2U3UUSUUD 2UUCUMESODE OSUU GESODE OSODE UQQUINE UYUUDEUDU ИQQUINE UYUUDEUDU НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հшјшиտшић рриђшиши ћшићи 66, №3, 2013 Химический журнал Армении

УДК 547.841+ 547.814.1

СИНТЕЗ N-(1,4-БЕНЗОДИОКСАНИЛАЛКИЛ)-И ИЗОХРОМАНИЛМЕТИЛАМИДОВ 2-N`-ЗАМЕЩЕННЫХ АМИНОПРОПИОНОВЫХ КИСЛОТ

А. С. АВАКЯН, С. О. ВАРТАНЯН, А. Б. САРГСЯН, Э. А. МАРКАРЯН, Т. О. АСАТРЯН, О. С. НОРАВЯН и А. С. ЦАТИНЯН

Научно-технологический центр органической и фармацевтической химии НАН Республики Армения
Институт тонкой органической химии им. А. Л. Мнджояна
Армения, 0014, Ереван, пр. Азатутян, 26
E-mail: avagal@mail.ru

Поступило 27 III 2013

Взаимодействием 1,4-бензодиоксан-2-илалкиламинов и изохроман-1-илметиламина с хлорангидридом 2-бромпропионовой кислоты синтезированы соответствующие бромамиды, которые действием разнообразных вторичных аминов переведены в новые N-гетерилалкилзамещенные аминоамиды. Изучены их антиаритмические свойства, а также действие на симпато-адреналовую систему.

Библ. ссылок 12.

Широкий спектр биологической активности производных кислородсодержащих гетероциклических соединений – 1,4-бензодиоксана и изохромана, послужил основанием для многочисленных исследований по поиску новых физиологически активных веществ в этом ряду [1-4]. Ранее нами был предпринят синтез разнообразных производных N-(1,4-бензодиоксан-2-алкил)- и N-(изохроман-1-метил)амидов гетерилуксусных и β -гетерилпропионовых кислот [5,6]. К сожалению, выраженной активности в отношении симпато-адреналовой системы выявлено не было. Предстояло выяснить, как отразится на фармакологических свойствах соединений введение метильной группы в α -положение к карбонилу, вследствие чего конфигурация молекул станет более жесткой.

С этой целью нами были синтезированы новые замещенные аминоамидные производные, содержащие фрагмент N-замещенной 2-аминопропионовой кислоты.

R = H (1); $R = CH_3$ (2); R = H, Het = 1,4-бензодиоксан-2-ил (4); $R = CH_3$, Het = 1,4-бензодиоксан-2-ил (5); R = H, Het = изохроман-1-ил (6); R = H, $Am = N(CH_2)_4$ (7); R = H, $Am = N(CH_2)_5$ (8); R = H, $Am = N(CH_2CH_2)_2O$ (9); R = H, $Am = N(CH_2CH_2)_2NCH_3$ (10); R = H, $R = N(CH_2CH_2)_2NCH_2C_6H_5$ (11); $R = CH_3$, $R = N(CH_2CH_2)_2NCH_3$ (12); $R = CH_3$, $R = N(CH_2CH_2)_2NCH_3$ (13); $R = CH_3$, $R = N(CH_2CH_2)_2O$ (14); $R = CH_3$, $R = N(CH_2CH_2)_2NCH_3$ (15); $R = CH_3$, $R = N(CH_2CH_2)_2NCH_2C_6H_5$ (16); $R = N(CH_2CH_2)_2NCH_3$ (17); $R = N(CH_2CH_2)_2NCH_3$ (18); $R = N(CH_2CH_2)_2O$ (19); $R = N(CH_2CH_2)_2NCH_3$ (20); $R = N(CH_2CH_2)_2NCH_3$ (21).

Взаимодействием 1,4-бензодиоксан-2-илметиламина (1), 1-(1,4-бензодиоксан-2-ил)-этиламина (2) и изохроман-1-илметиламина (3) с хлорангидридом 2-бромпропионовой кислоты в присутствии пиридина получены соответствующие бромамиды (4-6), которые действием различных вторичных (в том числе и циклических) аминов переведены в соответствующие аминоамиды ряда бензодиоксана (7-16) и изохромана (17-21). Реакция аминирования проведена в смеси диоксан-этанол (1:10) при 75-80°С, выходы составили 51-65%. Аминоамиды 7-11 представляют собой белые кристаллические вещества, остальные соединения – маслообразные продукты, которые действием эфирного раствора HCl переве-

дены в кристаллические гидрохлориды (**12, 14 -21**), а действием эфирного раствора щавелевой кислоты – в соответствующий оксалат (**13**).

Строение всех синтезированных соединений подтверждено данными ИК-, ЯМР ¹Н и масс-спектров, чистота проверена хроматографически. Полученные соединения выделены в виде смеси диастереомеров, что обусловлено наличием двух и более оптических центров в их структурах. Это несколько осложнило расшифровку данных ЯМР ¹Н спектров, поэтому в отдельных случаях нами приведены лишь данные масс-спектров.

Изучены β -адреноблокирующие, симпатолитические и адренолитические свойства синтезированных соединений. Для оценки свойств соединений воздействовать на β_1 - и β_2 -адренорецепторы сердца и сосудов использовали in vivo метод, основанный на влиянии адренопозитивных веществ на положительный хронотропный и депрессорный эффекты изадрина (0.5 mkr/kr). Испытуемые соединения (в 3-х дозах 0.05, 0.5 и 5 mr/kr) вводили внутривенно [7]. О симпатолитических свойствах судили по сокращению изолированного семявыносящего протока крыс на трансмуральное электрическое раздражение длительностью 0.1 m/c до и после воздействия исследуемых соединений в дозе 0.05 mkmonb/mn. Для выявления α -адренолитических свойств регистрировались амплитуды сокращений семяпротока, вызванные уже норадреналином ($1\cdot10^{-6}$ r/mn) [8].

Выявлено, что синтезированные соединения, в основном, не обладают β -адреноблокирующими эффектами, а также свойством угнетать проведение импульсов через симпатические нервы и блокировать α -адренорецепторную реакцию органа на экзогенный норадреналин. Лишь соединение 7 в опытах in vitro вызывало кратковременное умеренное симпатолитическое действие, а в in vivo исследованиях в дозе 5 mr/kr проявляет β 2-адреноблокирующую активность на 55.2%.

Изучено антиаритмическое действие синтезированных соединений на хлоридкальциевой модели аритмии у белых крыс обоего пола массой 180-220 r [9]. Аминоамиды **7-9** и **15** обладают едва заметным действием на данной модели (25%). Соединения **12, 17** и **21** проявляют слабое действие, предупреждая гибель животных от фибрилляции сердца при применении аритмогена в 50% экспериментов (10% в контроле). Остальные вещества не проявляют антиаритмической активности.

Таким образом, как показали фармакологические испытания, введение метильной группы в алкильный фрагмент между атомами азота, к сожалению, не приводит к повышению активности.

Экспериментальная часть

ИК-спектры сняты на спектрометре "Nicolet Avatar 330 FT-IR" в вазелиновом масле, спектры ЯМР 1 Н — на "Varian Mercury-300 " в ДМСО- 4 6, рабочая частота 300 MГ 4 U, внутренний стандарт — ТМС. Масс-спектры сняты на спектрометре "МХ-1321 А" с прямым вводом образца в зону ионизации. Температуры плавления определены на микронагревательном столике "Боэциус". ТСХ проведена на пластинках "Silufol UV-254", подвижная фаза — бензол-ацетон, 3:1; проявитель — пары йода.

- **1,4-Бензодиоксан-2-илметиламин** (1), **1-(1,4-бензодиоксан-2-ил)-этиламин** (2) и изохроман-1-илметиламин (3) получены по прописям [10-12], соответственно.
- **N-(1-(1,4-Бензодиоксан-2-ил)этил)амид 2-бромпропионовой кислоты (5).** К бензольному раствору 8.6 r (0.05 моля) хлорангидрида 2-бромпропионовой кислоты, охлажденному до 5°С, прибавляют по каплям смесь 9.0 r (0.05 моля) 1-(1,4-бензодиоксан-2-ил)этиламина и 4.0 r (0.05 моля) пиридина, оставляют на ночь. Реакционную смесь промывают 5% HCl, затем H2O, 10% раствором NaOH и снова H2O. Бензольный раствор сушат Na2SO4, растворитель отгоняют, остаток кристаллизуют из гексана и перекристаллизовывают из смеси эфир-гексан (1:5). Выход 9.4 r (60%), т.пл. 59-60°С, R_f 0.45. Найдено, %: С 49.54; H 4.98; H 4.20.H 6.13 Вычислено, %: С 49.70; H 5.13; H 4.46. H 6.12 Спектр, H 7.13 (NH), 1647 (O=C-N), 1500,1600 (аром.). Спектр ЯМР H 8, м.д.: 1.28-1.35 (четыре д, 3H, CH3); 1.68-1.72 (четыре д, 3H, H 6.41); 8.20 (ш, 1H, NH).
- **N-(1,4-Бензодиоксан-2-илметил)амид 2-бромпропионовой кислоты (4)** получен аналогично. Выход 64%, т.пл. 70-71°С(гексан), R_f 0.55. Найдено, %: С 48.34; Н 4.62; N 4.39. $C_{12}H_{14}BrNO_3$. Вычислено, %: С 48.02; Н 4.70; N 4.67. ИКспектр, v, c_{M} ¹: 3348 (NH), 1646 (O=C-N), 1500, 1610 (аром.).
- **N-(Изохроман-1-илметил)амид 2-бромпропионовой кислоты (6)** получен аналогично. Выход 59%, т.пл.77-78 $^{\circ}$ C (гексан), R_f 0.43. Найдено, %: C 52.74; H 5.81; N 4.59. С₁₃H₁₆BrNO₂. Вычислено, %: C 52.36; H 5.41; N 4.70. ИК-спектр, v, c_{M} ¹: 3348 (NH), 1646 (O=C-N), 1500, 1610 (аром.).
- N-((1,4-Бензодиоксан-2-ил)метил)-2-(пирролидин-1-ил)пропанамид (7). Смесь 1.5 r (0.05 mоля) соединения 4, 0.7 r (0.1 mоля) пирролидина и 2-3 кристалликов КЈ нагревают при 75-80°С в 60 mл смеси этанол-диоксан (10:1) в течение 10-12 u. Отгоняют растворитель, к остатку прибавляют 50 mл бензола и 5% водный раствор HCl до кислой реакции. Водный слой отделяют, подщелачивают 10% раствором NaOH и экстрагируют бензолом. Сушат безводным Na₂SO₄, растворитель отгоняют, остаток кристаллизуют из гексана, перекристаллизовывают из толуола. Выход соединения 7 0.9 r (62 %), т.пл. 80-81°С, R_f 0.53. Найдено, %: 482

С 66.44; Н 7.38; N 9.56. С₁₆H₂₂N₂O₃. Вычислено, %: С 66.18; Н 7.64; N 9.65. Спектр ЯМР 1 H, δ , м.д., Γ и: 1.22 (д, 3H, J = 6.8, CH₃); 1.75 (м, 4H, (CH₂)₂); 2.54 (м, 4H, N(CH₂)₂); 2.86 (к, 1H, J = 6.8, CH); 3.42 (м, 2H, NH<u>CH₂</u>); 3.86 и 4.23 (оба м, по 1H, OCH₂); 4.19 (м, 1H, OCH); 6.69-6.81 (м, 4H, C₆H₄); 7.60 (уш.,1H, NH).

Аминоамиды 8-21 получены аналогично. Аминоамиды **12-21**, представляющие собой маслообразные вещества, охарактеризованы в виде соответствующих солей – гидрохлоридов и оксалата.

- **N-((1,4-Бензодиоксан-2-ил)метил)-2-(пиперидин-1-ил)пропанамид (8).** Выход 65 %, т.пл. 61-62°С (толуол), Rf 0.50. Найдено, %: С 66.84; H 7.68; N 9.04. С₁₇Н₂₄N₂O₃. Вычислено, %: С 67.08; H 7.95; N 9.20. Спектр ЯМР 1 H, δ , м.д., Γ H; 1.12 (д, 3H, J = 6.9, CH₃); 1.41-1.48 и 1.54-1.64 (оба м, 2H и 4H, (CH₂)₃); 2.36-2.52 (м, 4H, N(CH₂)₂); 2.99 и 3.02 (оба к, по 0.5H, J = 6.9, <u>CH</u>CH₃); 3.30-3.57 (м, 2H, NH<u>CH₂</u>); 3.87 (д.т., 1H, J = 11.3 и 6.8, OCH₂); 4.20 (м, 1H, OCH); 4.25 (м, 1H, OCH₂); 6.73-6.80 (м, 4H, C₆H₄); 7.76 (уш.,1H, NH).
- **N-((1,4-Бензодиоксан-2-ил)метил)-2-морфолинопропанамид (9).** Выход 67%, т.пл.103-104°С (толуол), Rf 0.46. Найдено, %: C 62.35; H 7.46; N 9.57. C₁₆H₂₂N₂O₄. Вычислено, %: C 62.73; H 7.24; N 9.14. Спектр ЯМР ¹H, δ , м.д., Γ д: два диастереомера, 1/1; 1.16 (д, 3H, J = 6.9, CH₃); 2.41-2.55 (м, 4H, N(CH₂)₂); 2.98 и 3.01 (оба к., по 0.5 H , J = 6.9, CHCH₃); 3.34-3.52 (м, 2H, NCH₂CH); 3.62 (т, 4H, J = 4.7, O(CH₂)₂); 3.88 и 4.17-4.28 (оба м, 1H и 2H, OCHCH₂O); 6.73-6.80 (м, 4H, C₆H₄); 7.77-7.86 (м, 1H, NH).
- N-((1,4-Бензодиоксан-2-ил)метил)-2-(4-метилпиперазин-1-ил)пропанамид (10). Выход 62 %, т.пл. 118-119°С (толуол), Rf 0.40. Найдено, %: С 63.57; Н 7.49; N 13.42. С₁₇Н₂₅N₃O₃. Вычислено, %: С 63.93; Н 7.89; N 13.16. Спектр ЯМР 1 Н, δ , м.д., Γ $_{U}$: два диастереомера, 3/2; 1.15(д, 3H, J = 6.9, $\underline{\text{CH}_{3}}$ CH); 2.19 и 2.19 (оба с, 1.8H и 1.2H, NCH₃); 2.37 и 2.42 2.54 (оба м, по 4H, C₄H₈N₂); 2.99 и 3.01 (оба к, 0.6H и 0.4H, J = 6.9, $\underline{\text{CH}}$ CH₃); 3.33-3.53 (м, 2H, NH $\underline{\text{CH}_{2}}$); 3.83-3.91 и 4.22-4.28 (оба м, по 1H, OCH₂); 4.16-4.24 (м, 1H, OCH); 6.73-6.80 (м, 4H, C₆H₄); 7.74 (ш, 1H, NH).
- N-((1,4-Бензодиоксан-2-ил)метил)-2-(4-бензилпиперазин-1-ил)пропанамид (11). Выход 64 %, т.пл. 120-121 $^{\circ}$ С (толуол), Rf 0.49. Найдено, %: С 69.43; Н 7.72; N 10.91. С23Н29N3O3. Вычислено, %: С 69.85; Н 7.39; N 10.62. Спектр ЯМР 1 Н, δ , м.д., Γ и: два диастереомера, 1/1; 1.15 (д, 3H, J = 6.9, CH3); 2.40-2.58 (оба м, по 4H, C4H8N2); 3.00 и 3.03 (оба к, по 0.5 H, J = 6.9, CHCH3); 3.34-3.51 (м, 2H, NHCH2); 3.46 и 3.47 (оба с, по 1H, CH2Ph); 3.86 и 3.88 (оба д.д., по 0.5 H, J = 11.3 и 3.8, ОСН2); 4.16-4.27 (м, 2H, OCH2CHO); 6.76 (с, 4H, C6H4); 7.14-7.28 (м, 5H, C6H5); 7.75 (уш, 1H, NH).

Гидрохлорид 2-(диэтиламино)-N-(1-(1,4-бензодиоксан-2-ил)этил)пропанамида (12·HCl). Выход 57%, т.пл. 154-155°C (эфир-этанол, 3:1), R_f 0.34 (бензолацетон, 4:1, пары NH₃). Найдено, %: С 59.98; H 7.54; N 8.53. С₁₇H₂₇ClN₂O₃. Вычис

лено, %: С 59.55; Н 7.94; N 8.17. Спектр ЯМР 1 Н, δ , м.д., Γ U: 1.27-1.41 (9H, м) и 1.55 (3H, два д, J = 6.9, CH₃); 3.14-3.35 (4H, м, N(CH₂)₂); 3.85-4.44 (5H, м, CH и OCH₂); 6.73-6.81 (4H, м, Ar); 9.12-9.24 (0.4H, два уш. д, J = 8.2) и 9.37 (0.6H, ш, NH); 10.76 (0.6H, ш) и 10.91 (0.4H, ш, HCl).

Оксалат N-(1-(1,4-бензодиоксан-2-ил)этил)-2-(пиперидин-1-ил)пропанамида (13·(СООН)2). Выход 54 %, т.пл. 93-94°С (эфир-ацетон, 4:1), R_f 0.41 (бензол-ацетон, 2:1, пары аммиака). Найдено, %: С 58.49; Н 7.23; N 7.04. С₂₀Н₂₈N₂О₇. Вычислено, %: С 58.81; Н 6.91; N 6.86. Спектр ЯМР ¹H, δ, м.д., Ги: 1.25-1.34 (6H, м, СН₃); 1.47-1.59(2H, м) и 1.64-1.79 (4H, м, (СН₂)3); 2.70-2.84 (2H, м) и 2.86-3.00 (2H, м, N(СН₂)2); 3.49-3.67 (1H, м, СН); 3.79-3.96 (1H, м, СН); 4.00-4.32 (3H, м, ОСН₂СНО); 6.71-6.82 (4H, м, Аг); 8.26 и 8.45 (0.4H и 0.6H, оба ш, NH); 6.80 (2H, ш, 2 СООН).

Гидрохлорид N-(1-(1,4-бензодиоксан-2-ил)этил)-2-морфолинопропанамида (14-HCl). Выход 52 %, т.пл. 107-108°C (эфир-этанол, 3:1), Rf 0.44 (бензол-ацетон, 4:1, пары NH3). Найдено, %: С 57.63; H 7.27; N 7.61. С $_{17}$ H $_{25}$ ClN $_{2}$ O4. Вычислено, %: С 57.22; H 7.06; N 7.85. Спектр ЯМР 1 H, δ , м.д., Γ U: 1.28 (0.75H, д, J = 6.8), 1.29, 1.33 и 1.34 (по 0.75 H, все д, J = 6.3, CH3); 1.52, 1.53, 1.54 и 1.55 (ЗН, все д, J = 6.9, CH3); 3.00, 3.10, 3.34 и 3.47 (4H, все ш, N(CH2)2); 3.85-4.39 (5H, м, CH и CH2); 3.86-4.00 (4H, м, O(CH2)2); 6.73-6.82 (4H, м, C6H4); 9.04 и 9.21 (1H, оба ш, NH); 11.99 и 12.17 (1H, оба ш, HCl).

Гидрохлорид N-(1-(1,4-бензодиоксан-2-ил)этил)-2-(4-метилпиперазин-1-ил) пропанамида (15·HCl). Выход 50 %, т.пл.140-141°С (эфир-ацетон, 5:1), R_f 0.36 (бензол-ацетон, 4:1, пары NH₃). Найдено, %: С 58.62; H 7.88; N 11.27. $C_{18}H_{28}ClN_3O_3$. Вычислено, %: С 58.45; H 7.63; N 11.36. Macc-спектр, m/e, ($J_{отн.}$, %): 333 [M]+(6.54).

Гидрохлорид 2-(4-бензилпиперазин-1-ил)-N-(1-(1,4-бензодиоксан-2-ил)этил) пропанамида (16·HCl). Выход 48 %, т.пл. 138-139°С (эфир-ацетон, 5:1), R_f 0.48 (бензол-ацетон, 4:1, пары NH₃). Найдено, %: С 64.98; H 7.56; N 19.76. $C_{24}H_{32}ClN_3O_3$. Вычислено, %: С 64.63; H 7.23; N 9.42. Масс-спектр, m/e, ($J_{OTH.}$, %): 409 [M]+(11.05).

Гидрохлорид 2-(диэтиламино)-N-(изохроман-1-илметил)пропанамида (17·HCl). Выход 61%, т.пл. 158-159°C (ацетон), Rf 0.54 (бензол-ацетон, 4:1, пары аммиака). Найдено, %: С 62.88; Н 8.75; N 8.32. С₁₇H₂₇ClN₂O₂. Вычислено, %: С 62.47; Н 8.33; N 8.57. Спектр ЯМР 1 Н, δ , м.д., Γ II; 1.18 и 1.29 [оба т, по 3H, J = 7.3, N(CH₂CH₃)₂]; 1.50 (д, 3H, J = 6.9, CH₃CH); 2.61-2.74 (м, 2H, OCH₂CH₂); 2.85-3.05, 3.05 и 3.24 [м, 2H, 1H и 1H, N(CH₂CH₃)₂]; 3.40 (ддд, 1H, J = 14.0, 4.0 и 2.8, NH<u>CH₂</u>); 3.72 (ддд, 1H, J = 11.4, 9.1 и 3.7, OCH₂); 3.89 (ддд, 1H, J = 14.0, 7.6 и 6.5, NH<u>CH₂</u>); 4.13 (ддд, 1H, J = 11.4, 5.3 и 3.7, OCH₂); 4.24 и 4.26 (оба к, по 0.5 H, J = 6.9, CHCH₃); 4.83 (дд, 1H, J = 6.5 и 2.8, OCH); 7.05-7.18 (м, 4H, C₆H₄); 8.87 (дд, 1H, J = 7.6 и 4.0, NH); 11.18 (ш, 1H, HCl).

Гидрохлорид N-(изохроман-1-илметил)-2-(пиперидин-1-ил)пропанамида (18-HCl). Выход 50 %, т.пл. 167-168°C (ацетон), Rf 0.39(бензол-ацетон, 4:1, пары NH₃). Найдено, %: С 63.45; Н 7.79; N 7.94. С₁₈H₂₇ClN₂O₂. Вычислено, %: С 63.80; Н 8.03; N 8.27. Спектр ЯМР 1 H, δ , м.д., Γ д: 1.51, 1.72 и 1.80-2.05 (м, 1H, 2H и 3H, (CH₂)₃); 1.44 (д, 3H, J = 6.8, CH₃); 2.65 (дт, 1H, J = 16.0 и 3.5), 2.96 (уш.д., 1H, J = 12.0), 3.04 (ддд, 1H, J = 16.0, 9.8 и 5.3), 3.23 (уш.д., 1H, J = 12.0), 3.35 (дт., 1H, J = 13.9, 3.1), 3.71 (ддд, 1H, J = 11.0, 9.8 и 3.5), 3.97-4.07 (м, 2H), 4.14 (ддд, 1H, J = 11.0, 5.3 и 3.3) – все эти сигналы относятся к N-CH; 4.84 (дд, 1H, J = 5.3 и 2.4, ОСН); 7.04-7.20 (м, 4H, арил); 8.71 (дд, 1H, J = 8.0 и 3.5, NH); 11.47 (ш., 1H, HCl).

Гидрохлорид N-(изохроман-1-илметил)-2-морфолинопропанамида (19 HCl). Выход 56%, т.пл. 161-162°C (ацетон), Rf 0.45 (бензол-ацетон, 4:1, пары NH3). Найдено, %: С 60.27; H 7.69; N 8.48. С₁₇H₂₅ClN₂O₃. Вычислено, %: С 59.90; H 7.39; N 8.22. Спектр ЯМР 1 H (ДМСО + CF₃COOD), δ , м.д., Γ I; 1.38 (д, 3H, J = 6.7, CH3); 2.54-2.65 (м, 3H), 2.79-3.13 (м, 3H), 3.37 (дд, 1H, J = 14.0 и 2.5, NCH₂); 3.55-3.87 (м, 5H), 3.91-4.00 (м, 2H), 4.10 (ддд, 1H, J = 11.2, 4.9 и 3.0), 4.81 (дд, 1H, J = 4.3 и 2.5, OCH); 7.01-7.15 (м, 4H, C₆H₄); 8.68 (ш., 1H, NH).

Гидрохлорид N-(изохроман-1-илметил)-2-(4-метилпиперазин-1-ил)пропанамида (20 HCl). Выход 52 %, т.пл. 175-176°C (ацетон), R_f 0.51 (бензол-ацетон, 4:1, пары NH₃). Найдено, %: С 58.62; Н 7.88; N 11.27. С₁₈H₂₈ClN₃O₂. Вычислено, %: С 61.09; Н 7.97; N 11.87. Спектр ЯМР ¹H (DMSO + CF₃COOD), δ , м.д., Γ и; два диастереомера, 3/2; 1.30 и 1.45 (оба д, 1.2H и 1.8H, J = 6.7, $CHCH_3$); 2.61-2.71 и 2.90-3.05 (оба м, по 1H, CH₂); 2.84 и 2.86 (оба с, 1.8H и 1.2H, NCH₃); 3.44-3.84 (м, 10H, NCH₂); 4.05-4.22 и 4.79-4.89 (оба м, 2H и 1H, OCH и OCH₂); 7.05-7.15 (м, 4H, C₆H₄); 8.50 (ш., 1H, NH).

Гидрохлорид **2-(4-бензилпиперазин-1-ил)-N-(изохроман-1-илметил)-про- панамида (21·HCl).** Выход 48%, т.пл. 205-207°С (ацетон), R_f 0.46(бензол-ацетон, 4:1, пары NH₃). Найдено, %: С 67.48; H 7.82; N 9.93. C_{24} H₃₂ClN₃O₂. Вычислено, %: С 67.04; H 7.50; N 9.77. Масс-спектр, m/e, ($J_{\text{отн.}}$, %): 393 [M]⁺(9.56).

2-N`-ՏԵՂԱԿԱԼՎԱԾ ԱՄԻՆԱՊՐՈՊԻՈՆԱԹԹՈՒՆԵՐԻ N-(1,4-ԲԵՆԶՈԴԻՕՔՍԱՆԻԼԱԼԿԻԼ)- ԵՎ ԻԶՈՔՐՈՄԱՆԻԼՄԵԹԻԼԱՄԻԴՆԵՐԻ ՄԻՆԹԵՉ

Ա. Ս. ԱՎԱԳՅԱՆ, Ս. Օ. ՎԱՐԴԱՆՅԱՆ, Ա. Բ. ՍԱՐԳՍՅԱՆ, Է. Ա. ՄԱՐԳԱՐՅԱՆ, Թ. Օ. ԱՍԱՏՐՅԱՆ, Հ. Ս. ՆՈՐԱՎՅԱՆ և Ա. Ս. ԾԱՏԻՆՅԱՆ

1,4-Բենզոդիօքսան-2-իլմեթիլամինի, 1-(1,4-բենզոդիօքսան-2-իլ)էթիլամինի և իզոքրոման-1-իլմեթիլամինի և 2-բրոմպրոպիոնաթթվի քլորանհիդրիդի փոխազդեցությամբ սինթեզվել են համապատասխան բրոմամիդներ։ Զանազան ամինների ազդեցությամբ նրանք վերածվել են նպատակային ամինաամիդների։ Ուսումնասիրվել են նրանց ադրենապաշարիչ և հակաառիթմիկ հատկությունները։

SYNTHESIS OF N-(1,4-BENZODIOXANYLALKYL)AND IZOCHROMANYLMETHYL AMIDES OF 2-N`-SUBSTITUTED AMINOPROPIONIC ACID

A. S. AVAGYAN, S. O. VARDANYAN, A. B. SARGSYAN, E. A. MARGARYAN, T. O. ASATRYAN, H. S. NORAVYAN and A. S. TSATINYAN

The Scienctific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA

A. L. Mnjoyan Institute of Fine Organic Chemistry
26, Azatutian Str., Yerevan, 0014, Armenia
E-mail: avagal@ mail.ru

By interaction of 1,4-benzodioxan-2-methylamine, 1-(1,4-benzodioxan-2-yl)ethylamine and isochromane-1-methylamine with the chloranhidride of 2-brompropionic acids the corresponding bromamides have been synthesized. The latter on action of some amines (diethylamine, pyrrolidin, piperidin, morpholin, N-methylpiperazin, N-phenylpiperazin) were converted into different aminoamides. Some of them were converted into corresponding salts (hydrochloride or oxalate). The antiarhythmic, sympato- and adrenolitic properties of these compounds have been investigated.

ЛИТЕРАТУРА

- [1] Авакян А.С., Вартанян С.О., Маркарян Э.А. // Хим.-фарм. ж., 1988, №8, с.925.
- [2] Маркарян Э.А., Самодурова А Г. // Успехи химии, 1989, т. 58, вып. 5, с. 812.
- [3] Lv P.C., Wang K.R., Mao W.J., Xiong J., Li H.Q., Yang Y., Shi L., Zhu H.L. // Chem. Med. Chem., 2009, v. 4, No9, p.1421.
- [4] Дьяченко В.И., Семенов В.В. // Известия АН, Сер. хим., 2010, №4, с.851.
- [5] *Авакян А.С., Вартанян С.О., Саргсян А.Б., Цатинян А.С., Норавян О.С., Ширинян Э.А., Маркарян Э.А.* // Хим. ж. Армении, 2010, т. 63, №3, с. 372.
- [6] Вартанян С.О., Авакян А.С., Саргсян А.Б., Арутюнян С.А., Гукасян Т.Г., Цатинян А.С., Норавян О.С., Маркарян Э.А. // Хим. ж. Армении, 2010, т. 63, №4, с. 488.
- [7] Норавян О.С., Авакян О.М. // Журнал экспер. и клин. мед., 1976, №8, с. 8.
- [8] Авакян О.М. Симпато-адреналовая система. Л., Наука, 1977.
- [9] *Каверина Н.В., Бердяев С.Ю., Кищук Е.П., Пасхина О.Е.* / Сб. "Руководство по экспериментальному (доклиническому) изучению новых фармакологических веществ", М., 2000, с. 209.
- [10] Landi-Vittory R., Mariny-Bettolo G. // Croat. Chem. Acta, 1957, v.29, s. 363.
- [11] Misiti D., de Marchi F., Rosnati V. // J.Med. Pharm. Chem., 1962, v. 5, Nº6, p. 1285.
- [12] Bohme H., Lindenberg K., Priesner H. // Arch. Pharm., 1968, B 301, No. 5, p. 326.