ŻUՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հшјшиտшић рриђшиши ћшићи 66, №1, 2013 Химический журнал Армении

УДК 577(69+127)

СПЕКТРЫ ЯМР ¹Н И ¹³С 1-ВИНИЛ-3-МЕТИЛ- И 1-ВИНИЛ-5-МЕТИЛ-4-ФУНКЦИОНАЛЬНО ЗАМЕЩЕННЫХ ПИРАЗОЛОВ. ЭФФЕКТЫ МЕТИЛЬНЫХ ЗАМЕСТИТЕЛЕЙ ПИРАЗОЛЬНОГО КОЛЬЦА ПРИ РАДИКАЛЬНОЙ ПОЛИМЕРИЗАЦИИ

О. С. АТТАРЯН, А. А. СААКЯН и Г. В. АСРАТЯН

Научно-технологический центр органической и фармацевтической химии НАН Республики Армения Институт органической химии Армения, Ереван, 0014, пр. Азатутян, 26 Факс: (+37410) 28-75-61; e-mail: sahakyan.arsen@gmail.com

Поступило 20 III 2013

Выявлено, что при радикальной полимеризации 1-винил-5-метил-4-функционально замещенные пиразолы полимеризуются с бо'льшей скоростью, чем 1-винил-3-метил-4-функционально замещенные. Причиной этому служит нарушение копланарности винильного фрагмента и азольного цикла у 5-метилизомеров, что согласуется с $\mathrm{SMP}^{13}\mathrm{C}$ спектральными данными.

Рис. 3, табл. 1, библ. ссылок 10.

В настоящей работе приводится краткий анализ спектров ЯМР 1 Н и 13 С 1-винил-3-метил- и 1-винил-5-метил-4-функционально замещенных пиразолов 1 и 2 с целью сравнения спектроскопических характеристик, иллюстрирующих особенности их строения. Это позволит, с нашей точки зрения, прогнозировать реакционную способность винильных групп в процессе радикальной полимеризации.

Установлено, что в процессе радикальной полимеризации в одинаковых условиях мономеры 1 и 2 проявляют различную активность: изомеры, где метильная группа находится в пятом положении пиразольного кольца 2, полимеризуются с бо льшей скоростью, чем изомеры 1 (рис. 1-3).

Из таблицы видно, что химические сдвиги (XC) протонов винильной группы слабо зависят от места расположения метильных заместителей, изменяясь в N пределах лишь несколько сотых м. д. Поэтому в дальнейшем будут анализированы лишь XC C_{α} и C_{β} , поскольку взаимодействие винильной группы с гетероциклом наиболее реально отражается в XC указанных атомов углерода [1, 2]. Из- C_{α} вестно, что величины XC ЯМР 13 С определенным образом связаны с электронной плотностью на соответствующих атомах углерода [3].

 $\label{eq:Tadnu} \begin{tabular}{l} $Tadnu\mu$ \\ Π араметры спектров ЯМР 1H и 13C 1-винил-3-метил- \\ u 1-винил-5-метил-4-функционально замещенных пиразолов \\ \end{tabular}$

Соеди-	Хим. сдвиги 1 Н, δ , м.д.			Хим. сдвиги ¹³ С, <i>δ</i> , м.д.					
нение	На	Нв	Нс	Cα	Сβ	C3*	C ₄ *	C5*	Σ C*
X = CHO									
1	5.86	4.96	7.08	131.96	102.36	150.91	122.20	132.91	406.02
2	5.82	5.04	7.16	128.21	104.52	141.80	121.81	141.92	405.53
$X = CH_2OH$									
1	4.61	5.35	6.94	121.52	96.50	132.61	113.43	150.96	397.80
2	4.75	5.58	7.01	120.31	99.41	141.57	112.92	141.68	396.17
X = COOH									
1	4.82	5.58	7.01	132.13	100.22	132.65	121.53	123.74	377.92
2	4.94	5.79	7.10	128.40	102.52	134.21	120.26	124.42	378.89

N

 H_A

 C_{β}

 H_B

1

X = CHO;

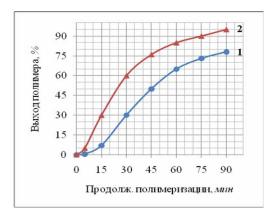


Рис 1. Кинетические кривые радикальной полимеризации 1-винил-3-метил- и 1-винил-5-метил-4-гидроксиметилпиразолов в ДМФА при 70° С, [M] - 1 моль/n, [I] — 0.01 моль/n: 1 — 1-винил-3-метил-4-гидроксиметилпиразол; 2 — 1-винил-5-метил-4-гидроксиметилпиразол.

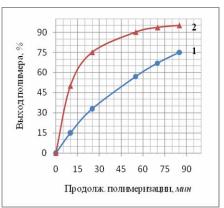


Рис 2. Кинетические кривые радикальной полимеризации 1-винил-3-метил- и 1-винил-5-метил-4-формилпиразолов в ДМФА при 70° С, [M] - 1 MONDDEM N, [I] - 0.01 MONDDEM N - 1 - 1-винил-3-метил-4-формилпиразол; 2 — 1-винил-5-метил-4-формилпиразол.

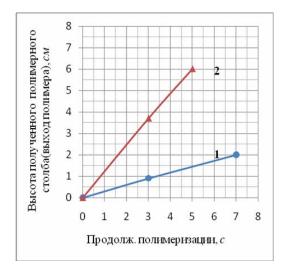


Рис. 3. Кинетические кривые радикальной полимеризации (фронтальной) 1-винил-3-метил- и 1-винил-5-метил-4-пиразолкарбоновых кислот при 115° С, [I] - 0.5 % (от мономера): I - 1-винил-3-метил-4-пиразолкарбоновая кислота; I - 1-винил-5-метил-4-пиразолкарбоновая

кислота.

Изменение характера взаимодействия винильной группы и азольного цикла, при наличии метильных заместителей в пиразольном кольце, наглядно выявляется сопоставлением XC C_{α} - и C_{β} -атомов углерода исследуемых винилпиразолов **1, 2**. Из таблицы видно, что в мономерах **2**, которые при полимеризации проявляют большую активность, C_{β} -атом двойной связи дезэкранирован и XC перемещен в более слабое поле, а C_{α} , наоборот, экранирован, что, согласно работе [4], соответствует уменьшению степени р- π сопряжения в N-винильном фрагменте, которое имеет место при нарушении копланарности винильного фрагмента и азольного цикла. Уменьшение степени сопряжения приводит к увеличению активности образующегося радикала, что отражается в увеличении ско

рости полимеризации мономеров **2** по сравнению с мономерами **1** (поскольку скорость роста цепи K_P при радикальной полимеризации определяется преимущественно активностью радикала) [5].

Интересно также отметить, что суммарная электронная плотность на углеродных атомах кольца практически не изменяется как в 1-винил-5-метилпиразолах (2), так и в 1-винил-3-метилпиразолах (1) (табл.). Это свидетельствует о том, что в электронные взаимодействия вовлечены только двойная связь и 1-N атом азота.

Экспериментальная часть

Синтез мономеров осуществлен по известным методикам [6-8]. Соединение 1 (X=CHO): т. кип. 74-75°С/1 *мм рт ст*, n_D^{20} 1.5620; (X=CH2OH): т. кип. 101-102°С/1 *мм рт ст*, n_D^{20} 1.5385; (X=COOH): т. пл. 168-170°С. Соединение 2 (X=CHO): т. кип. 80-81°С/1 *мм рт ст*, n_D^{20} 1.5680; (X=CH2OH): т. кип. 114-115°С/1 *мм рт ст*, n_D^{20} 1.5412; (X = COOH): т. пл. 158-160°С. Спектры ЯМР ¹Н и ¹³С зарегистрированы на приборе "Varian Mercury-300" с резонансной частотой 300.076 $M\Gamma \mu$ в ДМСО- d_E Перед полимеризацией мономеры дважды перегоняли (перекристаллизовали) в вакууме.

Общий метод полимеризации мономеров (1,2, X=CHO, X=CH2OH). Полимеризацию соединений 1,2 проводят в толстостенном стеклянном цилиндрическом сосуде с герметичной резиновой пробкой. Инициатором полимеризации служит ДАК (0.01 моль/л). После дегазации смесей многократным замораживанием и размораживанием в вакууме 1 мм рт ст реакционный сосуд выдерживают в термостате при 70°C±0.1°C. Через определенные промежутки времени пробы смеси анализируют на содержание остаточных мономеров методом ГЖХ согласно методике [9]. Концентрацию непрореагировавших мономеров определяют измерением площадей пиков на хроматограммах. Полимеры выделяют из растворов в ДМФА 2-кратным осаждением в ацетоне, сушат при 55°C/10 мм. Выход полимера 80-85%. Характеристические вязкости [η] в ДМФА при 20°С, дл/г в пределах 0.39-0.52.

1-Винил-3-метил-4-пиразолкарбоновая кислота (1, X=COOH). Полимеризацию проводят согласно методике [10]. Смешивают мономер 1 и ДАК (0.5% от мономера), помещают в сосуд с диаметром 0.5 m и высотой 10 c . После тщательной трамбовки получают в ампуле мономерный столбик с высотой 2.5 c и помещают в нагретую масляную баню с температурой 70°С. Полимеризация начинается при 114-115°С и заканчивается через 7-8 c с образованием полимерного столба высотой 3.5 c m (m). После охлаждения ампулу разбивают и растворяют полимер в 10 m ДМФА, затем выливают в воду с осаждением полимера.

После промывания и сушки получили порошкообразный полимер с выходом 51%.

1-Винил-5-метил-4-пиразолкарбоновую кислоту (2, X=COOH) получают аналогично предыдущему. Полимеризация заканчивается через 5-6 c (h=6 cm). Выход полимера — 62%.

1-ՎԻՆԻԼ-3-ՄԵԹԻԼ- ԵՎ 1-ՎԻՆԻԼ-5-ՄԵԹԻԼ-4-ՖՈԻՆԿՑԻՈՆԱԼ ՏԵՂԱԿԱԼՎԱԾ ՊԻՐԱԶՈԼՆԵՐԻ ՄՄՌ Կ ԵՎ ԿС ՍՊԵԿՏՐՈՍԿՈՊԻԿ ՏՎՑԱԼՆԵՐԻ ՈՒՍՈՒՄՆԱՍԻՐՈՒԹՅՈՒՆԸ։ ՊԻՐԱԶՈԼԱՅԻՆ ՕՂԱԿՈՒՄ ՄԵԹԻԼ ԽՄԲԵՐԻ ԱԶԴԵՑՈՒԹՅՈՒՆԸ ՌԱԴԻԿԱԼԱՅԻՆ ՊՈԼԻՄԵՐՄԱՆ ԺԱՄԱՆԱԿ

Հ. Մ. ԱԹԹԱՐՑԱՆ, Ա. Ա. ՄԱՀԱԿՑԱՆ և Գ. Վ. ՀԱՍՐԱԹՑԱՆ

1-Վինիլ-3-մեթիլ- և 1-վինիլ-5-մեթիլ-4-ֆունկցիոնալ տեղակալված պիրազոլների ռադիկալային պոլիմերման ռեակցիաների ուսումնասիրության ընթացքում պարզվել է, որ 1-վինիլ-5-մեթիլ-4-ֆունկցիոնալ տեղակալված պիրազոլները ավելի արագ են պոլիմերվում, քան 3-մեթիլածանցյալները։ Համաձայն ՄՄՌ 13 С սպեկտրոսկոպիկ տվյալների, 5-մեթիլիզոմերների վինիլային ածխածնի C_{ℓ} -ատոմը դեզէկրանացված է, իսկ C_{α} -ատոմը՝ հակառակը, էկրանացված է, որը, համաձայն գրական տվյալների, համապատասխանում է N-վինիլային ֆրագմենտում p- π զուգորդման նվազման, որը նկատվում է պիրազոլային օղակի և վինիլային խմբի կոպլանարության խախտման դեպքերում։ Զուգորդման աստիձանի նվազումը հանգեցնում է առաջացած ռադիկալի ակտիվության մեծացմանը, որը դրսևորվում է 5-մեթիլիզոմերների պոլիմերացման ռեակցիաների արագության մեծացմամբ 3-մեթիլիզմերների հետ համեմատած։

NMR ¹H AND ¹³C SPECTRAL DATA OF 1-VINYL-3-METHYL- AND 1-VINYL-5-METHYL-4-FUNCTIONALLY SUBSTITUTED PYRAZOLES. THE EFFECTS OF METHYL SUBSTITUENTS OF THE PYRAZOLE RING AT THE RADICAL POLYMERIZATION PROCESS

H. S. ATTARYAN, A. A. SAHAKYAN and G. V. HASRATYAN

The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA
Institute of Organic Chemistry
26, Azatutyan Str., Yerevan, 0014, Armenia
Fax: (+37410) 28-75-61; E-mail: sahakyan.arsen@gmail.com

During the radical polymerization process was mentioned, that 1-vynil-5-methyl-4-functionally substituted pyrazoles are being polymerized faster, then 1-vynil-3-methyl-4-functionally substituted pyrazoles. According to NMR ^{13}C spectral data in 5-methylisomers the signal of C_{β} carbonic atom of vinyl group is downfield shifted and C_{α} is upfield shifted, which according to literature data is corresponding to the decreasing of p- π conjunction in N-vinyl fragment, which occurs when coplanarity of vinyl group and pyrazole ring is distorted. Decreasing of p- π conjunction results increase of radical activity, which is affecting in increasing of polymerization speed of 5-methylisomers compare with 3-methylisomers.

ЛИТЕРАТУРА

- [1] Трофимов Б.А., Сигалов М.В., Бжезовский В.М., Калабин Г.А., Михалева А.И., Васильев А.Н. // ХГС, 1978, ¹3, с. 350.
- [2] Сигалов М.В., Калабин Г.А., Михалева А.И., Трофимов Б.А. // ХГС, 1980, 13, с. 328.
- [3] Stothers J.B. Carbon—13NMR spectroscopy, New York, Academic Press, 1972, 559 p.
- [4] *Сигалов М.В., Калабин Г.А., Пройдаков А.Г., Домнина Е.С., Скворцова Г.Г.* // Изв. АН СССР, Сер. хим., 1981, ¹12, с. 2676.
- [5] Шур А.М. Высокомолекулярные соединения. М., Высшая школа, 1981, 656 с.
- [6] *Аттарян О.С., Гавалян В.Б., Элиазян Г.А., Асратян Г.В., Дарбинян Э.Г.* // Арм. хим. ж., 1988, т. 41, ¹8, с. 496.
- [7] *Аттарян О.С., Элиазян Г.А.,Петросян Д.Г., Киноян Ф.С., Мацоян С.Г.* // Арм. хим. ж., 1977, т. 50, ¹3-4, с. 188.
- [8] *Балтаян А.О., Саакян А.А., Аттарян О.С., Асратян Г.В.* // ЖОХ, 2010, т. 80, вып. 5, с. 834.
- [9] *Макаров К.А., Воробьев Л.Н., Николаев А.Н., Сюда Е.* // ВМС, 1968, Б. т. 10, ¹10, с. 757
- [10] Давтян С.П., Берлин А.А., Тоноян А.О. // Обзорный журнал по химии, 2011, т. 1, 1 1, с. 58.