ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱՋԳԱՅԻՆ ԱԿԱԴԵՄԻԱ

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հшյшиտшնի քիմիшկшն hшնդես 65, №1, 2012 Химический журнал Армении

УДК 547.792.2

ОБ АНОМАЛЬНОМ ПОВЕДЕНИИ 4-ГИДРОКСИ-3-НИТРОБЕНЗИЛХЛОРИДА В РЕАКЦИЯХ С 4-ЗАМЕЩЕННЫМИ 1,2,4-ТРИАЗОЛ-3-ТИОЛАМИ

М. А. ИРАДЯН¹, Н. С. ИРАДЯН¹, Ж. М. БУНИАТЯН¹, Р. А. ТАМАЗЯН², А. Г. АЙВАЗЯН² и Г. А. ПАНОСЯН²

Научно-технологический центр органической и фармацевтической химии НАН Республики Армения

¹Институт тонкой органической химии им. А.Л.Мнджояна Армения, 0014, Ереван, пр. Азатутян, 26

²Центр исследования строения молекул НАН Республики Армения Армения, 0014, Ереван, пр. Азатутян, 26

Факс (288337) Е-mail: nanraifok 54 @ mail. ru

Поступило 9 XII 2011

Получены экспериментальные данные о том, что 1,2,4-триазол- 3-тиолы, содержащие заместитель в 4-ом положении, реагируют с 4-гидрокси-3-нитробензилхлоридом в тионной таутомерной форме с образованием N-замещенных производных. Структуры полученных соединений подтверждены данными РСА, ЯМР¹Н и масс-спектров. Исследованы антиоксидантные свойства 4-гидрокси-3-нитробензильных производных и показано, что они слабо ингибируют процесс перекисного окисления липидов в пределах 20-30%.

Рис. 1, табл. 1, библ. ссылок 15.

Известно, что 1,2,4-триазол-3-тиол существует в тион-тиольной таутомерных формах и в зависимости от условий реакций реагирует с электрофилами как по SH-, так и по NH-группе гетероцикла [1,2]. Например, было установлено, что 4,5-дизамещенные 1,2,4-триазол-3-тиолы в присутствии гидроксида натрия или калия реагируют с замещенными бензилхлоридами и фенацилбромидами с образованием S-производных [3,4]. С другой стороны, было показано, что с 4-гидрокси-3-нитробензилхлоридом 5-(4-метоксифенил)-4-фенил-4H-1,2,4-триазол-3-тиол образует продукт N-замещения — 1-(4'-гидрокси-3'-нитробензил)-5-(4''-метоксифенил)-4-фенил-4,5-дигидро-1H-1,2,4-триазол-5-тион [5].

Настоящая работа посвящена изучению реакций ряда функционально замещенных 1,2,4-триазолов (**1a-i**) с 4-гидрокси-3-нитробензилхлоридом, а также с его 4-метоксильным аналогом.

1,2,3, $R^1 = NH_2$, $R^2 = H$ (**1a-3a**); $R^1 = NH_2$, $R^2 = CH_3$ (**1b-3b**); $R^1 = NH_2$, $R^2 = 2-CH_3OC_6H_4$ (**1c-3c**); $R^1 = NH_2$, $R^2 = 4-CH_3OC_6H_4$ (**1d-3d**); $R^1 = CH_2-CH_2-CH_2$, $R^2 = 4-CH_3OC_6H_4$ (**1e-3e**); $R^1 = C_6H_5$, $R^2 = 2-CH_3OC_6H_4$ (**1f-3f**); $R^1 = C_6H_5$, $R^2 = 4-CH_3OC_6H_4$ (**1g-3g**); $R^1 = C_6H_5$, $R^2 = C_6H_5OCH_2$ (**1h-3h**); $R^1 = C_6H_5CH_2$, $R^2 = 4-CH_3OC_6H_4$ (**1i-3i**).

Реакция с 4-гидрокси-3-нитробензилхлоридом проводилась в присутствии двухкратного количества гидроксида калия. Во всех случаях были получены продукты N-алкилирования (соединения **2a-i**). В ЯМР ¹Н спектрах соединений **2a-i** сигналы метиленовых протонов бензильной группы проявляются в области 5.23-5.44 м.д., характерной для NCH₂- группы [5,6].

Строение 1-(4'-гидрокси-3'-нитробензил)-3-(2''-метоксифенил)-4-фенил-4,5-дигидро-1H-1,2,4-триазол-5-тиона (**2f**) подтверждено также методом рентгеноструктурного анализа (рис).

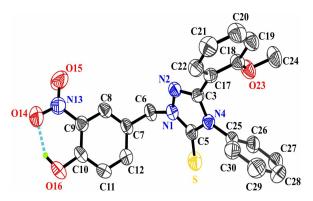


Рис. Структура соединения ${f 2f}$ в нашей нумерации атомов.

В молекуле соединения **2f** наблюдается достаточно сильная внут- римолекулярная водородная связь между атомами O16 и O14 (длина связи O-H...O равняется 2.579 E), которая определяет параллельность плоскости группы O14-N13-O16 с плоскостью бензольного кольца (C7-C12).

Исследованы масс-спектры соединений **2b,e,f**. Распад соединения **2f** при электронном ударе в основном близок к распаду 4-метоксифенильного производного, описанного в работе [5]. Приведена общая схема распада **2f**.

Из схемы следует, что характеристичный ион, свидетельствующий об N-замещении в 2f, протонизирован (m/z 269). В масс-спектре присутствует пик иона с m/z 166 небольшой интенсивности (6%), полученного выбросом CS от иона с m/z 210.

Приводится масс-спектр соединения **2e**, который по основным направлениям распада соответствует распаду 4-фенильных производных.

В отличие от вышеприведенных примеров, при диссоциативной ионизации ${\bf 2b}$ характеристичным является ион с m/z 167, образованный выбросом [C₇H₆N₂O₃ + H] от M⁺.

В этом случае заряд характеристичного иона локализован на арильном остатке.

Реакцией исходных триазолов **1a-i** с 4-метокси-3-нитробензилхлоридом получены 4-метокси-3-нитробензилтиотриазолы **3a-i**, в ЯМР 1 Н спектрах которых сигнал бензильной СН₂-группы наблюдается в области 4.25-4.40 м.д., характерной для S-бензилтиотриазолов [3-5].

Известно, что тиоловые соединения, а также производные фенолов обладают антиоксидантными свойствами [7,8]. Ряд заболеваний, таких, как атеросклероз, рак, болезнь Паркинсона, сердечно-сосудистые забо-

левания, катаракта, процессы старения, связывают с последствиями свободно-радикального окисления [9-11].

Изучена антиоксидантная активность соединений **2a-e,h,i** и ранее синтезированного 1-(4'-гидрокси-3'-нитробезил)-5-(4''-метоксифенил)-4,5-дигидро-1H-1,2,4-триазол-5-тиона (**2j**) на модели аскорбат-зависимого перекисного окисления липидов (ПОЛ) по цветной реакции малонового альдегида с тиобарбитуровой кислотой [12]. Вещества изучались в опытах in vitro в диапазоне 10⁻³-10⁻⁵ М. Интенсивность ПОЛ оценивалась по содержанию малонового альдегида в гомогенатах мозговой ткани крыс с учетом плотности оптического поглощения при 534 *нм* [13].

Выявлено, что соединения ингибируют процесс окисления в пределах 17-34% по отношению к контрольной группе животных: $\bf 2a$ на 23, $\bf 2b$ – 29, $\bf 2c$ – 27, $\bf 2d$ – 17, $\bf 2e$ – 34, $\bf 2h$ – 24, $\bf 2i$ – 23, $\bf 2j$ – 21% (P < 0,05). Наиболее выраженный эффект отмечается при концентрации вещества $\bf 10^{-3}$ М, уменьшение концентрации приводит к уменьшению антиоксидантного действия.

Экспериментальная часть

Спектры ЯМР ¹Н синтезированных соединений зарегистрированы на приборе «Varian Mercury-300 VX» в ДМСО- d_6 , \Box , м.д., J (Iд), вну- тренний эталон – ТМС. Масс-спектры сняты на спектрометре «МХ-1321 А» с прямым вводом вещества в ионный источник при энергии ионизации $d_0 = B$, m/z (I отн, %), плотность оптического поглощения – на спектрофотометре "СФ-16". Температуры плавления определялись на микронагревательном столике "Боэтиус" в °С. ТСХ проводилась на пластинках "Silufol UV-254" в системе растворителей бензол—этилацетат, 1:1, соединений $d_0 = B$ 0, в системе бутанол—уксусная кислота—вода, 4:1:5, проявление — УФ светом.

Рентгеноструктурный анализ

Параметры моноклинной элементарной ячейки измерены при комнатной температуре на автоматическом дифрактометре "САД-4" фирмы Enraf-Nonius и уточнены по 22 рефлексам с $11<\theta<15$, равны a=13.514(3)Е, b=9.610 (2)Е, c=16.345 (2)Е, β =100.88 (2)°, V=2084.9 (3)Е³. В ходе дифракционного эксперимента, проведенного на том же дифрактометре, были измерены 4045 отражений в области $0 \le h \le 19$, $0 \le k \le 13$, $-23 \le 1 \le 23$ (θтах=30, Мо Кα-излучение, графитовый монохроматор). Все расчеты были проведены по комплексу программ SHELXTL [14]. Эксперимен-3908 тальный массив содержал неэквивалентных рефлексов (Rint=0.013), из них 2307 наблюдаемых с I>2((I). Статистическое распределение интенсивностей указало на более вероятную пространственную группу P2(1)/c (z=4). Структура расшифрована прямыми методами, координаты атомов водорода определены из разностных синтезов Фурье. Структура уточнена полноматричным МНК в анизотропном приближении для неводородных атомов и изотропном – для атомов водорода, окончательный фактор расходимости R=0.04, S=1.025. Координаты атомов и эквивалентные тепловые параметры приведены в таблице.

 $\label{eq::T-AD-JULE} Таблица$ Координаты неводородных атомов и эквивалентные тепловые параметры структуры соединения 2f

Атом	X	у	z	U _{eq} [E ²]
S	0.20451(5)	1.01342(8)	0.21370(4)	0.0664(3)
N1	0.10599(12)	0.7751(2)	0.23574(10)	0.0453(7)
N2	0.11956(12)	0.6456(2)	0.27205(10)	0.0454(7)
C3	0.21461(15)	0.6438(3)	0.30779(11)	0.0395(8)
N4	0.26080(12)	0.7665(2)	0.29456(10)	0.0417(7)
C5	0.18998(16)	0.8534(3)	0.24787(12)	0.0441(8)
C6	0.00630(17)	0.8162(4)	0.18997(13)	0.0539(11)
C7	-0.01186(15)	0.7653(3)	0.10089(12)	0.0488(8)
C8	-0.08378(16)	0.6686(3)	0.07390(13)	0.0497(8)
C9	-0.09967(15)	0.6211(3)	-0.00803(12)	0.0475(8)
C10	-0.04144(18)	0.6679(3)	-0.06352(12)	0.0569(9)
C11	0.0307(2)	0.7674(4)	-0.03595(14)	0.0751(12)
C12	0.0446(2)	0.8172(4)	0.04437(15)	0.0686(12)
N13	-0.17874(15)	0.5213(3)	-0.03415(13)	0.0640(9)
O14	-0.19211(14)	0.4735(2)	-0.10572(11)	0.0789(8)
O15	-0.23276(16)	0.4887(3)	0.01400(13)	0.0989(9)
O16	-0.04707(17)	0.6210(2)	-0.14231(9)	0.0790(9)
C17	0.26394(15)	0.5255(3)	0.35548(12)	0.0405(8)
C18	0.30974(17)	0.5410(3)	0.43940(13)	0.0466(9)
C19	0.3561(2)	0.4285(3)	0.48275(16)	0.0591(12)
C20	0.3561(2)	0.3016(4)	0.44421(18)	0.0643(13)
C21	0.3100(2)	0.2848(4)	0.36200(18)	0.0612(13)
C22	0.26455(18)	0.3967(3)	0.31865(15)	0.0506(12)
O23	0.30264(13)	0.6694(2)	0.47211(9)	0.0612(7)
C24	0.3498(3)	0.6907(5)	0.55730(17)	0.0734(13)

Общая методика синтеза 4-гидрокси-3-нитробензилзамещенных 1,2,4-триазол-5-тионов (2a-i). $0.34\ r\ (0.006\ moлs)$ едкого кали растворяют в $20\ m\pi$ этанола, затем к раствору при нагревании добавляют $0.003\ moлs$ соответствующего 1a-i до полного растворения. К полученной реакционной смеси при охлаждении добавляют $0.56\ r\ (0.003\ mons)$ 4-гидрокси-3-нитробензилхлорида [15], растворенного в $8\ mn$ этанола, и оставляют на ночь. Реакционную смесь кипятят $4\ v$, большую часть этанола отгоняют, до-

бавляют воду, водный раствор нейтрализуют, осадок отфильтровывают и перекристаллизовывают.

4-Амино-1-(4-гидрокси-3-нитробензил)-4,5-дигидро-1H-1,2,4-триазол- 5-тион (2а). Выход 52%, т. пл. 195-197°С (из толуола), R_f 0.37. Найдено, %: N 25.94; S 11.82. С₉Н₉N₅O₃S. Вычислено, %: N 26.21; S 12.00. ЯМР 1 Н, δ , м.д., Γ μ : 5.28 (c, 2H, NCH₂), 5.58 (ш, 2H, NH₂), 8.29 (c, 1H, N=CH), 10.62 (c, 1H, OH), протоны бензольного кольца – 7.09 (д, 1H, J =8.6), 7.59 (д.д., 1H, J₁ = 8.6, J₂ = 2.2), 7.98 (д, 1H, J = 2.2).

4-Амино-1-(4-гидрокси-3-нитробензил)-3-метил-4,5-дигидро-1H-1,2,4-триазол-5-тион (2b). Выход 49%, т. пл. 159-160°С (из бензола), Rf 0.32. Найдено, %: N 24.81; S 11.31. С $_{10}$ Н $_{11}$ N $_{5}$ O $_{3}$ S. Вычислено, %: N 24.90; S 11.40. ЯМР 1 Н, $_{5}$ Н, $_{6}$ м.д., $_{7}$ $_{12}$: 2.31 (с, 3H, CH $_{3}$), 5.23 (с, 2H, NCH $_{2}$), 5.42 (ш, 2H, NH $_{2}$), 10.61 (ш, 1H, OH), протоны бензольного кольца – 7.09 (д, 1H, J = 8.6), 7.59 (д.д., 1H, J $_{1}$ = 8.6, J $_{2}$ = 2.2), 7.98 (д, 1H, J = 2.2). Массспектр, m/z (I отн, %): 281(70) М $_{7}$, 264 (5), 263(26), 167(25), 152(24), 130(100), 106(16), 105(9), 78(39), 77(19), 74(5), 60(5), 57(9), 51(18).

4-Амино-1-(4'-гидрокси-3'-нитробензил)-3-(2''-метоксифенил)-4,5- дигидро-1H-1,2,4-триазол-5-тион (2c). Выход 37%, т. пл. 113-115°С (из смеси толуол-гексан), Rf 0.57. Найдено, %: N 19.02; S 8.67. С₁₆H₁₅N₅O₄S. Вычислено, %: N 18.76; S 8.59. ЯМР 1 H, δ , м.д., Γ µ: 3.89 (с, 3H, OCH₃), 5.36 (с, 2H, NCH₂), 5.39 (с, 2H, NH₂), 10.65 (ш, 1H, OH), протоны бензольных колец – 7.03 (т, 1H, J =7.5), 7.10 (д, 1H, J = 8.2), 7.12 (д, 1H, J = 8.6), 7.39 (д.д., 1H, J₁ = 7.5, J₂ = 1.6), 7.51 (д.д.д., 1H, J₁ = 8.2, J₂ = 7.5, J₃ = 1.7), 7.61 (д.д., 1H, J₁ = 8.6, J₂= 2.1), 8.05 (д, 1H, J = 2.1).

4-Амино-1-(4'-гидрокси-3'-нитробензил)-3-(4"-метоксифенил)-4,5- дигидро-1H-1,2,4-триазол-5-тион (2d). Выход 35%, т. пл. 197-199°С (из смеси ДМФА-вода), R_f 0.72. Найдено, %: N 18.84; S 8.61. С₁₆Н₁₅N₅O₄S. Вычислено, %: N 18.76; S 8.59. ЯМР ¹Н, δ, м.д., Ги: 3.85 (с, 3H, ОСН₃), 5.35 (с, 2H, NCH₂), 5.68 (с, 2H, NH₂), 10.61 (ш, 1H, OH), протоны бензольных колец – 6.97 (м, 2H), 7.09 (д, 1H, J = 8.6), 7.63 (д.д., 1H, J₁ = 8.6, J₂ = 2.2), 8.02 (м, 2H), 8.03 (д, 1H, J = 2.2).

1-(4'-Гидрокси-3'-нитробензил)-3-(2"-метоксифенил)-4-фенил-4,5-ди- гидро-1H-1,2,4-триазол-5-тион (2f). Выход 55%, т. пл. 198-200°С (из толуола), R_f 0.70. Найдено, %: N 12.79; S 7.23. C₂₂H₁₈N₄O₄S. Вычислено, %: N 12.90; S 7.38. ЯМР ¹H, δ , м.д., Γ и: 3.37 (с, 3H, OCH₃), 5.44 (с, 2H, NCH₂), 10.64 (ш, 1H, OH), протоны бензольных колец – 6.79 (д.д., 1H, J₁ = 8.2, J₂ = 1.0), 6.99 (т.д., 1H, J₁ = 7.5, J₂ = 1.0), 7.16 (д, 1H, J = 8.6), 7.19 – 7.23 (м, 2H), 7.32-7.37 (м, 3H), 7.39-7.44 (м, 2H), 7.75 (д.д., 1H, J₁ = 8.6, J₂ = 2.2), 8.14 (д, 1H, J = 2.2). Массспектр, m/z (I отн, %): 434(100) M⁺, 417(7), 416(16), 336(6), 283(33), 282 (29), 268(95), 222(12), 210(17), 195(7), 152(15), 149(11), 147(9), 136(14), 135(29), 134(17), 133(17), 132(9), 119(9), 118(7), 107(11), 106(13), 105 (20), 104(16), 9(21), 77(49), 73(18), 65(8), 51(11).

1-(4'-Гидрокси-3'-нитробензил)-4-фенил-3-(4"-этоксифенил)-4,5- дигидро-1H-1,2,4-триазол-5-тион (2g). Выход 51%, т. пл. 197-198°С (из толуола), Rf 0.72. Найдено, %: N 12.71; S 7.08. C₂₃H₂₀N₄O₄S. Вычислено, %: N 12.49; S 7.15. ЯМР 1 H, δ , м.д., Γ μ: 1.37 (т, 3H, J = 7.0, CH₃), 4.00 (к, 2H, J = 7.0, OCH₂), 5.43 (c, 2H, NCH₂), 10.66 (ш, 1H, OH), протоны бензольных колец – 6.75 (м, 2H), 7.15 (д, 1H, J = 8.6), 7.17 (м, 2H), 7.27-7.33 (м, 2H), 7.47-7.53 (м, 3H), 7.75 (д.д., 1H, J₁ = 8.6, J₂ = 2.2), 8.16 (д, 1H, J = 2.2).

1-(4-Гидрокси-3-нитробензил)-3-феноксиметил-4-фенил-4,5-дигидро- 1H-1,2,4-триазол-5-тион (2h). Выход 53%, т. пл. 137-138°C (из толуола), Rf 0.69. Найдено, %: N 12.75; S 7.23. C₂₂H₁₈N₄O₄S. Вычислено, %: N 12.90; S 7.38. ЯМР 1 H, δ , м.д., Γ и: 4.91 (c, 2H, OCH₂), 5.39 (c, 2H NCH₂), 10.76 (ш, 1H, OH), протоны бензольных колец – 6.76 (м, 2H), 6.90 (т.т., 1H, J₁ = 7.3, J₂ = 1.1), 7.10-7.21(м, 3H), 7.43-7.54 (м, 5H), 7.67 (д.д., 1H, J₁ = 8.6, J₂ = 2.2), 8.09 (д, 1H, J = 2.2).

4-Бензил-1-(4'-гидрокси-3'-нитробензил)-3-(4"-метоксифенил)-4,5- дигидро-1H-1,2,4-триазол-5-тион (2i). Выход 58%, т. пл. 177-178°С (из этанола), R_f 0.78. Найдено, %: N 12.32; S 7.31. C₂₃H₂₀N₄O₄S. Вычислено, %: N 12.49; S 7.15. ЯМР 1 Н, δ , м.д., Γ и: 3.82 (с, 3H, OCH₃), 5.33(с, 2H, NCH₂), 5.43(с, 2H, NCH₂), 10.57(ш, 1H, OH), протоны бензольных колец – 6.91(м, 2H), 7.07-7.11 (м, 2H), 7.13 (д, 1H, J = 8.6), 7.19-7.30(м, 3H), 7.37(м, 2H), 7.70(д.д., 1H, J₁ = 8.6, J₂ = 2.2), 8.07 (д, 1H, J = 2.2).

Общая методика синтеза 4,5-дизамещенных 3-(4-метокси-3-нитробензил)тио-4H-1,2,4-триазолов (3a-i). 0.17 r (0.003 monя) едкого кали растворяют в 20 mn этанола, затем при нагревании добавляют 0.003 monя соответствующего 1a-i до полного растворения. К охлажденному раствору добавляют 0.6 r (0.003 monя) 4-метокси-3-нитробензилхлорида [15], растворенного в 8 mn этанола, и оставляют на ночь. Смесь кипятят 3 q и снова оставляют на ночь. Выпавший осадок отфильтровывают и промывают на фильтре водой. В случае, когда нет осадка, этанол отгоняют, вещество осаждают водой. Полученный осадок растворяют в 8-10 mn ДМФА, подщелачивают этанольным раствором едкого кали и добавляют воду. Выпавший осадок отфильтровывают и перекристаллизовывают.

- **4-Амино-3-(4-метокси-3-нитробензил)тио-4H-1,2,4-триазол (3a)**. Выход 60%, т. пл. 53-55°С (из этанола), R_f 0.53. Найдено, %: N 24.78; S 11.73. $C_{10}H_{11}N_5O_3S$. Вычислено, %: N 24.90; S 11.40. ЯМР 1 Н, δ , м.д., Γ д: 3.94 (c, 3H, OCH₃), 4.37 (c, 2H, SCH₂), 5.85 (c, 2H, NH₂), 8.22 (c, 1H, =CH), протоны бензольного кольца 7.20 (д, 1H, J = 8.7), 7.69 (д.д., 1H, J = 8.7, J = 2.2).
- **4-Амино-3-(4-метокси-3-нитробензил)тио-5-метил-4H-1,2,4-триазол (3b)**. Выход 57%, т. пл. 158-159°C (из этанола), Rf 0.37. Найдено, %: N 23.59; S 10.93. С11H13N5O3S. Вычислено, %: N 23.71; S 10.86. ЯМР 1 H, δ , м.д., Γ д: 2.32 (с, 3H, CH3), 3.94 (с, 3H, OCH3), 4.34 (с, 2H, SCH2), 5.61 (с, 2H, NH2), протоны бензольного кольца 7.19 (д, 1H, J = 8.7), 7.68 (д.д., 1H, J1 = 8.7, J2 = 2.2), 7.88 (д, 1H, J = 2.2).
- **4-Амино-3-(4'-метокси-3'-нитробензил)тио-5-(2''-метоксифенил)-4H- 1,2,4-триазол (3c)**. Выход 69%, т. пл. 174-175°С (из этанола), R_f 0.48. Найдено, %: N 17.93; S 8.38. С₁₇H₁₇N₅O₄S. Вычислено, %: N 18.08; S 8.28. ЯМР ¹H, δ, м.д., Γ_{II}: 3.90 (с, 3H, ОСН₃), 3.95 (с, 3H, ОСН₃), 4.43 (с, 2H, SCH₂), 5.45 (с, 2H, NH₂), протоны бензольных колец 7.04-7.13 (м, 2H), 7.22 (д, 1H, J = 8.7), 7.44-7.52 (м, 2H), 7.75 (д.д., 1H, J₁ = 8.7, J₂ = 2.3), 7.93 (д, 1H, J = 2.3).
- **4-Амино-3-(4'-метокси-3'-нитробензил)тио-5-(4''-метоксифенил)-4H-1,2,4-триазол (3d)**. Выход 60%, т. пл. 193-194°C (из этанола), Rf 0.46. Найдено, %: N 18.29; S 8.19. C₁₇H₁₇N₅O₄S. Вычислено, %: N 18.08; S 8.28. ЯМР ¹H, δ , м.д., Γ μ : 3.85 (c, 3H, OCH₃), 3.94 (c, 3H, OCH₃), 4.41 (c, 2H, SCH₂), 5.82 (c, 2H, NH₂), протоны бензольных колец 6.97 (м, 2H), 7.20 (д, 1H, J = 8.8), 7.73 (д.д., 1H, J₁ = 8.8, J₂ = 2.3), 7.93 (д, 1H, J = 2.3), 7.96 (м, 2H).
- **4-Аллил-3-(4'-метокси-3'-нитробензил)тио-5-(4''-метоксифенил)-4H-1,2,4-триазол (3e)**. Выход 77%, т. пл. 90-92°С (из смеси метанол вода, 2:1), Rf 0.42. Найдено, %: N 13.75; S 7.97. C₂₀H₂₀N₄O₄S. Вычислено, %: N 13.58; S 7.77. ЯМР ¹H, δ, м.д., Гід. 3.85 (с, 3H, OCH₃), 3.94 (с, 3H, OCH₃), 4.44 (с, 2H, SCH₂), 4.47 (д, 2H, J = 4.6, NCH₂), 4.84 (д, 1H, J = 17.2, =CH₂), 5.20 (д, 1H, J = 10.4, =CH₂), 5.86 (д.д.т., 1H, J₁ = 17.2, J₂ = 10.4, J₃ = 4.6, =CH), протоны бензольных колец 6.99 (м, 2H), 7.20 (д, 1H, J = 8.7), 7.51 (м, 2H), 7.66 (д.д., 1H, J₁ = 8.7, J₂ = 2.2), 7.85 (д, 1H, J = 2.2).
- **3-(4'-Метокси-3'-нитробензил)тио-5-(2''-метоксифенил)-4-фенил-4H-1,2,4-триазол (3f)**. Выход 73%, т. пл. 166-167°С (из толуола), R_f 0.40. Найдено, %: N 12.56; S 7.38. С₂₃H₂₀N₄O₄S. Вычислено, %: N 12.49; S 7.15. ЯМР 1 H, δ , м.д., Γ μ : 3.33 (с, 3H, OCH₃), 3.95 (с, 3H, OCH₃), 4.43 (с, 2H, SCH₂), протоны бензольных колец 6.78 (д, 1H, J = 8.4), 6.97-7.08 (м, 3H), 7.19 (д, 1H, J = 8.7), 7.30-7.40 (м, 4H), 7.48 (д.д., 1H, J₁ = 7.5, J₂ = 1.6), 7.67 (д.д., 1H, J₁ = 8.7, J₂ = 2.3), 7.82 (д, 1H, J = 2.3).
- **3-(4'-Метокси-3'-нитробензил)тио-4-фенил-5-(4''-этоксифенил)-4Н- 1,2,4-триазол (3g)**. Выход 76%, т. пл. 139-140°С (из этанола), R_f 0.48. Найдено, %: N 12.25; S 6.81. С₂₄H₂₂N₄O₄S. Вычислено, %: N 12.11; S 6.93. ЯМР ¹H, δ, м.д., *Ги*: 1.37 (т, 3H, J = 7.0, CH₃), 3.94 (с, 3H, OCH₃), 4.00 (к, 2H, J =

7.0, ОСН₂), 4.41 (с, 2H, SCH₂), протоны бензольных колец — 6.76 (м, 2H), 7.16–7.26 (м, 4H), 7.23 (д, 1H, J = 8.7), 7.44–7.52 (м, 3H), 7.65 (д.д., 1H, J₁ = 8.7, J₂ = 2.3), 7.82 (д, 1H, J = 2.3).

3-(4-Метокси-3-нитробензил)тио-4-фенил-5-феноксиметил-4H-1,2,4-триазол (3h). Т. пл. 95-96°С (из этанола) соответствует приведенной в работе [3].

4-Бензил-3-(4'-метокси-3'-нитрофенил)тио-5-(4''-метоксифенил)-4H-1,2,4-триазол (3i). Выход 65%, т. пл. 48-50°C, Rf 0.30. Найдено, %: N 11.97; S 6.78. С24H22N4O4S. Вычислено, %: N 12.11; S 6.93. ЯМР 1 H, δ , м.д., Γ II; 3.82 (c, 3H, OCH3), 3.94 (c, 3H, OCH3), 4.39 (c, 2H, SCH2), 5.11 (c, 2H, NCH2), протоны бензольных колец – 6.87-6.93 (м, 2H), 6.93 (м, 2H), 7.17 (д, 1H, J = 8.6), 7.22-7.29 (м, 3H), 7.42 (м, 2H), 7.62 (д.д., 1H, J1= 8.6, J2= 2.0), 7.80 (д, 1H, J = 2.0).

4-ՀԻԴՐՕՔՍԻ-3-ՆԻՏՐՈԲԵՆԶԻԼՔԼՈՐԻԴԻ ԱՆՈՄԱԼ ՎԱՐՔԸ 4-ՏԵՂԱԿԱԼՎԱԾ 1,2,4-ՏՐԻԱԶՈԼ-3-ԹԻՈԼՆԵՐԻ ՀԵՏ ՌԵԱԿՑԻԱՆԵՐՈՒՄ

Մ. Ա. ԻՐԱԴՅԱՆ, Ն. Ս. ԻՐԱԴՅԱՆ, Ժ. Մ. ԲՈՒՆԻԱԹՅԱՆ, Ռ. Ա. ԹԱՄԱԶՅԱՆ, Ա. Գ. ԱՅՎԱԶՅԱՆ և Հ. Ա. ՓԱՆՈՍՅԱՆ,

Ելնելով փորձնական տվյալներից պարզվել է, որ 4-րդ դիրքում տեղակալված 1,2,4-տրիազոլ-3-թիոլները փոխազդում են 4-հիդրօքսի-3-նիտրոբենզիլքլորիդների հետ թիռնային տաուտոմեր ձևով համապատասխան N-տեղակալված արգասիքների առաջացմամբ։ Վերջիններիս կառուցվածքը ապացուցվել է ռենտգենյան, ՄՄՌ ¹H և մասս-սպեկտրների տվյալների հիմնա վրա։ Հետազոտվել են ստացված 4-հիդրօքսի-3-նիտրոբենզիլ ածանցյալների հակաօքսիդանտային հատկությունները։ Ցույց է տրվել, որ միացությունները Ճնշում են լիպիդների պերօքսիդներով օքսիդացման ընթացքը միջինը 20-30% սահմաններում։

ON ANOMALOUS CONDUCT OF 4-HYDROXY-3-NITRO-BENZYLCHLORIDE IN THE REACTION WITH 4-SUBSTITUTED 1,2,4-TRIAZOLE-3-THIOLES

M. A. IRADYAN¹, N. S. IRADYAN¹, J. M. BUNIATYAN¹, R. A. TAMAZYAN², A. G. AYVAZYAN² and G. A. PANOSYAN²

The Scientific Technological Centre of Organic and Pharmaceutical Chemistry NAS RA

¹A.L.Mnjoyan Institute of Fine Organic Chemistry 26, Azatutyan Str., Yerevan, 0014, Armenia

²Molecular Structure Research Centre NAS RA 26, Azatutyan Str., Yerevan, 0014, Armenia E-mail: nanraifok54@mail.ru

On the basis of experimental data the following conclusion is made: 1,2,4-triazole-3-thioles, containing substituent in the 4-position, react with 4-hydroxy-3-nitrobenzylchloride in thion tautomeric form and the proton of NH-group of heterocycle is substituted as a result. To prove this, the data of X-ray structural analysis, PMR ¹H and mass-spectrometry are used. The antioxidant properties are investigated. It is shown that the compounds inhibit the process of peroxide oxidation of lipids by 20-30%.

ЛИТЕРАТУРА

- [1] Азарян А.С., Ирадян Н.С., Ароян А.А. // Арм. хим. ж., 1975, т. 28, №9, с. 709.
- [2] Шегал И.А., Постовский И.Я. // ХГС, 1965, №1, с. 133.
- [3] *Ирадян М.А., Ирадян Н.С., Пароникян Р.*В. // Хим. ж. Армении, 2009, т. 62, №3-4, с. 415.
- [4] *Ирадян М.А., Ирадян Н.С., Пароникян Р.В., Степанян Г.М.* // Хим. ж. Армении, 2011, т. 64, №2, с. 246
- [5] *Ирадян М.А., Ирадян Н.С., Григорян Р.Т.* // Хим. ж. Армении, 2011, т. 64, №1, с. 105.
- [6] Довлатян В.В., Дживанширян Т.А., Аветисян Ф.В., Амбарцумян Э.Н., Ворсканян А.С., Енгоян А.П. // Хим. ж. Армении, 2008, т. 61, №2, с. 242.
- [7] Bors W., Michel C. // Ann. N.Y. Acad. Sci., 2002, v. 957, p. 57.
- [8] Yilmaz Y., Toledo R.T. // J. Agric. Food. Chem., 2004, v. 52, Nº2, p.255.
- [9] *Olinski R., Gaskowski D., Foksinski M., Rozalski R., Roszkowski K., Jaruga P.* // Free Radic. Biol. Med., 2002, v. 33, №2, p. 192.
- [10] Athar M. // Indian J. Exp. Biol., 2002, v. 40, No.6, p. 656.
- [11] Young I.S., Woodside J. V. // J. Clin. Pathol., 2001, v. 54, No.3, p.176.
- [12] Владимиров Ю.А., Арчаков А.И. Перекисное окисление в биологических мембранах. М., Наука, 1972, с. 38.
- [13] Catala H. // Int. J. Biochem. Cell. Biol., 2006, v.38, №9, p. 1482.
- [14] Sheldrick G.M, 1997, SHELXS 97 and SHELXL 97. University of Gottingen, Germany.
- [15] *Ароян А.А., Ирадян М.А., Ароян Р.А.* // Арм. хим. ж., 1975, т. 28, №2, с. 136.