2U3UUSUUF 2UUFUՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱՉԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հայաստանի քիմիական հանդես 66, №3, 2013 Химический журнал Армении

UDC 541.8+537.226.1

DIELECTRIC RELAXATION STUDY OF DIPROPYLSULFOXIDE/ CCl₄ SOLUTIONS

L. S. GABRIELYAN and S. A. MARKARIAN*

Yerevan State University 1, A. Manoukyan Str., 0025, Yerevan, Armenia Fax: (37410) 576421; E-mail: shmarkar@ysu.am

The complex permittivity of pure dipropylsulfoxide (DPSO) and binary mixtures of DPSO/CCl₄ in the whole concentration range has been measured as a function of frequency between 100 *MHz* and 20 *GHz* at 298.15 *K*. Different relaxation spectral functions have been fitted to the measured frequency-dependent permittivity data. It was found that the Cole-Davidson spectral function, which presumes an unsymmetrical relaxation time distribution, "properly" applies for the measured spectra of DPSO and DPSO/CCl₄ mixtures. The results have been compared with those reported recently for the lower homologues dimethyl- and diethylsulfoxides.

Fig. 6, table 1, references 11.

Introduction

The interest in the study of dialkylsulfoxides and their solutions comes from both physicochemical peculiarities and biomedical significance of these systems [1-6]. Intriguing molecular characteristics of dimethyl sulfoxide (DMSO) and its homologues are the ability for self-association. This association reflects a complex interplay of hydrophilic and hydrophobic patches of the molecular structure. Variation of the non-polar alkyl chains in dialkylsulfoxides should therefore shed light on important facets of this interplay. Dielectric relaxation spectroscopy is one of the efficient techniques for studying dynamical processes in liquids. Dielectric relaxation spectrometry has proven a powerful tool, suitable to gain insights into the mechanisms of association and into reorientational dynamics of dipolar liquids [7, 8]. Detailed DRS studies of pure DMSO and diethyl sulfoxide (DESO) and the binary systems DMSO/CCl₄ and DESO/CCl₄ have been presented recently [5, 6]. In this paper, we present results of a dielectric relaxation study of pure dipropylsulfoxide (DPSO) and its solutions in non-polar solvent carbon tetrachloride. The results will be compared with those reported recently for the lower homologues.

Experimental

DPSO was synthesized and purified according to reference [9]. All solutions were made up by weight from dry CCl_4 of the highest purity available (Sigma-Aldrich, 99.9%).

We have determined the $\varepsilon^*(v)$ spectra of DPSO/CCl₄ mixtures over the entire composition range $(0.1 \le X_{DPSO} \le 1)$. Dielectric spectra were recorded by a coaxial reflection technique based on a microwave network analyzer (Hewlett-Packard HP 8720C) [10]. The probe (HP 85070B) was fixed in a glass cell thermostatted with an accuracy of \pm 0.02 K. Reflected waves were sampled at 0.1 < v < 20 GHz and were converted to dielectric spectra using software based on the Nicolson-Ross method. The method requires three-point calibration at each frequency, made with an open circuit, a short circuit, and with pure water as a calibration fluid. Several spectra were recorded for each sample and were averaged.

Properties such as density, d, and refractive index, n_D , of the mixtures were measured in addition (the densities of the mixtures were measured using a vibrating tube densimeter, type Anton Paar DMA 4500, which is capable to yield an accuracy to $\pm 5 \cdot 10^{-5}$ g·cm-3, a standard refractometer with an accuracy of $\pm 5 \cdot 10^{-4}$ was used to measure the refractive index n_D of the samples at the wave length of the sodium D line).

Results and Discussion

Typical examples of the real part $\varepsilon'(v)$ and imaginary part $\varepsilon''(v)$ of the complex permittivity $\varepsilon^*(v) = \varepsilon'(v) - i\varepsilon''(v)$ of the DPSO/CCl₄ mixtures in the whole concentration range $(0.1 \le X_{DPSO} \le 1)$ at 298.15 K temperature are shown in fig. 1. The spectra comprise about 1000 data triples $\{v, \varepsilon'(v), \varepsilon''(v)\}$ in the range 100 MHz $\le v \le$ 20 *GHz*.

In fig. 2 are presented for comparison dielectric loss spectra (ε'') for DMSO, DESO and DPSO at 298.15 K. Along the homologous series of dialkylsulfoxides the dielectric constant (which is proportional to the value of ε'' amplitude) decreases slightly in going from DMSO to DESO, followed by a more substantial decrease in DPSO. Thus, on the macroscopic level the solvent becomes less polar. It can be seen from fig.2 that the position of the peak in the plot of the imaginary part of permittivity vs frequency shifts toward low frequency in going from DMSO to DESO and DPSO. It shows that the relaxation time largely increase in the series DMSO < DESO < DPSO [5].

In the analysis of the complex permittivity $\varepsilon^*(v)$ various models based on a sum of *n* Havriliak-Negami (HN) equations

$$\varepsilon^{*}(\nu) = \varepsilon_{\infty} + \sum_{j=1}^{n} \frac{\Delta \varepsilon_{j}}{\left[1 + \left(i2\pi\nu\tau_{j}\right)^{\alpha}\right]^{\beta}}$$
(1)

or its variants the Debye (D), the Cole-Davidson (CD) or Cole-Cole (CC) equations with adjustable α and β have been tested using a nonlinear least-squares fitting procedure [7, 8].

Fig. 1. Dielectric permittivity, $\varepsilon'(\nu)$, and loss $\varepsilon''(\nu)$, spectra of DPSO/CCl₄ mixtures at 298.15 K in concentration range $0.1 \le X_{DPSO} \le 1$.

Fig. 2. Dielectric loss spectrum ($\epsilon'')$ against frequency (v) for DMSO, DESO and DPSO at 298.15 K.

It was found that the Cole-Davidson spectral function, which presumes an unsymmetrical relaxation time distribution, "properly" applies for the measured spectra of DPSO and DPSO/CCl₄ mixtures.

$$\varepsilon_{\rm CD} * (\omega) = \varepsilon_{\omega} + \frac{\Delta \varepsilon}{\left(1 + i\omega\tau_{CD}\right)^{\beta}}.$$
 (2)

The parameters $\beta (0 < \beta \le 1)$ describes an asymmetric broadening of the relaxation function for frequencies $\omega > 1/\tau_{CD}$, where τ_{CD} is the Cole-Davidson relaxation time. For $\beta = 1$ the Debye function is recovered again.

The dielectric parameters, static dielectric constant (\mathcal{E}_S) , relaxation time (τ) , relaxation strength ($\Delta \varepsilon$), the CD parameter (β), the high frequency limiting dielectric constant (ε_{∞} , approximated by Maxwell as $\approx 1.1 n_D^2$) and the mean relaxation time $\langle \tau_{CD} \rangle$ of the CD distribution ($\langle \tau_{CD} \rangle = \beta \cdot \tau_{CD}$) obtained from the dielectric relaxation spectra of DPSO/CCl₄ are summarized in table 1.

Table

Parameterization of dielectric spectra for the binary mixture DPSO/CCl₄ at 298.15 K.

X _{DPSO}	\mathcal{E}_{S}	Δε	τ_{CD},ps	β	$<\tau_{CD}>$	$\varepsilon_{\infty} = 1.1 n_D^2$	d, g cm ⁻³	g_{K}
0.1	4.25	2.06	71.33	0.727	51.86	2.34	1.5026	0.834
0.15	6.97	4.47	101.44	0.731	74.15	2.35	1.4634	1.261
0.20	9.24	6.64	110.51	0.782	86.42	2.36	1.4256	1.381
0.25	10.73	7.88	115.67	0.814	94.16	2.36	1.3892	1.348
0.30	12.82	9.94	114.81	0.851	97.70	2.36	1.3541	1.407
0.40	16.08	13.08	116.57	0.859	100.13	2.37	1.2873	1.412
0.50	19.14	15.90	114.13	0.890	101.58	2.37	1.2244	1.410
0.60	21.48	17.97	108.95	0.939	102.30	2.37	1.1650	1.379
0.70	24.11	20.42	106.48	0.952	101.37	2.37	1.1088	1.385
0.80	26.66	22.88	103.57	0.959	99.32	2.37	1.0556	1.396
0.90	29.29	25.49	102.06	0.969	98.90	2.37	1.0053	1.418
1.00	31.10	26.98	103.80	0.900	93.42	2.36	0.9580	1.405

Fig. 3. The static dielectric constant ϵ_S for DPSO/CCl₄ mixture against mole fraction of DPSO at 298.15 K.

Fig. 4. The dielectric strength $\Delta\epsilon$ for DPSO/CCl₄ mixture against mole fraction of DPSO at 298.15 K.

The concentration dependent static dielectric constant (\mathcal{E}_S), relaxation strength ($\Delta \varepsilon$) and the mean relaxation time ($\langle \tau_{CD} \rangle$) for DPSO/CCl₄ binary mixtures have been presented in fig. 3-5. Since tetrachloromethane is a non-polar molecule, the observed relaxation component can essentially be ascribed to the highly polar sulfoxide molecule. As shown in fig. 3 and 4 the relaxation contribution becomes more intense with increasing concentration of DPSO in the mixture.

An interesting feature is the dependence of the mean relaxation time ($\langle \tau_{CD} \rangle = \beta \tau_{CD}$) on the mole fraction of DPSO, fig. 5. It is important to notice that in case of DPSO/CCl₄ mixtures the dependence of the relaxation time on the mole fraction of DPSO considerably differs from DMSO/CCl₄ and DESO/CCl₄ mixtures [4]. In this case the position of the plateau of τ corresponds to a DPSO mole fraction 0.5-0.7. Early, on the basis of dielectric relaxation measurements on the DMSO/CCl₄ and DESO/CCl₄ and DESO

Fig. 5. Plot of the mean relaxation time $(\tau_{CD}*\beta)$ from fitted Davidson-Cole functions versus the DPSO mole fraction for DPSO/CCl₄ mixture against molar ratio of DPSO at 298.15 K.

The structural information about the liquids from the dielectric relaxation parameter may be obtained using the Kirkwood correlation parameter g. This factor is a measure for preferential local ordering of molecular dipole moments and thus a hint at the formation of self-aggregates.

Kirkwood factors were calculated from ε_S by the standard relation of Kirkwood– Fröhlich theory. For a pure liquid, the relevant expression is

$$g_{\rm K}\mu^2 = \frac{(\varepsilon_s - \varepsilon_\infty)(2\varepsilon_s + \varepsilon_\infty)9\varepsilon_0 kT}{\varepsilon_s(\varepsilon_\infty + 2)^2 N_A \mu^2 c}$$
(3)

where ε_{∞} is the high-frequency limit due to optical and vibrational processes, approximated by Maxwell as $\approx 1.1 n_D^2$, k is the Boltzmann constant, N_A is the Avogadro number, c is the concentration of the dipoles (c=d/M, accessible from the density and the molar weight M, of the pure liquids), ε_S is the dielectric constant, ε_0 is the permittivity of the vacuum, μ is the dipole moment in a gas phase (for DPSO ~3.9 D).

In mixtures of apolar solvents such as CCl_4 , Eq. (2) is, however, more easily generalized, because apolar solvents do only contribute to the nuclear and electronic polarization, but not to orientational polarization. Dielectric theory of mixtures then yields for a system comprising a of a polar component 1 at mole fraction x_1 and non-polar component 2 at mole fraction x_2

$$g_{\kappa}\mu^{2} = \frac{9k_{B}T\varepsilon_{0}}{N_{A}x_{1}}\frac{(2\varepsilon_{s}+\varepsilon_{\infty})^{2}}{(2\varepsilon_{s}+1)(\varepsilon_{\infty}+2)^{2}} \times \left[\frac{\varphi(\varepsilon_{s}-1)}{\varepsilon_{s}} - \frac{3x_{2}M_{2}(\varepsilon_{s,2}-1)}{(2\varepsilon_{s}+\varepsilon_{s,2})d_{2}} - \frac{3x_{1}M_{1}(\varepsilon_{\infty}-1)}{(2\varepsilon_{s}+\varepsilon_{\infty})d_{1}}\right], (4)$$

where φ is the molar volume of the mixture and the M_i, \mathcal{E}_{S_i} , and d_i (i=1,2) are the molar

masses, dielectric constants, and densities of the pure components, respectively [7,11].

The calculated Kirkwood correlation factor for DPSO is sufficiently above unity (g = 1.4). The observed Kirkwood factors indicate a moderate extent of parallel dipole correlations in DPSO, as also observed in DESO and DMSO [6]. Upon dilution of DPSO

in CCl₄, the dipolar correlations gradually vanish, and at infinite dilution g_K approaches unity, as expected for an isolated dipole (fig. 6).

Fig. 6. Kirkwood correlation factor g_k as a function of mole fraction of DPSO for DPSO/CCl₄ mixture at 298.15 K.

Acknowledgement

This work was made possible by a research grant (PS-Cheminorg-3179) from the Armenian National Science and Education Fund (ANSEF) based in New York, USA.

ԴԻՊՐՈՊԻԼՍՈՒԼՖՕՔՍԻԴ/ՇСӏ₄ ԼՈՒԾՈՒՅԹՆԵՐԻ ԴԻԷԼԵԿՏՐԻԿ ՌԵԼԱՔՍԱՅԻՈՒՄՆԱՄԻՐՈՒԹՅՈՒՆԸ

Լ. Ս. ԳԱԲՐԻԵԼՅԱՆ և Շ. Ա. ՄԱՐԳԱՐՅԱՆ

Ուսումնասիրվել է մաքուր դիպրոպիլսուլֆօքսիդի (ԴՊՍՕ) և ԴՊՍՕ/ՇСІ₄ բինար խառնուրդի կոմպլեքս դիէլեկտրիկ թափանցելիությունը լայն կոնցենտրացիոն մարզում 100 ՄՀց-ից մինչև 20 ԳՀց հաձախության տիրույթում 298.15 Կ ջերմաստիձանում։ Դիէլեկտրիկ թափանցելիության հաձախությունից կախվածության փորձնական տվյալների մշակման համար օգտագործվել են տարբեր ռելաքսացիոն ֆունկցիաներ։ Յույց է տրվել, որ Կոուլ-Դէվիդսոնի ֆունկցիան, որը ներկայացնում է ռելաքսացիայի ժամանակի ոչ սիմետրիկ բաշխումը, ամենաձշգրիտ է նկարագրում ԴՊՍՕ և ԴՊՍՕ/ՇСІ₄ դիէլեկտրիկ սպեկտրները։ Ստացված արդյունքները համեմատվել են այլ հոմոլոգների՝ դիմեթիլ- և դիէթիլսուլֆօքսիդների տվյալների հետ։

ИЗУЧЕНИЕ ДИЭЛЕКТРИЧЕСКОЙ РЕЛАКСАЦИИ РАСТВОРОВ ДИПРОПИЛСУЛЬФОКСИД/ССІ4

Л. С. ГАБРИЕЛЯН и Ш. А. МАРКАРЯН

Ереванский государственный университет Армения, 0025, Ереван, ул. А. Манукяна 1 Факс: (37410) 576421; E-mail: shmarkar@ysu.am

Измерены комплексные диэлектрические проницаемости чистого дипропилсульфоксида (ДПСО) и бинарной системы ДПСО/ССІ4 в широком концентрационном интервале в частотной области от 100 МГц до 20 ГГц при 298.15 К. Различные релаксационные функции были использованы для обработки частотно-зависимой диэлектрической проницаемости. Выявлено, что Коула-Дэвидсона, спектральная функция которая предполагает распределение времени релаксации, наиболее точно несимметричное описывает измеренные спектры ДПСО и системы ДПСО/ССІ4. Полученные результаты сопоставлены с ранее описанными данными для низших гомологов: диметил- и диэтилсульфоксидов.

REFERENCES

- Markarian S.A., Asatryan A.M., Grigorian K.R., Sargsyan H.R. // Biopolymers, 2006, v. 81, p.1.
- [2] Toreggiani A., Foggia M. Di, Manco I., Maio A. De, Markarian S.A., Bonora S. // J. Mol. Struct., 2008, v. 891, p. 115.
- [3] Gabrielian L.S., Markarian S.A. // J. Mol. Liq., 2004, v. 112, p. 137.
- [4] Markarian S., Galstian A., Stockhausen M. // Z. Naturforsch., 2001, v.56a, p. 785.
- [5] Gabrielyan L.S., Markarian S.A., Weingärtner H.//J. Mol. Liq., 2011, v. 159, p. 201.
- [6] Markarian S.A., Gabrielian L.S. // Phys. Chem. Liq., 2009, v. 47, p. 311.
- [7] Böttcher C.J.F. Theory of Dielectric Polarization, v. 1, Elsevier, Amsterdam, 1973.
- [8] Böttcher C.J.F., Bordewijk P. Theory of Dielectric Polarization, v. 2, Elsevier, Amsterdam, 1978.
- [9] Markarian S.A., Tadevosyan N., Method of purification of diethylsulfoxide, Patent of the Republic of Armenia, No 20010041 (2002).
- [10] Weingärtner H., Knocks A., Boresch S., Höchtl P., Steinhauser O. // J. Chem. Phys., 2001, v. 115. p. 1463.
- [11] Weingärtner H., Nadolny H., Oleinikova A, Ludwig R. // J. Chem. Phys., 2004, v. 120, p.11692.