ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ

АРМЕНИЯ

Հայաստանի քիմիական հանդես 65, №3, 2012 Химический журнал Армении

УДК 543.422.25:547.7765

ОКИСЛЕНИЕ N-АЛКИЛ-3(5)МЕТИЛ-4-ФОРМИЛПИРАЗОЛОВ В УСЛОВИЯХ МЕЖФАЗНОГО КАТАЛИЗА

К. С. БАДАЛЯН , А. Э. АКОПЯН, Л.А. СААКЯН , О. С. АТТАРЯН в и Г. В. АСРАТЯН

^а Научно-технологический центр органической и фармацевтической химии НАН Республики Армения Институт органической химии Армения, 0014, Ереван, пр. Азатутян, 26 e-mail: araksyaeduardi@mail.ru 6 Ереванский государственный медицинский университет им. М. Гераци Армения, 0025, Ереван, ул. Корюна, 2

Поступило 23 II 2012

Предложен метод окисления N-алкил-3(5)метил-4-пиразолкарбальдегидов в условиях межфазного катализа, позволяющий осуществить хемоселективное окисление формильной группы без затрагивания метильной.

Библ. ссылок 13.

В ряду функционально замещенных пиразолов важное место принадлежит пиразол-4-карбоновым кислотам.

Известно, что некоторые производные пиразол-4-карбоновых кислот, например амиды, обладают выраженным фармакологическим действием [1-2]. На их способности декарбоксилироваться при повышенных температурах основан широко распространенный способ получения незамещенных в 4-положении пиразолов [3-5].

Основным способом получения пиразол-4-карбоновых кислот ляется щелочной гидролиз их эфиров [6-7] или кислотный гидролиз их амидов [3]. Синтез 4-пиразолкарбоновых кислот из соответствующих альдегидов осуществляется в водных растворах марганцевокислого калия при высоких температурах (80-90°C) [8-12]. Хотя и указанный процесс окисления обеспечивает высокие выходы конечных продуктов (80-90%), однако необходимо отметить, что этот метод окисления оказывается менее эффективным в случае пиразолальдегидов,

метильную группу в пиразольном кольце, поскольку реакция сопровождается частичным окислением метильной группы в карбоксильную. От образовавшихся при этом дикарбоновых кислот не удается освободиться обычными методами – перекристаллизацией, переосаждением.

Ранее нами было осуществлено хемоселективное окисление 1-(2-хлорэтил)-3(5)-метил-4-пиразолкарбальдегидов в условиях межфазного катализа[13], приведшее к исключительному образованию продукта окисления за счет формильной группы.

С целью синтеза новых производных пиразол-4-карбоновых кислот нами проведено окисление альдегидов **1-6** в тех же условиях (вода-бензол-КМпО4-ТЭБАХ) при 20-30°С.

Во всех случаях были получены соответствующие пиразол-4-карбоновые кислоты **7-12** с выходами 70-75%. Продолжительность проведенных реакций 10-12 ч. Образования продуктов окисления за счет метильных групп не наблюдалось. Строение полученных соединений подтверждено с помощью ЯМР ¹Н и ИК-спектров.

1, 4, 7, 10. R= CH₃; **2, 5, 8, 11.** R= C₂H₅; **3, 6, 9, 12.** R= C₃H₇

В частности, в ИК-спектрах полученных соединений наблюдаются характерные полосы поглощения группы ОН в области $3000-3200\ cm^1$, а валентные колебания группы С=О – в области $1700-1710\ cm^1$. В спектрах ЯМР ¹Н протоны метильных групп в положениях 3- и 5-пиразольного кольца при $2,22-2,51\ \text{м.д.}$ отчетливо проявляются в виде синглетов, что свидетельствует о хемоселективном протекании окисления формильной группы пиразолов 1-6 в условиях межфазного катализа.

Экспериментальная часть

ИК-спектры получили на приборе \square "Spekord 75 IR" в тонком слое, спектры ЯМР 1 H – на "Mercury 300 $M\Gamma\mu$ ".

Общая методика окисления 4-формилпиразолов 1-6. К смеси 0,01 *моля* соответствующего 4-формилпиразола, 6 r воды, 5 $m\pi$ бензола и 0,3 r ТЭБАХ при перемешивании порциями добавляли 1,6 r (0,01 mоля) пер-

манганата калия так, чтобы температура реакционной среды не превышала 20° С. Реакционную смесь перемешивали в течение 12 $^{\prime}$ при 30° С, затем фильтрацией реакционную смесь отделили от MnO_2 и промывали водой. Водный слой обрабатывали эфиром для избавления от органических остатков, раствор калиевой соли 4-пиразолкарбоновой кислоты нейтрализовывали соляной кислотой, выпавшие белые кристаллы отфильтровывали и сушили.

- **1,3-Диметил-4-пиразолкарбоновая кислота** (**7**). Выход 70%, т.пл. 182°С. Найдено, %: С 51.67; Н 5.48; N 18.72. С₆НвN2O2. Вычислено, %: С 51.42; Н 5.75; N 19.99. ИК-спектр, υ , $c M^1$: 1520 (кольцо); 1730 (С = O); 3200-3400 (ОН). Спектр ЯМР 1 Н (ДМСО-d₆), δ , м.д.: 2.22 (с, 3H, 3-CH₃); 3.82 (с, 3H, N-CH₃); 7.92 (с, 1H, 5-H); 12.2 (м, 1H, OH).
- **1,5-Диметил-4-пиразолкарбоновая кислота** (**10**). Выход 72%, т.пл. 186°С. Найдено, %: С 51.67; Н 5.98; N 18.84. С₆НвN₂O₂. Вычислено, %: С 51.42; Н 5.75; N 19.99. ИК-спектр. υ , $c m^1$: 1520 (кольцо); 1730 (С = O); 3200-3400 (ОН). Спектр ЯМР ¹Н (ДМСО-d₆), δ , м.д.: 2.43 (с, 3H, 5-CH₃); 3.80 (с, 3H, N-CH₃); 7.65 (с, 1H, 3-H); 12 (ш, ОН).
- **1-Этил-3-метил-4-пиразолкарбоновая кислота** (**8**). Выход 75%, т.пл. 164°С. Найдено, %: С 53.84; Н 6.27; N 18.52. С7Н $_{10}$ N2O2. Вычислено, %: С 54.54; Н 6.49; N 18.18. ИК-спектр, υ , cm¹: 1530 (кольцо); 1730 (С = O); 3200-3400 (ОН). Спектр ЯМР $_{1}$ Н (ДМСО-d₆), δ , м.д., Γ μ : 1.42 (т, 3H, CH₂CH₃, J=7.2); 2.32 (с, 3H, 3-CH₃); 4.12 (к, 2H, NCH₂, J=7.2); 7.95 (с, 1H, 5-H); 11.6 (ш, OH).
- **1-Этил-5-метил-4-пиразолкарбоновая кислота** (**11**). Выход 72%, т.пл. 149-150°С. Найдено, %: С 53.72; Н 6.42; N 18.39. С $_7$ Н $_10$ N $_2$ O $_2$. Вычислено, %: С 54.54; Н 6.49; N 18.18. ИК-спектр, υ , cm^1 : 1530 (кольцо), 1730 (С = O); 3200-3400 (ОН). Спектр ЯМР 1 Н (ДМСО-d $_6$ / CCl $_4$ 1:3), δ , м.д., $\mathit{Ги}$: 1.39 (т, 3H, CH $_2$ -CH $_3$, J=7.2); 2.51 (с, 3H, 5-CH $_3$); 4.10 (к, 2H, NCH $_2$, J=7.2); 7.70 (с, 1H, 3-H); 11.0 (ш, 1H, OH).
- **1-Пропил-3-метил-4-пиразолкарбоновая кислота** (**9**). Выход 75%, т.пл. 128°C. Найдено, %: С 56.89; Н 6.79; N 16.41. С₈Н₁₂N₂O₂. Вычислено, %: С 57.14; Н 7.14; N 16.67. ИК-спектр, υ , cm^{-1} : 1540 (кольцо); 1730 (С = O); 3100-3300 (ОН). Спектр ЯМР 1 Н (ДМСО-d₆ / CCl₄— 1:3), δ , м.д.: $\mathit{Ги}$: 0.99 (т, 3H, CH₂-CH₃, J=7.0); 1.95 (к, 2H, CH₂-CH₃, J1=7.0, J2=7.2); 2.39 (с, 3H, 3-CH₃); 3.99 (т, 2H, NCH₂, J=7.2); 7.93 (с, 1H, 5-H); 11.55 (ш, 1H, OH).
- **1-Пропил-5-метил-4-пиразолкарбоновая кислота** (**12**). Выход 70%, т.пл. 91°С. Найдено, %: С 56.74; Н 7.38; N 16.88. Св $H_{12}N_{2}O_{2}$. Вычислено, %: С 57.14; Н 7.14; N 16.67. ИК-спектр, υ , cm^{1} : 1540 (кольцо); 1730 (С=O); 3200-3400 (ОН). Спектр ЯМР 1 Н (ДМСО- 1 Н (СС 1 1-13), δ , м.д.: $\mathit{Г}$ д: 0.95 (т, 3H, CH₂- 1 CH₃, J=7.0), 1.93 (к, 2H, 1 CH₂-CH₃, J=7.2); 2.51 (с, 3H, 5-CH₃); 3.99 (т, 2H, NCH₂, J=7.2); 7.62 (с, 1H, 3-H); 11.8 (ш, OH).

N-ԱԼԿԻԼ-3(5)ՄԵԹԻԼ-4-ՖՈՐՄԻԼՊԻՐԱԶՈԼԻ ՕՔՍԻԴԱՑՈՒՄԸ ՄԻՋՖԱԶԱՑԻՆ ԿԱՏԱԼԻՉԻ ՊԱՑՄԱՆՆԵՐՈՒՄ

Կ. Ս. ԲԱԴԱԼՑԱՆ, Ա. Է. ՀԱԿՈԲՑԱՆ, Լ. Ա. ՄԱՀԱԿՑԱՆ Հ. Ս. ԱԹԹԱՐՅԱՆ և Գ. Վ. ՀԱՍՐԱԹՅԱՆ

Առաջարկվել է պիրազոլային օղակում մեթիլ խումբ պարունակող պիրազոլ-4-կարբալդեհիդի օքսիդացումը միջֆազային կատալիզի պայմաններում, որը հնարավորություն է տալիս ցածր ջերմաստիձանում քեմոսելեկտիվ իրականացնել ֆորմիլ խմբի օքսիդացումը՝ բացառելով մեթիլ խմբերի օքսիդացումը։

THE OXIDATION OF N-ALKYL-3(5)METHYL-4-FORMYLPYRAZOLES UNDER PHASE-TRANSFER CATALYSIS

K. S. BADALYAN, A. E. HAKOBYAN, L. A. SAHAKYAN, H. S. ATTARYAN and G. V. HASRATYAN

The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA Institute of Organic Chemistry 26, Azatutyan Str., Yerevan, 0014, Armenia E-mail: araksyaeduardi@mail.ru

In the row of functionally substituted pyrazoles the main role belongs to pyrazole-4-carboxylic acids. It is known that some derivatives of pyrazole-4-carboxylic acids have pharmacological activity. The widespread method for obtaining unsubstituted in the 4th position pyrazoles is based on their ability to be decarboxylated at high temperatures. We have offered the oxidation of pyrazole-4-carbaldehydes under phase-transfer catalysis under low temperature (20-30°C) and with high yield (70-75%). In the mentioned conditions oxidation proceeds slowly, but chemoselectively, excluding oxidation of methyl group.

ЛИТЕРАТУРА

- [1] *Загоревский В.А., Власова Н.В., Зыков Д.А., Кирсанова З.Д.* // Хим.-фарм.ж., 1989, т. 23, ¹8, с. 966.
- [2] Морозов И.С., Климова Н.В., Быков Н.П., Зайцева Н.М., Пушкарь Г.В. Двалишвили Э.Д., Хранилов А.А., Пятин Б.М. // Хим.-фарм.ж., 1991, т. 25, 13, с. 29.
- [3] Kira M.A., Nofal Z.M., Gadalla K.Z. // Tetrahedron Lett., 1970, v. 11, 148, p. 4215.
- [4] Bratenko M.K., Chornous V.A., Vovk M.V.// Chem. Heter. Comp., 2000, v. 38, 19, p.1156.
- [5] Аттарян О.С., Акопян Г.А., Тадевосян Д.А., Бадалян К.С., Асратян Г.В. // Хим. ж. Армения, 2008, т. 61, 12, с. 288.
- [6] Auwers K. V., Mauss H. // Chem. Ber., 1926, B. 59, p. 611.
- [7] Bischoff C., Platz K.H. // J. Pract. Chem., 1970, B. 312, p. 2.
- [8] Dains F.B., Long W.S. // J. Am. Chem. Soc., 1921, v. 43, 16, p. 1200.
- [9] Finar J.L., Lord G.H. // J. Chem. Soc., 1957, p. 3314.
- [10] Братенко М.К., Чорнаус В.А, Вовк М.В. // ЖОрХ, 2001, т. 37, вып.4, с. 552.
- [11] Лебедев А.В., Лебедева А.Б., Шелудяков В.Д., Коволева Е.А., Устинова О.Л., Кожевникова И.Б. // ЖОрХ, 2005, т. 75, вып. 5, с. 829.
- [12] Братенко М.К., Чорнаус В.А, Вовк М.В. // ЖОрХ, 2002, т. 38, вып.3, с. 432.
- [13] Балтаян А.О., Саакян А.А., Аттарян О.С., Асратян Г.В. // ЖОХ, 2010, т. 80, вып. 5, с. 834.