ՎԴԺՄԺՎՈԵԹՎՈՑՎՔ ՄՍԵԹՎՈՑԺՐՍԴՄՍՀ ՎՄՍՑՍՍԵՍՀ ՍՎՍԺՀՍԻՍ ԺՎԵՍՔԶՍ

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ APMEHUЯ NATIONAL ACADEMY OF SCIENCES OF THE REPUBLIC OF ARMENIA

Տայասփանի քիմիական հանդես

Химический журнал Армении 67, №2-3, 2014 Chemical Journal of Armenia

УДК 547.26"118

ВЫЯВЛЕНИЕ ОСОБЕННОСТЕЙ РЕАГИРОВАНИЯ ГИДРАЗОНОВ p-XЛОР(БРОМ)БЕНЗОИЛМЕТИЛТРИФЕНИЛФОСФОНИЙ БРОМИДОВ СО ЩЕЛОЧЬЮ И АЛКИЛИРОВАНИЕ ПОЛУЧЕННЫХ O-ФОСФОБЕТАИНОВ

Р. Дж. ХАЧИКЯН ^а, З. Г. ОВАКИМЯН ^а, Г. А. ПАНОСЯН ^b, Р. А. ТАМАЗЯН ^в, А. Г. АЙВАЗЯН ^b, Ф. С. КИНОЯН ^а и М. Г. ИНДЖИКЯН

Научно-технологический центр органической и фармацевтической химии НАН Республики Армения

^а Институт органической химии

^b Центр исследования строения молекулы НАН Республики Армения Армения, 0014, Ереван, пр. Азатутян, 26 E-mail: khachikyanraya@qmail.com

Поступило 10 IV 2014

На примере гидразонов р-хлор(бром)бензоилметилтрифенилфосфониевых солей установлено, что под действием щелочи образуются О-фосфобетаины. Показано, что взаимодействие О-фосфобетаина, полученного из гидразона р-хлорбензоилметилтрифенилфосфониевой соли с метилйодидом, приводит не к О-, а к С-метилированному продукту и йодистому аналогу исходной соли. Показано также, что после анионизации С-алкилированной соли, промежуточно образовавщийся илид стабилизируется в О-бетаин, успешно алкилируется, приводя к О-алкилированному продукту.

Рис. 1, библ. ссылок 7.

Недавно нами было установлено, что β-толуилэтилтрифенилфосфоний бромид с хлористоводородным гидразином, вместо ожидаемого гидразона, образует 6-толил-2,3-дигидропиридазинон-3 [1].

В продолжение этих исследований в настоящей работе нами были изучены реакции гомологичных ароилметилтрифенилфосфоний бромидов **1a,b** с гидразином, приведшие к соответствующим гидразоновым производным **2a,b**.

Из литературных данных известно, что оксимы ароилметилтрифенилфосфониевых солей под действием оснований подвергаются гетероциклизации с образованием пятичленных гетероциклические соединения с атомом фосфора в цикле или в боковой цепи обладают биологической активностью и причисляются к пестицидам нового поколения. Исходя из сказанного нами была сделана попытка гетероциклизации соединений 2а,b действием 1N водного раствора щелочи при 0°С. Однако, вместо ожидаемых фосфор- и азотсодержащих гетероциклов, были получены фосфониевые соединения, не содержащие, согласно данным элементного анализа, атомов азота и галогена, а в ИК, ЯМР ¹³С спектрах отсутствуют сигналы, характерные для карбонильной группы. По данным РСА установлено, что полученные соединения представляют собой фосфобетаины 3а,b с отрицательным зарядом на атоме кислорода.

$$Ar-C=CH-P(C_6H_5)_3$$

$$O^-$$

$$3a,b$$

$$Ar=a) (p)CIC_6H_4;b) (p)BrC_6H_4$$

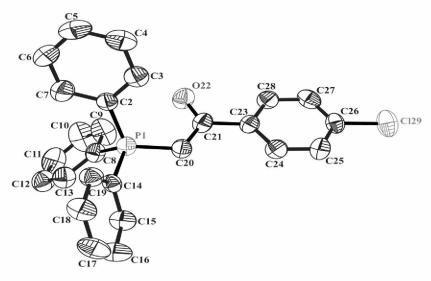


Рис. Строение молекулы **3a**. Эллипсоиды анизотропных тепловых колебаний изображены с 50% вероятностью.

Рентгеноструктурный анализ кристалла соединений За проведен при комнатной температуре на автодифрактометре "Enraf-Nonius CAD-4" (МоК излучение ($\lambda = 0.71073 \text{ Å}$), графитовый монохроматор). Параметры моноклинной элементарной ячейки измерены и уточнены по 22 рефлексам с $12.09 < \theta < 13.66$, равны a=16.7251(3), b=10.9789(2), c=23.7639(3)Å, β =100.58(3)°, V=4289.4(5)Å³. В ходе дифракционного эксперимента была измерена интенсивность 6209 отражений в области 0≤h≤23, $0 \le k \le 15$, $-33 \le l \le 33$, $\theta_{\text{макс}} = 30^{\circ}$, (МоК-излучение, графитовый монохроматор). Учет поглощения проведен по экспериментальным кривым азимутального сканирования (Tmin=0.91332, Tmax=0.94627). [5].Систематические погасания однозначно определили пр.гр. C2/c (z = 8). Все расчеты были проведены по комплексу программ SHELXTL[6]. После усреднения симметрично эквивалентных рефлексов массив содержал 5653 неэквивалентных рефлексов (R_{int} =0.024), из них 1999 наблюдаемых с I>2 (I). Структура расшифрована прямыми методами, координаты атомов водорода определены из разностных синтезов Фурье. Структура уточнена полноматричным МНК в анизотропном приближении для неводородных атомов и в изотропном - для атомов водорода, окончательный фактор расходимости R = 0.065, S = 0.96. Результаты рентгеноструктурных исследований За показали, что молекула исследованного соединения имеет Z-конфигурацию. Структура молекулы соединения За представлена на рисунке. Исследования показали, что соединение представляет собой внутреннюю соль, где положительный заряд на атоме фосфора компенсируется отрицательным зарядом атома кислорода.

Отрицательный заряд в таких бетаинах мог бы быть стабилизирован за счет перемещения к фосфору с образованием илидов 4a,b.

Стабильность полученных нами бетаинов **3а,b** объясняется, вероятно, сильной делокализацией отрицательного заряда карбонильной группой. Специально поставленным опытом нами исключено образование фенацилидентрифенилфосфоранов **4а,b** из **1а,b**, полученных гидролизом гидразонов **2а,b** в приведенных условиях.

Ar= a) (p)CIC₆H₄; b) (p) BrC₆H₄.

При более высоких температурах, в условиях кипячения с водным раствором щелочи соли **1a**, был получен продукт щелочного гидролиза последней, сопровождающегося анионизацией фенильной группы **5a**.

$$(p)CIC_{6}H_{4}-C-CH_{2}-P(C_{6}H_{5})_{3} \xrightarrow{OH, t} {^{\circ}C} (p)CIC_{6}H_{4}-C-CH_{2}-P(C_{6}H_{5})_{2}$$

$$0 \qquad 0$$
1a
5a

Образование фосфобетаинов **3а,b** представляется нам протекающим по схеме, включающей в себя на первой стадии присоединение молекулы воды по C=N группе с последующим отщеплением молекулы гидразина по нижеследующей схеме.

Из литературных данных известно, что фенацилметиленфосфоран реагирует с йодистым этилом с образованием О-алкилированного продукта [7].

Интересно, что попытка алкилирования полученного нами бетаина ${\bf 3a}$ йодистым метилом в растворе ацетонитрила не увенчалась успехом.

Исследования показали, что в условиях реакции бетаин **3a** переходит в илид **4a**, и наряду с С-алкилированным продуктом **6a** нам удалось выделить также йодистый аналог исходной соли **7a** и О-алкилированный продукт **8a**.

Некоторая часть С-алкилированной соли 6a после анионизации под действием илида 6a, играющего роль основания, переходит в соль 7a, а промежуточно образовавшийся илид А стабилизируется в бетаин В, который успешно алкилируется йодистым метилом с образованием О-алкилированного продукта 8a.

$$(p) CIC_{6}H_{4}-C=CH-P^{\dagger}(C_{6}H_{5})_{3} \longrightarrow (p) CIC_{6}H_{4}-C-CH=P(C_{6}H_{5})_{3} \xrightarrow{CH_{3}I} \longrightarrow (p) CIC_{6}H_{4}-C-CH-P^{\dagger}C_{6}H_{5})_{3} \xrightarrow{IVa} (p) CIC_{6}H_{4}-C-CH_{2}-P^{\dagger}C_{6}H_{5})_{3} + C+CH_{3}I^{-1} \longrightarrow (p) CIC_{6}H_{4}-C-CH_{2}-P^{\dagger}C_{6}H_{5})_{3} + C+CH_{3}I^{-1} \longrightarrow (p) CIC_{6}H_{4}-C-CH_{2}-P^{\dagger}C_{6}H_{5})_{3} \xrightarrow{CH_{3}I} \longrightarrow (p) CIC_{6}H_{4}-C-C-CH_{2}-P^{\dagger}C_{6}H_{5})_{3} \xrightarrow{CH_{3}I} \longrightarrow (p) CIC_{6}H_{4}-C-C-C-P^{\dagger}C_{6}H_{5})_{3} \xrightarrow{CH_{3}I} \longrightarrow (p) CIC_{6}H_{4}-C-C-C-P^{\dagger}C_{6}H_{5}$$

Экспериментальная часть

Спектры ЯМР ¹H, ¹³C, ³¹P синтезированных соединений сняты на приборе "Varian Mercury-300" с рабочей частотой 300.08, 121.75 и 75.46 *МГи* на ядрах ¹H, ¹³C и ³¹P, соответственно при температуре 303 К. Химические сдвиги приведены относительно сигнала ТМС как внутреннего стандарта для спектров ЯМР ¹H и ¹³C и сигнала ортофосфорной кислоты как внешнего стандарта для спектров ЯМР ³¹P. ИК-спектры сняты на спектрометре "UR-20 Sepecord 751R" в вазелиновом масле.

Трифенилароилметилфосфоний бромиды (1а,b). К раствору 0.01 *моля* ароилметилбромида в толуоле прибавляли 0.01 *моля* трифенилфосфина, реакционную смесь кипятили 5-6 ι . Образовавшийся осадок отфильтровывали, промывали толуолом, высушивали в вакууме и перекристаллизовывали из этанола. Получили 3.72 ι (75%) соединения **1a** с т. пл. 247-248°C. Найдено, %: Br 16.21. С₂₆H₂₁POBrCl. Вычислено, %: Br 16.14 ι 4.26 ι (79%) соединения **1b** с т.пл. 251-252°C. Найдено, %: Br 14.87. С₂₆H₂₁POBr₂. Вычислено, %: Br 14.81.

Спектр ЯМР ¹H (ДМСО- d_6 /СС l_4 1:3) δ , м.д., Γ ψ : **1a** 6.25 (д, 2H, P+CH₂, J_{PH}=13.1), 7.55-8.20 (м, 19H, PPh₃, Ar). Спектр ЯМР ³¹P 27.00 δ , м.д., Γ ψ : Спектр ЯМР ¹H (ДМСО- d_6 /СС l_4 1:3) δ , м.д., Γ ψ : **1b** 6.30 (д, 2H, P+CH₂, J_{PH}=13.0), 7.70-8.10 (м, 19H, PPh₃, Ar). Спектр ЯМР ³¹P 26.90 δ , м.д.

Гидразоны трифенилароилметилфосфоний бромидов (2а,b). К раствору 0.005 *моля* трифенилароилметилфосфоний бромидов **1а,b** в метаноле прибавляли 0.06 *моля* гидрохлорида гидразина в минимальном количестве воды. Реакционную смесь кипятили с обратным холодильником на водяной бане 30 ч, затем выливали в воду, образовавшийся осадок отфильтровывали, промывали водой, сушили в вакууме. Получили 1.75 г

(68.6%) соединения 2a с т.пл. 239-240°С. Найдено, %: N 5.51; Br 15.65. С $_{26}$ Н $_{23}$ N $_2$ РСlBr. Вычислено, %: N 5.49; Br 15.72 и 2.1 ε (75.8%) соединения 2b с т.пл. 249-250°С. Найдено, %: N 4.95; Br 14.46. С $_{26}$ Н $_{23}$ N $_2$ РВ $_2$. Вычислено, %: N 5.05; Br 14.44.

Спектр ЯМР 1 Н (ДМСО- d_{6} /ССl₄ 1:3) δ , м.д., Γ ψ : **2a** 3.39 (ш, 2H, NH₂), 6.70 (д, 2H, P⁺CH₂ J_{PH}= 13.1), 7.50-8.25 (м, 19H, PPh₃, Ar). Спектр ЯМР 31 Р 27.03 δ , м.д.: Спектр ЯМР 1 Н (ДМСО- d_{6} /ССl₄ 1:3) δ , м.д., Γ ψ : **2b** 3.40 (ш, 2H, NH₂), 6.50 (д, 2H, P⁺CH₂, J_{PH}=13.0), 7.60-8.10 (м, 19H, PPh₃, Ar). Спектр ЯМР 31 Р 27.06 δ , м.д.

Взаимодействие соединений 2а,b с водным раствором едкого кали. К насыщенному спиртовому раствору 0.0015~моля соединений 2а,b на холоду при перемешивании по каплям прибавляли 1.5~мл 1N водного раствора едкого кали. Образовавшийся осадок отфильтровывали, промывали водой до нейтральной реакции, высушивали в вакууме. Получили 0.57~г (95%) соединения 3а с т. пл. 197-198°C и 0.60~г (87%) соединения 3b с т. пл. 203-204°C.

Спектр ЯМР ¹H (ДМСО- d_6 /ССl₄ 1:3) δ , м.д., Γu : **3a** 4.28 (д, 1H, CH, J=24.5), 7.29 и 7.81 оба (м, по 2H, C_6H_4), 7.48-7.55 и 7.58-7.71 оба (м, 6H и 9H, PPh₃). Спектр ЯМР ¹³С (CDCl₃) δ , м.д., Γu : **3a** 51.0 (д, J=112.7 CH), 127.0 (д, J=91.2, C^i PPh₃), 127.9 ($C^{0,0}$ C_6H_4 Cl), 128.5 ($C^{M,M}$ C_6H_4 Cl), 129.0 (д, J=12.2, C^0 PPh₃), 132.2 (д, J=2.8, C^p PPh₃), 133.2 (д, J=10.2, C^M PPh₃), 135.3 (C^p C_6H_4 Cl), 139.9 (д, J=15.3, C^i C_6H_4 Cl). Спектр ЯМР ³¹Р 21.95 δ , м.д.: Спектр ЯМР ¹H (ДМСО- d_6 /ССl₄ 1:3) δ , м.д. **3b** 4.20 (д, 1H, CH, J=24.5), 7.18 и 7.70 оба (м, по 2H, C_6H_4), 7.38-7.45 и 7.48-7.60 оба (м, 6H и 9H, PPh₃). Спектр ЯМР ³¹Р 21.85 δ , м.д.

Взаимодействие соединения 1а с водным раствором едкого кали при кипячении. Смесь $0.5\ \varepsilon$ ($0.001\$ моля) соединения 1a, $1\$ мл воды и $0.056\ \varepsilon$ ($0.001\$ моля) кристаллического едкого кали кипятили $10\text{-}15\$ мин. Реакционную смесь выливали в воду, экстрагировали хлороформом и переосаждали эфиром. Получили $0.27\ \varepsilon$ (78%) соединения $5a\$ с т. пл. $297\text{-}298^{\circ}\text{C}$. Найдено, %: С 67.76; Н 4.49; Р 8.68. С $_{20}\text{H}_{16}\text{PO}_{2}\text{Cl}$. Вычислено, %: С 67.70; Н 4.51; Р 8.74. Спектр ЯМР 1 Н (ДМСО- 1 4 1 3) δ , м.д.: $5a\$ 3.92 (м, 2 4, 2 6, 2 7, 2 7, 2 7, 2 7, 2 8, 2 9,

Взаимодействие бетаина За с йодистым метилом. К насыщенному ацетонитрильному раствору 0.4 ε (0.001 моля) соединения **За** прибавляли 0.18 мл (0.003 моля) йодистого метила и кипятили 2 ι . Образовавшийся осадок отфильтровывали, промывали ацетонитрилом, высушивали в вакууме. Получили 0.1 ε (18.5%) соединения **7a** с т. пл. 250-251°C. Найдено, %: I 23.29. С₂₀H₂₁POCII. Вычислено, %: I 23.41. Спектр ЯМР ¹H (ДМСО- d_6 /CCl₄ 1:3) δ , м.д., $\Gamma \iota \iota$: **7a** 6.30 (д., 2H, P+CH₂, J_{PH} =13.1), 7.55-8.20 (м. 19H, PPh₃, Ar). Спектр ЯМР ³¹Р 27.00 δ м.д.

Ацетонитрильный фильтрат переосаждали эфиром, образовавшийся осадок отфильтровывали, промывали эфиром, высушивали в вакууме. 290

Получили 0.21 ε (37.5%) соединения **6а**, с т. пл. 186-187 0 С. Найдено, %: I 22.78. С $_{27}$ Н $_{23}$ РОСІІ. Вычислено, %: I 22.81.

Спектр ЯМР 1 Н (ДМСО- 4 СС 1 С 1 3) δ , м.д., Γ 4 3: ϵ 4 1.77 (дд., 3H., J_{1} = 18.4, J_{2} = 7.3 $\underline{\text{CH}}_{3}$ CH); 6.77 (дк., 1H., J_{1} = 10.3, J_{2} = 7.3 $\underline{\text{CH}}_{3}$ CH₃); 7.58 и 8.34 оба (м. по 2H., C_{6} H₄); 7.69-7.75 и 7.82-8.00 оба (м. 6H и 9H., PPh₃). Спектр ЯМР 13 С (ДМСО- 4 СС 1 1:3) δ , м.д., Γ 4 9: ϵ 6 14.5 (д., J = 2.9 CH₃), 117.7 (д., J = 86.5 C 1 PPh₃), 128.8 (C^{0} 0° C_{6} H₄Cl), 129.6 (д., J = 12.7, C^{0} PPh₃), 131.4 ($C^{\text{M,M}}_{3}$ C_{6} H₄Cl), 131.7 (д., J = 5.3, CH), 133.5 (C^{1} C_{6} H₄Cl), 140.4 (C^{P} C₆H₄Cl), 195.4 (д., J = 4.2 CO). Спектр ЯМР 31 Р 33.80 δ , м.д.

После удаления растворителей (ацетонитрил/эфир) оставшийся остаток растворяли в хлороформе и переосаждали эфиром. Образовавшийся осадок отфильтровывали, промывали эфиром и сушили в вакууме. Получили 0.13г (22.8%) соединения **8a** с т.пл. 153-154⁰C. Найдено, %: I 22.32. C₂₈H₂₅POCII. Вычислено, %: I 22.26.

Спектр ЯМР 1 Н (ДМСО- d_6 /СС l_4 1:3) δ , м.д., Γy : **8a** 1.72 (д., 3H, СН₃, J=15.7), 2.71 (с., 3H, ОСН₃), 7.60 и 7.73 оба (м. по 2H,С $_6$ H₄), 7.73-7.80 и 7.82-7.90 оба (м., 6H и 9H, PPh₃). Спектр ЯМР 31 Р 26.90 δ , м.д.

ՆԻՄՔԻ ՀԵՏ Þ-ՔԼՈՐ(ԲՐՈՄ)ՔԵՆՁՈՒԹՅՄՆԵՐԻԵՆԵՐԵՐԵՐԵՐԵՐԵՐԻՆԵՐԻ ՓՈԽԱԶԴԵՑՈՒԹՅՄՆ ԱՌԱՆՁՆԱՐԱՑԿՈՒԹՅԻՆՆԵՐԻ ԵՎ ՍՏԱՑՎԱԾ ԳԱՅԱՐԱՅՑՈՒՄԸ ԵՎ ՍՏԱՑՎՄԾ ԴՄՎՈՑԱԼՎԻՆԱ ՔՈԳԵՄԻՆԱՍՑՅՈՒՄԸ

Ո. Ջ. ԽԱՉԻԿՅԱՆ, Ջ. Х. ՏՈՎԱԿԻՄՅԱՆ, Х.Ա. ՓԱՆՈՍՅԱՆ, Ռ. Ա. ԹԱՄԱԶՅԱՆ, Մ. Մ. ԴՆՃԻԿՅԱՆ Ա Մ. Ջ. Մ. Ջ. ՆԱՅՉԱՆԵՆ

p-Քլոր(բրոմ)բենդոիլմենիլարիֆենիլֆոսֆոնիումային աղերի Հիդրոլիդի օրինակի վրա Հաստատվել է, որ Հիմքի ազդեցունյամբ առաջանում են Օ-ֆոսֆոբետաիններ։ Ցույց է տրվել, որ թ-քլորբենդոիլմենիլարիֆենիլֆոսֆոնիումային աղի Հիդրոլիդից ստացված Օ-ֆոսֆոբետաինը մենիլյոդիդի Հետ փոխադդելիս առաջացնում է ոչ թե Օ-, այլ C-մենիլացման արդասիք և ելային ֆոսֆոնիումային աղի յոդային նմանակ։ Ցույց է տրվել նաև, որ C-ալկիլացված աղի անիոնիդացիայից ստացված իլիդը կայունանում է Օ-ֆոսֆոբետաինի, որը Հեչտունյամբ ալկիլանում է, առաջացնելով Օ-ալկիլացման արդասիք։

IDENTIFYING FEATURES OF REACTION OF HYDRAZONES OF p-CHLORO(BROMO)BENZOYLMETHYLTRIPHENYLPHOSPHONIUM BROMIDES WITH ALKALI AND ALKYLATION OF OBTAINED O-PHOSPHO BETAINES

R. J. KHACHIKYAN, Z. G. HOVAKIMIAN, H. A. PANOSSIAN, R. A. TAMAZYAN, A. G. AYVAZYAN, F. S. KINOYAN and M. H. INJIKYAN

The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA
Institute of Organic Chemistry
26, Azatutyan Str., Yerevan, 0014, Armenia
E-mail: khachikyanraya@qmail.com

On the example of hydrazones of p-chloro(bromo)benzoylmethyltriphenyl-phosphonium salts it was found that under the action of alkali O-phosphobetaines were formed. At higher temperatures, under boiling conditions with aqueous alkali solution of p-chlorobenzoylmethyltriphenylphosphonium salt, a product of alkali hydrolysis was obtained accompanied by anionization of the phenyl group.

It was shown that the interaction of O-phosphobetaine obtained from hydrazone of p-chlorobenzoylmethyltriphenylphosphonium salt with methyl iodide led not to O-, but to C-methylated product and iodide analogue of the initial salt. It was also shown that after anionization of the C-alkylated salt intermediately formed ylide stabilized to O-betaine and successfully alkylated resulting in O-alkylated product.

ЛИТЕРАТУРА

- [1] Хачикян Р.Джс. // ЖОХ, 2007, т. 77, вып. 6, с. 1048.
- [2] Masaki M., Fukini K., Ohta M. // J. Org. Chem., 1967, v. 32, p. 3564.
- [3] Gaudiano G., Mondelli R., Paolo-Ponti P., Ticozzi C., Umani-Ronchi A. // J. Org. Chem., 1968, v. 33, №12, p. 4431.
- [4] *Хачикян Р.Дж., Хачатрян Р.А., Залинян С.А., Геворкян Г.А., Карамян Н.В. //* Хим. ж. Армении, 2001, т. 54, №3-4, с. 61.
- [5] North A.C.T., Phillips D.C., Mathews F.S. // Acta Cryst., 1968, v. A24, p. 351, [doi:10.1107/S0567739468000707].
- [6] Sheldrick G.M. (1997). SHELXS97 and SHELXL97. University of Gottingen, Germany.
- [7] *Ramirez F., Dershowitz S.* // J. Org. Chem., 1957, v. 22, p. 41.