = 15.6, J = 2.5); 3.60-3.72 (м, 2H, NCH₂); 7.25-7.39 (м, 5H, H Ar); 8.02 (уш.д, 1H, NH, J = 2.5). Спектр ЯМР 13 С, δ , м.д.: 19.8 (CH₂); 37.9 (CH₂); 45.0 (NCH₂); 45.2 (HNCH₂); 69.6 (<u>C</u>-Ph); 124.3 (2CH); 127.3 (CH); 128.2 (2CH); 139.1 (C_{ipso}); 164.0 (CO); 169.0 (CO). Най-318

дено, %: С 67.57; Н 6.99; N 12.28. $C_{13}H_{14}N_2O_2$. Вычислено, %: С 67.81; Н 6.13; N 12.17.

Синтез этил-1-[3-(1,3-диоксо-2,3-дигидро-1H-2-изоиндолил)пропионил]-2-фенил-2-пирролидинкарбоксилата (6). Аналогично синтезу соединения 4 из 2.92 ε (10 ммолей) 3 и 2.92 ε (10 ммолей) 3-(1,3-диоксо-2,3-дигидро-1H-2-изоиндолил)пропионилхлорида [12] получают 3.8 ε (90%) соединения 6, т.пл. 92-94°С (EtOH), R_f 0.42 (г). ИК-спектр, \mathbf{v} , $\mathbf{c}\mathbf{w}^{-1}$: 1640 (C=O), 1712 (C=O), 1743 (C=O). Спектр ЯМР 1 H, δ , м.д., $\Gamma \mathbf{u}$: 1.18 (т, 3H, CH₃, J = 7.1); 1.62-1.77 (м, 1H) и 1.96-2.07 (м, 1H, NCH₂CH₂CH₂); 2.22 (ддд, 1H, J = 12.0, J = 6.2, J = 2.5) и 2.46 (дд, 1H, NCH₂CH₂CH₂CH₂, J = 12.0, J = 6.5); 2.73-2.84 (м, 1H) и 2.91-3.02 (м, 1H, NC(O)CH₂); 3.66-3.84 (м, 2H, NCH₂); 3.82-3.97 (м, 2H, NCH₂); 4.01-4.12 (м, 2H, OCH₂); 7.18-7.39 (м, 5H, C₆H₅); 7.78-7.87 (м, 4H, C₆H₄). Найдено, %: C 68.94; H 5.98; N 6.25. C₂₄H₂₄N₂O₅. Вычислено, %: C 68.56; H 5.75; N 6.66.

Синтез 9а-фенилпергидропирроло[1,2-а][1,4]диазепин-1,5-диона (7). Аналогично синтезу соединения **5** из 4.2 ε (10 ммолей) **6** получают 1.7 ε (70%) соединения **7**, т.пл. 220°C (с разл.), R_f 0.53 (а). ИК-спектр, \mathbf{v} , cm^{-1} : 1608 (C=O), 1675 (C=O), 3242 (NH). Спектр ЯМР ¹H, δ , м.д., Γy : 1.48-1.64 (м, 1H) и 1.69-1.80 (м, 1H, NCH₂CH₂CH₂); 1.96 (ддд, 1H, J = 12.9, J = 6.0, J = 3.1) и 2.96 (ддд, 1H, NCH₂CH₂CH₂, J = 12.9, J = 11.6, J = 6.6); 2.35-2.50 (м, 2H, CH₂); 2.67-2.82 (м, 2H, CH₂); 3.65 (ддд, 1H, J = 12.2, J = 9.5, J = 7.2) и 3.84 (ддд, 1H, NCH₂, J = 12.2, J = 8.3, J = 3.3); 7.18-7.39 (м, 5H, C₆H₅); 8.01 (уш.т, 1H, NH, J = 5.6). Спектр ЯМР ¹³С, δ , м.д.: 18.6 (CH₂); 34.5 (CH₂); 36.3 (CH₂); 41.8 (NCH₂); 49.3 (HNCH₂); 71.8 (\underline{C} -Ph); 123.7 (2CH); 126.8 (CH); 128.2 (2CH); 143.2, 168.6 (CO); 170.8 (CO). Найдено, %: C 69.11; H 6.74; N 11.61. C₁₄H₁₆N₂O₂. Вычислено, %: C 68.83; H 6.60; N 11.47.

2-ՖԵՆԻԼՊԻՐՈԼԻԴԻՆՆԵՐԻ ԵՎ ՆՐԱՆՑ ՏԻՄԱՆ ՎՐԱ ԿՈՆԴԵՆՍՎԱԾ ՏԵՏԵՐՈՅԻԿԼԵՐԻ ԱԻՆԹԵԶԸ

Ս. Պ. ԳԱՍՊԱՐՅԱՆ, Ա. Հ. ՄԱՐՏԻՐՈՍՅԱՆ և Հ. Ա. ՓԱՆՈՍՅԱՆ

Նախկինում մչակված եղանակով սին Թեզված 2-ֆենիլպիրոլիդին-2-կարբոնա ԹԹվի և 5-քլորիզատոիլ ան Հիդրիդի կոնդենսումը Հանգեցրել է 7-քլոր-11a-ֆենիլ-2,3,5,10,11, 11a-Հեքսա Հիդրո-1H-բենդո[e] պիրոլո[1,2-a][1,4] դիագեպին-5,11-դիոնի առաջացմանը: ԷԹիլ-2-(3-քլորպրոպիլամինո)-2-ֆենիլացետատի և Համապատասխանաբար 2-(1,3-դի-օքսո-2,3-դի Հիդրո-1H-2-իզոինդոլիլ) ացետիլքյորիդի կամ 3-(1,3-դի օքսո-2,3-դի Հիդրո-1H-2-իզոինդոլիլ) պրուկիոնի է հետ ացիլման, ապա Հետագա միջ ֆազային կատալի-դի պայմաններում ներմոլեկուլային ցիկլման արդյունքում սին Թեզվել են ԷԹիլ-1-[2-(1,3-դի օքսո-2,3-դի Հիդրո-1H-2-իզոինդոլիլ) ացետիլ]- և 1-[3-(1,3-դի օքսո-2,3-դի Հիդրո-1H-2-իզոինդոլիլ) ացետիլ]- և 1-[3-(1,3-դի օքսո-2,3-դի Հիդրո-1H-2-իզոինդոլիլ) ացետիլ]- և 1-[3-(1,3-դի օքսո-2,3-դի Հիդրո-1H-2-իզոինդոլիլ) արտալի Հիդրադին հիդրատի Հետ բերել է 8a-ֆենիլ Հեքսա Հիդրադիրոլո[1,2-a] պիրադին-1,4-դիոնի և 9a-ֆենիլ արտալի Հիդրակիրոլո[1,2-a] [1,4] դիագեպին-1,5-դիոնի:

SYNTHESIS OF 2-PHENYLPYRROLIDINES AND CONDENSED HETEROCYCLES ON THEIR BASIS

S. P. GASPARYAN, A. H. MARTIROSYAN and H. A. PANOSYAN

The Scientific and Technological Centre of Organic and Pharmaceutical Chemistry NAS RA
A.L.Mnjoyan Institute of Fine Organic Chemistry
26, Azatutyan Str., 0014, Yerevan, Armenia
E-mail: q_sahak@yahoo.com

7-Chloro-11a-phenyl-2,3,5,10,11,11a-hexahydro-1*H*-benzo[e]pyrrolo[1,2a[1,4]diazepine-5,11-dione was synthesized by the condensation of phenylpyrrolidine-2-carboxylic acid with 5-chloroisatoic anhydride. By acylation of ethyl 2-(3-chloropropylamino)-2-phenylacetate with 2-(1,3-dioxo-2,3-dihydro-1*H*-2isoindolyl)ethanoyl chloride or 3-(1,3-dioxo-2,3-dihydro-1*H*-2-isoindolyl)propanoyl chloride and subsequent intramolecular cyclization under phase-transfer catalytic conditions were synthesized ethyl-1-[2-(1,3-dioxo-2,3-dihydro-1*H*-2-isoindolyl)acetyl]-2-phenyl-2-pyrrolidinecarboxylate and ethyl-1-[3-(1,3-dioxo-2,3-dihydro-1*H*-2isoindolyl)propanoyl]-2-phenyl-2-pyrrolidinecarboxylate. Further treatment hvdrate resulted in corresponding cyclized hydrazine products 8aphenylhexahydropyrrolo[1,2-a]pyrazine-1,4-dione and 9a-phenylperhydropyrrolo[1,2a[1,4]diazepine-1,5-dione.

ЛИТЕРАТУРА

- [1] Kaneko T., Wong H., Doyl T.W. // Tetrahedron Lett., 1983, v. 24, №47, p. 5165.
- [2] Suggs J.W., Wang Y.S., Lee IC S. // Tetrahedron Lett., 1985, v. 26, №40, p. 4871.
- [3] *Tarahaschi M., Onizawa S., Shioda R. //* J. Chem. Soc. Jap. and Ind. Chem., 1972, №7, p. 1259.
- [4] Curran T.P., McEnaney P.M. // Tetrahedron Lett., 1995, v. 36, №2, p. 191.
- [5] Schmidt A., Shilabin A.G., Namyslo J.C., Nieger M., Hemmen S. // Eur. J. Org. Chem., 2005, №9, p. 1781.
- [6] Lown J.W., Joshua A.V. // Biochem. Pharmacol., 1979, v. 28, №13, p. 2017.
- [7] Langley D.R., Thurston D.E. // J. Org. Chem., 1987, v. 52, №1, p. 91.
- [8] Courtney S.M., Thurston D.E. // Tetrahedron Lett., 1993, v. 34, №33, p. 5327.
- [9] Bose D.S., Jones G.B., Thurston D.E. // Tetrahedron, 1992, v. 33, №6, p. 751.
- [10] Мартиросян А.О., Гаспарян С.П., Оганесян В.Е., Мнджоян Ш.Л., Алексанян М.В., Никищенко М.Н., Бабаян Г.Ш. // ХГС, 2000, №4, т. 36, с. 488.
- [11] Beilstein, 21, p. 482.
- [12] Beilstein, 21, p. 483.