

Հшјшиտшић ррифшиши ћшићи 66, №4, 2013 Химический журнал Армении

УДК 547.484.34 + 547.442.3 + 547.824

СИНТЕЗ ЗАМЕЩЕННЫХ 2-ПИРИДОНОВ НА ОСНОВЕ АРИЛАМИДОВ АЦЕТОУКСУСНОЙ КИСЛОТЫ

М. С. САРГСЯН^а, С. С. АЙОЦЯН^а, А. Г. АСРАТЯН, А. Х. ХАЧАТРЯН^а, А. Э. БАДАСЯН^а, Г. А. ПАНОСЯН^ь и С. Г. КОНЬКОВА^а

Научно-технологический центр органической и фармацевтической химии НАН Республики Армения

^а Институт органической химии

^bЦентр исследования строения молекул НАН Республики Армении Армения, 0014, Ереван, пр. Азатутян, 26

E-mail: mushegh.sargsyan@yahoo.com

Поступило 20 VI 2013

Установлено, что ариламиды ацетоуксусной кислоты реагируют с этоксиметилиденацетилацетоном в присутствии триэтиламина с образованием 1,1'-(6-метил-2-оксо-1-арил-1,2-дигидропиридин-3,5-диил)диэтанонов и 5-ацетил-N,1-диарил-2-метил-6-оксо-1,6-дигидропиридин-3-карбоксамидов.

Табл. 1, библ. ссылок 6.

Многие природные и синтетические соединения, содержащие 2-пиридоновый фрагмент, проявляют разнообразные фармакологические свойства [1-3]. Для создания строительных блоков, содержащих указанный фрагмент, в качестве исходных соединений, чаще всего, применяются α,β-непредельные дикарбонильные соединения (ендионы), в частности, замещенные алкоксиэтилены, способные вступать в реакции нуклеофильного присоединения [4]. В ряде работ исходные ендионы получаются непосредственно в условиях реакции. Так, недавно нами было показано, что при взаимодействии ариламидов ацетоуксусной кислоты 1 с основаниями Шиффа 2 промежуточно получается ендион 3, который, далее реагируя со второй молекулой амида 1, приводит к образованию замещенных 2-окса-6-азабицикло[2.2.2]октанов (4), содержащих 2-пиперидоновый фрагмент [5].

В настоящей работе изучено взаимодействие ариламидов ацетоуксусной кислоты **1а-ж** с этоксиметилиденацетилацетоном (**5**) в присутствии триэтиламина. Интерес к указанной реакции обусловлен тем, что из предполагаемого промежуточного продукта присоединения **9** или **9'** (схема **3**), содержащего несколько нуклеофильных и электрофильных реакционных центров, может быть получен ряд продуктов внутримолекулярной циклизацией (**a**, **b**, **c**).

Проведенные опыты показали, что реакция протекает уже при комнатной температуре, приводя к образованию, по данным ЯМР ¹Н спектроскопии, соединений **ба-ж** и **7в-ж**, являющихся производными 2-пиридона, с выходами 50-67 и до 37%, соответственно (табл.).

Ar = o-CH₃C₆H₄ (**a**); *м*-CH₃C₆H₄ (б); *п*-CH₃C₆H₄ (**g**); C₆H₅ (**r**); *п*-CH₃OC₆H₄ (**д**); *п*-NO₂C₆H₄ (**e**); 2,4-(CH₃)₂C₆H₃ (**ж**).

Таблица

Выходы и соотношения 6 а-ж и 7 в-ж

Ar	Продукты		Соотношение	Выходы, %	
	6	7	6 : 7 по ЯМР	6	7
<i>o</i> -CH ₃ C ₆ H ₄	6 a	_	-	65	следы
<i>м</i> -СН ₃ С ₆ Н ₄	6б	_	-	67	следы
п-СН3С6Н4	6 в	7в	4:3	35	20
C ₆ H ₅	6г	7г	2:1	51	37
<i>п</i> -СН ₃ ОС ₆ Н ₄	6 д	7д	3:2	34	32
п-NO2C6H4	6 e	7 e	4:1	55	21.5
2,4-(CH ₃) ₂ C ₆ H ₃	6ж	7ж	2:1	48	16.9

Образование соединений **6** свидетельствует о том, что в промежуточных продуктах **9** или **9**' происходит внутримолекулярная региоселективная циклизация с участием амидной группы по следующей схеме:

Образование же соединения **7** происходит, по-видимому, через промежуточный ендион **11**, который, реагируя с исходным амидом **1**, превращается в аддукт **12** и далее аналогично вышеприведенной схеме превращается в пиридон **7**.

Схема 4

Надо отметить, что образование 2-пиридонов 7 теоретически может произойти и в результате взаимодействия амида 1 с промежуточным соединением 9 или 9 по следующей схеме:

Схема 5

Следует подчеркнуть, что такую схему впервые предлагали Дьяченко и сотр. для взаимодействия этоксиметилиденмалонового эфира с амидами циануксусной кислоты [6].

Экспериментальная часть

ИК-спектры сняты на приборе "Specord 75 IR" в вазелиновом масле, спектры

ЯМР 1 Н – на приборе "Varian Mercury 300VX" с рабочей частотой 300.077 $M\Gamma\mu$ в

растворителе ДМСО-*d*с:CCl₄ (1:3) (внутренний стандарт – ТМС); температуры плавления определены на столике Боециуса.

Взаимодействие ариламидов ацетоуксусной кислоты (1) с этоксиметилиденацетилацетоном (5) (общая методика). Соединения 1, 5 и ТЭА в эквимольном соотношении растворяют в абсолютном этаноле и оставляют при комнатной температуре. На следующий день выделившиеся кристаллы отфильтровывают и промывают абс. эфиром.

1,1'-(6-Метил-2-оксо-1-*о***-толил-1,2-дигидропиридин-3,5-диил)диэтанон** (**6a**). Из 1.02 r (5.3 mmoля) **1a** и 0.83 r (5.3 mmoля) **2** в присутствии 0.53 r (5.3 mmoля) ТЭА в 8 $m\pi$ абс. этанола получили 0.97 r (65%) **6a** с т.пл. 200°C (из этанола). ИК-спектр, v, cm^{-1} : 1680, 1660, 1640 (CO). Спектр ЯМР $^{-1}$ H (δ , м.д.): 2.05 (c, 3H, CH₃(Ar)); 2.29 (c, 3H, 6-CH₃); 2.55 (c, 3H, CH₃, 5-Ac); 2.57 (c, 3H, CH₃, 3-Ac); 7.08-7.12 (м, 1H) и 7.36-7.43 (м, 3H, o-толил); 8.57 (c, 1H, 4-CH).

1,1'-(6-Метил-2-оксо-1-*м***-толил-1,2-дигидропиридин-3,5-диил)диэтанон (6б)**. Из 0.47 r (2.5 mmoля) **16** и 0.39 r (2.5 mmoля) **2** в присутствии 0.25 r (2.5 mmoля) ТЭА в 4 $m\pi$ абс. этанола получили 0.47 r (67%) **66** с т.пл. 185°C (из этанола). ИК-спектр, v, cm^{-l} : 1690, 1670, 1650 (СО). Спектр ЯМР 1 H (δ , m.д., Γu): 2.34 (с, 3H, 6-CH₃); 2.45 (с, 3H, CH₃(Ar)); 2.54 (с, 3H, CH₃, 5-Ac); 2.56 (с, 3H, CH₃, 3-Ac); 6.47-7.02 (m, 2H, o, o CH); 7.30 (mд, 1H, J=7.6, m-CH); 7.44 (m, 1H, mд=7.6, m-CH); 8.54 (с, 1H, 4-CH).

Взаимодействие N-*п*-толиламида ацетоуксусной кислоты (1в) с этоксиметилиденацетилацетоном (5). Из 0.45 *г* (2.4 *ммоля*) 1в и 0.38 *г* (2.4 *ммоля*) 5 в присутствии 0.24 *г* (2.4 *ммоля*) ТЭА в 4 *мл* абс. этанола получили 0.42 *г* кристаллического продукта, представляющего собой, по данным ЯМР ¹H спектроскопии, смесь соединений 6в и 7в (в соотношении 4:3). Спектр ЯМР ¹H 6в. (8, м.д.): 2.33 (с, 3H, 6-СН₃); 2.47 (с, 3H, CH₃(Ar)); 2.53 (с, 3H, CH₃, 5-Ac); 2.56 (с, 3H, CH₃, 3-Ac); 7.03-7.09 (м, 2H, *м,м*-'CH); 7.32-7.38 (м, 2H, *о,о*-'CH); 8.53 (с, 1H, 4-CH). Спектр ЯМР ¹H 5-ацетил-N,1-ди(*п*-толил)-2-метил-6-оксо-1,6-дигидропиридин-3-карбоксамида (7в) (8, м.д.): 2.21 (с, 3H, 2-CH₃); 2.33 (с, 3H, CH₃(Ar) (амид)); 2.47 (с, 3H, CH₃(Ar)); 2.55 (с, 3H, CH₃, 5-Ac); 7.03-7.09 (м, 2H, *м,м*-'CH (амид)); 7.09-7.15 (м, 2H, *м,м*-'CH (амид)); 7.32-7.38 (м, 2H, *о,о*-'CH); 7.51-7.57 (м, 2H, *о,о*-'CH (амид)); 8.28 (с, 1H, 4-CH); 10.07 (с, 1H, NH).

Взаимодействие N-фениламида ацетоуксусной кислоты (1r) с этоксиметилиденацетилацетоном (5). Из 0.45 r (2.5 mmons) 1r и 0.39 r (2.5 mmons) 5 в присутствии 0.5 r (2.5 mmoля) ТЭА в 4 $m\pi$ абс. этанола получили 0.5 r кристаллического продукта, представляющего собой, по данным ЯМР 1 Н спектроскопии, смесь соединений **6r** и **7r** (в соотношении 2:1). Спектр ЯМР 1 Н **6r** (δ , м.д.): 2.33 (c, 3H, 6-CH₃); 2.54 (c, 3H, CH₃, 5-Ac); 2.56 (c, 3H, CH₃, 3-Ac); 7.47-7.62 (м, 5H, Ph); 8.55 (c, 1H, 4-CH).

Спектр ЯМР 1 Н **7r** (δ , м.д.): 2.22 (c, 3H, 2-CH₃); 2.56 (c, 3H, CH₃, 5-Ac); 6.99-7.06 (м, 1H, π -CH, Ph(амид)); 7.19-7.31 (м, 7H, Ph + 2H, M, M (Ph(амид)); 7.65-7.71 (м, 2H, O, O (-CH, Ph(амид)); 8.31 (c, 1H, 4-CH); 10.18 (c, 1H, NH).

Взаимодействие N- π -метоксифениламида ацетоуксусной кислоты (1 π) с этоксиметилиденацетилацетоном (5). Из 0.51 r (2.5 m0.51 p0.39 p0.39 p0.39 p0.51 p0.55 p0 присутствии 0.25 p0.55 p0.55 p0.56 p0.57 p0.57 p0.57 p0.58 p0.59 p0.59 p0.59 p0.59 p0.59 p0.59 p0.59 p0.59 p0.69 p0.59 p0.69 p0

Спектр ЯМР 1 Н **7д** (8, м.д.): 2.22 (c, 3H, 2-CH₃); 2.55 (c, 3H, CH₃, 5-Ac); 3.77 (c, 3H, OCH₃(Ar) (амид)); 3.88 (c, 3H, OCH₃(Ar)); 6.76-6.84 (м, 2H) и 7.54-7.61 (м, 2H, π -MeOC₆ \underline{H}_{4} (амид)); 7.03-7.18 (м, 4H, π -MeOC₆ \underline{H}_{4}); 8.28 (c, 1H, 4-CH); 10.03 (c, 1H, NH).

Взаимодействие N-n-нитрофениламида ацетоуксусной кислоты (1e) с этоксиметилиденацетилацетоном (5). Из 0.55 r (2.5 m0.39 r (2.5 m0.39 r (2.5 m0.39 r (2.5 m0.39 r0.55 r кристаллического продукта, представляющего собой, по данным ЯМР 1 H спектроскопии, смесь соединений **6e** и **7e** (в соотношении 4:1). Спектр ЯМР 1 H **6e** (δ , м.д.): 2.33 (c, 3H, 6-CH₃); 2.54 (c, 3H, CH₃, 5-Ac); 2.57 (c, 3H, CH₃, 3-Ac); 7.58-7.64 (м, 2H, o,o'-CH, Ar); 8.41-8.47 (м, 2H, m)-CH, Ar); 8.56 (c, 1H, 4-CH).

Спектр ЯМР ¹Н **7e** (δ , м.д.): 2.25 (c, 3H, 2-СН₃); 2.56 (c, 3H, СН₃, 5-Ac); 7.63-7.69 (м, 2H, o,o'-CH, Ar); 7.94-8.00 (м, 2H, o,o'-CH, Ar (амид)); 8.13-8.21 (м, 2H, m,m'-CH, Ar (амид)); 8.39 (c, 1H, 4-CH); 8.43-8.48 (м, 2H, m,m'-CH, Ar (амид)); 10.83 (c, 1H, NH).

Взаимодействие N-2,4-диметилфениламида ацетоуксусной кислоты (1ж) с этоксиметилиденацетилацетоном (5). Из 1.09 r (5.3 mmons) 1ж и 0.82 r (5.3 mmons) 5 в присутствии 0.53 r (5.3 mmons) ТЭА в 8 mn абс. этанола получили 0.55 r кристаллического продукта, представляющего собой, по данным ЯМР 1 Н спектроскопии, смесь соединений 6ж и 7ж (в соотношении 2:1). Спектр ЯМР 1 Н 6ж (8, м.д., Γn): 1.99 (c, 3H, o-CH₃); 2.29 (c, 3H, o-CH₃); 2.42 (c, 3H, n-CH₃); 2.54 (c, 3H, CH₃, 5-Ac); 2.57 (c, 3H, CH₃, 3-Ac); 6.95 (д, 1H, σ -7.9, σ -CH, Ar), 7.17 (дд, 1H, σ -7.9, 2.0, σ -CH, Ar), 7.19-7.21 (шд, 1H, σ -7.9, σ -CH, Ar); 8.56 (c, 1H, 4-CH).

Спектр ЯМР 1 Н **7ж** (δ , м.д.): 2.06 (c, 3H, o-CH₃); 2.18 (c, 3H, o-CH₃ (амид)); 2.24 (c, 3H, 2-CH₃); 2.32 (c, 3H, n-CH₃ (амид)); 2.42 (c, 3H, n-CH₃); 2.56 (c, 3H, CH₃, 5-Ac); 6.92-7.02 (м, 2H, 2o-CH, Ar+Ar(амид)); 7.13-7.22 (м, 4H, 2m, m-CH, Ar+Ar(амид)); 8.36 (c, 1H, 4-CH); 9.63 (c, 1H, NH).

ՏԵՂԱԿԱԼՎԱԾ 2-ՊԻՐԻԴՈՆՆԵՐԻ ՄԻՆԹԵՉ ԱՑԵՏՈՔԱՑԱԽԱԹԹՎԻ ԱՐԻԼԱՄԻԴՆԵՐԻ ՀԻՄԱՆ ՎՐԱ

Մ. Ս. ՍԱՐԳՍՅԱՆ, Ս. Ս. ՀԱՅՈՑՅԱՆ, Ա. Հ. ՀԱՍՐԱՏՅԱՆ, Ա. Խ. ԽԱՉԱՏՐՅԱՆ, Ա. Է. ԲԱԴԱՍՅԱՆ, Հ. Ա. ՓԱՆՈՍՅԱՆ և Ս. Գ. ԿՈՆԿՈՎԱ

Ցույց է տրվել, որ ացետոքացախաթթվի արիլամիդների և էթօքսիմեթիլիդենացետիլացետոնի փոխազդեցությունը տրիէթիլամինի ներկայությամբ ընթանում է սենյակային ջերմաստիձանում, առաջացնելով 1,1'-(6-մեթիլ-2-օքսո-1-արիլ-1,2դիհիդրոպիրիդին-3,5-դիիլ)դիէթանոններ և 5-ացետիլ-N,1-դիարիլ-2-մեթիլ-6օքսո-1,6-դիհիդրոպիրիդին-3-կարբօսամիդներ։

SYNTHESIS OF SUBSTITUTED 2-PYRIDONES ON THE BASIS OF ARYLAMIDES OF ACETOACETIC ACID

^aM. S. SARGSYAN*, ^aS. S. HAYOTSYAN, A. H. HASRATYAN, ^aA. Kh. KHACHATRYAN, ^aA. E. BADASYAN, ^bH. A. PANOSYAN and ^aS. G. KONKOVA

The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA 26, Azatutyan Str., 0014, Yerevan, Armenia aInstitute of Organic Chemistry b Molecule Structure Research Center NAS RA E-mail: mushegh.sargsyan@yahoo.com Tel.: +37493284843

It has been shown that the interaction of arylamides of acetoacetic acid and ethoxymethylidenacetylacetone in the presence of thrietylamine in ethanolic solution results in the formation of 1,1'-(6-methyl-2-oxo-1-aryl-1,2-dihydropyridine-3,5-giyl)dietanones and 5-acetyl-N,1-diaryl-2-methyl-6-oxo-1,6-dihydropyridine-3-carboxamides.

ЛИТЕРАТУРА

- [1] *Rigby J.H.* // Synlett, 2000, p. 1.
- [2] Parriera R.L.T., Abraho O., Galembeck S.E. // Tetrahedron, 2001, v. 57, p. 3243.
- [3] Pastelin G., Mendez R., Kabela E., Farah A. // Life. Sci., 1983, v. 33, p. 1787.
- [4] Дуценко В.Д., Ткачев Р.П. // ЖОрХ, 2006, т. 42, 12, с. 149.
- [5] *Саргсян М.С., Айоцян С.С., Хачатрян А.Х., Бадасян А.Э., Паносян Г.А., Конькова С.Г.* // XГС, 2011, ¹11, с. 1749.
- [6] Tkachova V.P., Gorobets N.Yu., Tkachov R.P., Dyachenko O.D., Rusanov E.B., Dyachenko V.D. // ARKIVOC, 2010, xi, p. 254.