ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հшјшиտшић рриђшиши ћшипћи 63, №1, 2010 Химический журнал Армении

УДК 547.466

СИНТЕЗ ПРОИЗВОДНЫХ ДИ- И ТРИПЕПТИДОВ, СОДЕРЖАЩИХ ОПТИЧЕСКИ АКТИВНЫЕ НЕБЕЛКОВЫЕ АМИНОКИСЛОТЫ – α-АЛЛИЛГЛИЦИН И β-(N-ИМИДАЗОЛИЛ)АЛАНИН

Ю. М. ДАНГЯН, Т. О. САРГСЯН, С. М. ДЖАМГАРЯН, Э. А. ГЮЛУМЯН, Г. А. ПАНОСЯН и А. С. САГИЯН

Научно-исследовательский институт биотехнологии Армения, 0056, Ереван, ул. Гюрджяна, 14 Факс: (374 10) 654 183 E-mail: biotech@netsys.am Центр исследования строения молекул Армения, 0014, Ереван, пр. Азатутян, 26

Впервые синтезированы производные ди- и трипептидов с использованием оптически чистых небелковых аминокислот – (S)- и (R)- α -аллилглицинов, (S)- и (R)- β -(N-имидазолил)аланинов. Получены диастереомеры ВОС-аланилаллилглицина, ВОС-аланил- и ВОС-аланилглицил- β -(N-имидазолил)аланинов. Пептидный синтез осуществлен методом активированных эфиров.

Библ. ссылок 6.

Классический пептидный синтез в растворе, как правило, отличается простотой, что при стабильности продуктов реакции позволяет с большими выходами и высокой чистотой получать желаемые препараты для любых целей. Наиболее привлекательным из многочисленных методов классического пептидного синтеза является метод активированных эфиров [1,2], применение которого позволяет сводить к минимому процесс рацемизации. Этот подход был использован нами при синтезе новых производных ди- и трипептидов, содержащих фрагмент небелковой аминокислоты. Создание подобных пептидов может обогатить список физиологически активных субстанций (ингибиторов ферментов, радиопротекторов, антисептиков и т.д.) [3].

В качестве субстратов были использованы ВОС-(S)-аланин (1) и глицин, а также небелковые аминокислоты – (S)- и (R)-аллилглицины и (S)- и (R)- β -(N-имидазолил)аланины [4-6]. Последние были синтезированы в лаборатории асимметрического синтеза НИИ биотехнологии.

На первой стадии в присутствии N,N -дициклогексилкарбодиимида (DCC) из BOC-(S)- аланина был получен соответствующий достаточно устойчивый активированный эфир $\mathbf{2}$, который в щелочной водно-органической среде конденсируется с аминокислотами с образованием соответствующих дипептидов $\mathbf{3}$, $\mathbf{4a}$, $\mathbf{46}$, $\mathbf{5a}$ и $\mathbf{56}$.

Трипептиды BOC-(S)-аланилглицил-(S)- β -(N-имидазолил)аланин (**7a**) и BOC-(S)-аланилглицил-(R)- β -(N-имидазолил)аланин (**7b**) получены по той же схеме через активированный эфир. Для упрощения процесса в ряде случаев реакцию вели без выделения промежуточного N-оксисукцинимидного эфира.

В результате нами впервые получены производные ди- и трипептидов, содержащих небелковые аминокислоты (S)- и (R)-аллилглицины и (S)- и (R)- β -(N-имидазолил)аланины. Кроме того, при исследовании продуктов реакции методом ЯМР-спектроскопии не обнаружена рацемизация аминокислотных остатков в условиях синтеза, что позволяет предложить метод активированных эфиров для синтеза оптически чистых пептидов, содержащих небелковые аминокислоты.

Экспериментальная часть

Спектры ЯМР 1 Н регистрировались на приборе "Varian Mercury 300VX" с рабочей частотой 300.08 $M\Gamma\mu$ в растворе ДМСО-Д6/ССl4 1 3 с использованием метода двойного резонанса. ТСХ проводили на пластинках "Silufol UV-254" (проявитель – хлор-толуидин). Колоночное разделение осуществляли с помощью SiO₂ L 4 0/100.

Реагентами при синтезе служили N,N`-дициклогексилкарбодиимид, N-оксисукцинимид, гидроокись натрия и бикарбонат натрия.

Аминокислоты – (*S*)- и (*R*)- α -аллилглицины и (*S*)- и (*R*)- β -N-имидазолилаланины, синтезированы согласно [5,6].

N-Оксисукцинимидный эфир BOC-(*S***)-аланин (2).** К раствору 1.5 r (7.9 mmons) BOC-(S)-аланина и 0.95 r (8.2 mmons) N-гидроксисукцинимида в смеси 1.0 mn диоксана и 2.7 mn хлористого метилена при 0°C добавляли 1.75 r (8.5 mmons) DCC, предварительно растворенного в 3 mn диоксана. Реакционную смесь перемешивали 2 mn при 0°C и оставляли на ночь в холодильнике. За ходом реакции следили методом TCX (хлороформ/этилацетат/метанол, 2:4:1). Образовавшийся осадок отфильтровывали, фильтрат концентрировали под вакуумом до выпадения осадка, который кристаллизовали из изопропилового спирта. Получили продукт mn свыходом 70%, т.пл. 148-150°C [4].

ВОС-(S)-Аланилглицин (3). К раствору $0.08\ r(1.5\ \text{ммоля})$ глицина в $2\ \text{мл}\ 0.5\ \text{M}$ NаОН добавляли $0.085\ r(1\ \text{ммоль})$ NаНСО3 и далее прибавляли $0.4\ r(1.6\ \text{ммоля})$ N-оксисукцинимидного эфира BOC-(S)-аланина в $4\ \text{мл}$ диоксана. Реакционную смесь перемешивали $6\ \text{ч}$ при комнатной температуре, затем переносили в делительную воронку и добавляли $6\ \text{мл}$ этилацетата, $3\ \text{мл}\ 10\%$ раствора лимонной кислоты и $0.2\ r$ NaCl. После интенсивного перемешивания органический слой отделяли, сушили сульфатом магния и растворитель отгоняли под вакуумом при 50° С. Остаток вещества $3\ \text{кристаллизовали}$ из смеси этилацетат петролейный эфир в соотношении 1/3. Выход 70%, т.пл. $93-95^{\circ}$ С. Найдено, %: С 49.05; Н 7.91; N 11.92. С $_{10}$ Н $_{18}$ N $_{2}$ O $_{5}$. Вычислено, %: С 48.78; Н 7.37; N 11.38. Спектр 9MP 1 H, 5 H, 5 H, 7 H $_{2}$ H $_{3}$ H, 3 H $_{3}$ H $_{4}$ H $_{5}$ H, 5 H $_{5}$

ВОС-(S)-Аланил-(S)-аллилглицин (4a). В плоскодонную колбу с магнитной мешалкой помещали 0.17 г (1.5 ммоля) (S)-аллилглицина, 2 мл 0.5 М раствора NaOH и 0.09 г (1.05 ммоля) NaHCO₃. При комнатной температуре добавляли 0.38 г (1.55 ммоля) сукцинимидного эфира ВОС-(S)-аланина в 4 мл диоксана, реакционную смесь перемешивали 6 ч и оставляли на ночь. На следующий день ê содержимоìó колбы добавляли 6 мл этилацетата и 3 мл 10% водного раствора лимонной кислоты. После интенсивного перемешивания органический слой отделяли, а водный два раза экстрагировали этилацетом (по 4 мл). Органический слой сушили безводным сульфатом натрия и растворитель упаривали в вакууме досуха. Вязкий остаток растворяли при нагревании в смеси 10 мл гексана и 3 мл этилацетата и оставляли на ночь. На следующий день реакционную смесь фильтровали, фильтрат упаривали досуха. Образовавшийся вязкий остаток

сушили в вакууме при $40\text{-}45^\circ$ С. ТСХ анализ в системе хлороформ—этилацетат—метанол, 2:4:1. Выход продукта **4a** в расчете на исходный сукцинимидный эфир 70%. Найдено, %: С 55.01; Н 8.01; N 10.22. С₁₃H₂₂N₂O₅. Вычислено, %: С 54.54; Н 7.74; N 9.78. Спектр ЯМР ¹H, δ , м.д., Γ μ : 1.23 (д., 3H, 3 J= 7.1, CH₃); 1.42 (с., 9H, t-C₄H₉); 2.39 (д.т., 1H, 2 J=14.2, 3 J=7.2) и 2.52 (м., 1H, CH₂); 4.04 (к., 1H, 3 J=7.1, NCH); 4.32 (т.д., 1H, 3 J=7.6, 3 J=5.2, NCH); 5.03 (д.к., 1H, 3 J=10.0, 4 J=1.5) и 5.09 (д.к., 1H, 3 J=17.0, 4 J=1.5, =CH₂); 5.74 (д.д.т., 1H, 3 J=17.0, 3 J=10.0, 3 J=7.0, =CH); 6.29 (д., 1H, 3 J=7.8, NH); 7.6 (д., 1H, 3 J=7.7, NH); 10.4 (ш., 1H, COOH).

BOC-(S)-Аланил-(R)-аллилглицин (4b). Синтез проводили аналогично синтезу (*S*,*S*)-диастереомера **4a**. Выход продукта **4b** в расчете на сукцинимидный эфир 75%. Найдено, %: С 54.88; Н 8.31; N 10.12. $C_{13}H_{22}N_2O_5$. Вычислено, % С 54.54; Н 7.74; N 9.78. Спектр ЯМР ¹H, δ , м.д., Γy : 1.23 (д., 3H, ³J=7.1, CH₃); 1.42 (с., 9H, t-C₄H₉); 2.39 (д.т., 1H, ²J=14.2, ³J=7.4) и 2.54 (м., 1H, CH₂); 4.05 (к., 1H, ³J=7.1, NCH); 4.34 (т.д., 1H, ³J=7.8, ³J=5.0, NCH); 5.03 (д.к., 1H, ³J=10.1, ⁴J=1.5) и 5.09 (д.к., 1H, ³J=17.1, ⁴J=1.5, =CH₂); 5.72 (д.д.т., 1H, ³J=17.1, ³J=10.1, ³J=7.0, =CH); 6.22 (д., 1H, ³J=7.8, NH); 7.70 (д., 1H, ³J=7.4, NH); 10.45 (ш., 1H, COOH).

ВОС-(S)-Аланил-(S)-β-(N-имидазолил)аланин (5a). В плоскодонную колбу с магнитной мешалкой помещали $0.15\ \emph{г}$ ($1\ \emph{ммолй}$) (S)-β-(N-имидазолил)аланина в $1\ \emph{мл}$ $0.5\ \textrm{M}$ раствора NaOH и $0.04\ \emph{г}$ ($0,5\ \emph{ммоля}$) NaHCO3. Затем при комнатной температуре добавляли $0.30\ \emph{г}$ ($1\ \emph{ммолй}$) сукцинимидного эфира BOC-аланина в $4\ \emph{мл}$ диоксана и перемешивали реакционную смесь в течение $6\ \emph{v}$. На следующий день содержимое колбы упаривали досуха, остаток растворяли в $1\ \emph{мл}$ метилового спирта, добавляли этилацетат до помутнения раствора и оставляли на ночь. Выпавшие кристаллы отфильтровывали, промывали этилацетатом и высушивали при 60° С. Выход перекристаллизованного продукта $5\emph{a}$ в расчете на сукцинимидный эфир 65%, т.пл. 145- 147° С. Найдено, %: С 51.95; Н 8.01; N 17.72. С $_{14}$ H $_{22}$ N $_{4}$ O $_{5}$. Вычислено, %: С 51.53; Н 6.79; N 17.17. Спектр 9MP 1 H, δ , м.д., $\Gamma \emph{u}$: $1.23\ (д., 3\text{H}, J=7.4, \text{CH}_3)$; $1.41\ (с., 9\text{H}, \text{t-C}_4\text{H}_9)$; $4.01\ (д.к., 1\text{H}, {}^{3}\text{J}=7.6, {}^{3}\text{J}=7.4, \text{CHCH}_3)$; 4.37- $4.46\ (м., 3\text{H}, {}^{2}\text{CHCH}_2)$; $5.20\ (ш., \text{CO}_{2}\text{H}\ \text{u}\ \text{H}_{2}\text{O})$; $6.67\ (д., 1\text{H}, {}^{3}\text{J}=7.6, {}^{3}\text{L}=7.4, \text{CHCH}_3)$; $6.88\ (c., 1\text{H}, \text{N=CH})$; $7.06\ (c., 1\text{H}, \text{N=CH})$; $7.64\ (c., 1\text{H}, \text{N=CHN})$; $7.72\ (д., 1\text{H}, {}^{3}\text{J}=5.6, \text{NHCHCH}_2)$.

BOC-(S)-Аланил-(R)-β-(N-имидазолил)аланин (5b). Синтез проводили аналогично синтезу ВОС-(*S*)-аланил-(*S*)-β-(N-имидазолил)аланина (**5a**). Конечный продукт выделяли перекристаллизацией из смеси метанол-этилацетат, 1:1. Выход продукта **5b** в расчете на сукцинимидный эфир 75%, т.пл. 142-144 ° С. Найдено, %: С 52.02; Н 8.21; N 17.42. С₁₄H₂₂N₄O₅. Вычислено, %: С 51.53; Н 6.79; N 17.17. Спектр ЯМР ¹H, δ , м.д., Γ μ : 1.22 (д., 3H, ³J=7.4, CH₃); 1.43 (с., 9H, t-C₄H₉); 4.00 (квн., 1H, ³J=7.4, <u>CH</u>CH₃); 4.36-4.47 (м., 3H, <u>CHCH₂</u>); 6.40 (ш., CO₂H и H₂O); 6.69 (д., 1H, ³J=7.4, <u>NH</u>CHCH₃); 6.90 (с., 1H, N=CH); 7.09 (с., 1H, N=CH); 7.68 (с., 1H, N=CHN); 7.73 (д., 1H, J=5.5, NHCHCH₂).

Сукцинимидный эфир ВОС-(S)-аланилглицин (6). Синтез осуществляли аналогично синтезу соединения **2**. После удаления хлористого метилена из реакционной смеси (предварительно отфильтрованной от мочевины) раствор сукцинимидного эфира ВОС-(*S*)-аланина в диоксане использовали для получения пептида.

BOC-(S)-Аланилглицил-(S)-\beta-(N-имидазолил)аланин (7а). В плоскодонную колбу с магнитной мешалкой помещали 0.15 ε (0.97 *ммоля*) (S)- β -(N-имидазолил)аланина, 1.5 *мл* 0.5 М

раствора NaOH и добавляли при комнатной температуре около $0.32\ e$ (1 *ммоль*) сукцинимидного эфира BOC-(*S*)-аланилглицина в 3 *мл* диоксана. На следующий день реакционную смесь подкисляли 3 *мл* 10% водні̂аї раствора лимонной кислоты и упаривали досуха в вакууме. Образовавшийся остаток промывали диоксаном (2x3 *мл*), после чего сухой остаток экстрагировали смесью метанол-этилацетат в соотношении 1/2. Экстракт упаривали досуха, вновь образовавшийся остаток промывали этилацетатом (2x1 *мл*). Полученный белый осадок сушили под вакуумом при 55-60°C. ТСХ анализ (хлороформ-у́тилацетат-метанол, 2:4:1 и бутанол- уксусная кислотавода, 3:1:1). Выход продукта **7a** в расчете на сукцинимидный эфир 52%, т.пл. 138-140°C. Найдено, %: C 50.55; H 7.01; N 18.72. $C_{16}H_{25}N_5O_6$. Вычислено, % C 50.13; H 6.57; N 18.26. Спектр ЯМР 1 H, δ , м.д., Γ μ : 1.25 (д., 3H, J=7.0, CH₃); 1.41 (с., 9H, t-C₄H₉); 3.71 (д.д., 1H, 2 J=16.6, 3 J=5.5) и 3.77 (д.д., 1H, 2 J=16.6, 3 J=5.8, NCH₂CO); 4.04 (м., 1H, CHCH₃); 4.35 (д.д., 1H, 2 J=14.2, 3 J=6.7) и 4.44 (д.д., 1H, 2 J=14.2, 3 J=4.0, CHCH₂N); 4.58 (д.д.д., 1H, 3 J=7.0, 3 J=6.7, 3 J=4.0, CHCH₂); 5.83 (ш., COOH, H₂O); 6.50 (д., 1H, 3 J=7.2, NHCHCH₃); 6.94 (с., 1H, NCH); 7.13 (с., 1H, NCH); 7.78 (с., 1H, NCHN); 8.02 (д., 1H, 3 J=7.0, NHCHCH₂); 8.03 (ш., 1H, NHCH₂).

ВОС-(S)-Аланилглицил-(R)-β-(N-имидазолил)аланин (7b). Синтез и выделение продукта проводили аналогично синтезу пептида **7a**. Выход пептида **7b** в расчете на сукцинимидный эфир 55%, т.пл. 136-138°C. Найдено, % С 50.45; Н 7.19; N 18.62. $C_{16}H_{25}N_5O_6$. Вычислено, % С 50.13; Н 6.57; N 18.26. Спектр ЯМР 1 Н, δ , м.д., Γu : 1.24 (д., 3H, 3 J=7.0, CH₃); 1.41 (с., 9H, t-C₄H₉); 3.74 (м., 2H, NCH₂CO); 4.03 (м., 1H, <u>CH</u>CH₃); 4.34 (д.д., 1H, 2 J=13.5, 3 J=6.9) и 4.45 (д.д., 1H, 2 J=13.5, 3 J=4.0, CH<u>CH₂N</u>); 4.55 (т.д., 1H, 3 J=6.9, 3 J=4.0, <u>CH</u>CH₂); 6.52 (д., 1H, J=7.3, <u>NH</u>CHCH₃); 6.60 (ш., CO₂H и H₂O); 6.95 (т., 1H, J~1.1, NCH); 7.13 (т., 1H, J~1.1, NCH); 7.79 (т., 1H, J~1.1, NCHN); 7.98 (д., 1H, J=7.0, <u>NH</u>CHCH₂); 8.02 (ш., 1H, <u>NH</u>CH₂); 6,60(ш., COOH, H₂O).

ՕՊՏԻԿԱՊԵՍ ԱԿՏԻՎ ՈՉ ՍՊԻՏԱԿՈՒՑԱՅԻՆ α-ԱԼԻԼԳԼԻՑԻՆ ԵՎ β-(N-ԻՄԻԴԱԶՈԼԻԼ)ԱԼԱՆԻՆ ԱՄԻՆԱԹԹՈՒՆԵՐ ՊԱՐՈՒՆԱԿՈՂ ԴԻ- ԵՎ ՏՐԻՊԵՊՏԻԴՆԵՐԻ ԱԾԱՆՑՅԱԼՆԵՐԻ ՄԻՆԹԵԶԸ

Ցու. Մ. ԴԱՆՂՑԱՆ, Տ. Հ. ՍԱՐԳՍՅԱՆ, Ս. Մ. ՋԱՄԳԱՐՅԱՆ, Է. Ա. ԳՑՈՒԼՈՒՄՅԱՆ, Հ. Ա. ՓԱՆՈՍՅԱՆ և Ա. Ս. ՍԱՂԻՑԱՆ

Մինթեզված են դի- և տրիպեպտիդների նմանակները ոչ սպիտակուցային ամինաթթուների՝ (S)- և (R)- (-ալիլգլիցինների, (S)- և (R)- β - (N-իմիդազոլիլ)ալանինների պարունակությամբ։ Մտացվել են BOC-ալանիլալիլգլիցինի, BOC-ալանիլ-β-(N-իմիդազոլիլ)ալանինի և BOC-ալանիլգլիցիլ-β-(N-իմիդազոլիլ)ալանինի դիաստերեոմերները։ Պեպտիդային սինթեզը կատարվել է ակտիվացված եթերների եղանակով։

SYNTHESIS OF DERIVATIVES OF DI- AND TRIPEPTIDES WITH INVOLVEMENT OF OPTICALLY ACTIVE NONPROTEIN AMINO ACIDS OF α -ALLYLGLYCINE AND β -(N-IMIDAZOLYL)ALANINE

Yu. M. DANGHYAN, T. H. SARGSYAN, S. M. DJAMGARYAN, E. A. GYULUMYAN, H. A. PANOSYAN and A. S. SAGHIYAN

Scientific Research Institute of Biotechnology 14 Gyurjan Str., 0056, Yerevan, Armenia Fax: (374 10) 654 183 E-mail: biotech@netsys.am Molecule Structure Research Center 26 Azatutyan Str., Yerevan, 0014, Armenia

For the first time derivatives of di- and tripeptides have been synthesized with the use of optically pure nonprotein amino acids of (S)- and (R)-allylglycine, (S)- and (R)- β -(N-imidazolyl) alanine. Diastereomers of BOC-alanylallylglycine, BOC-alanyl- β -(N-imidazolyl)alanine and BOC-alanylglycyl- β -(N-imidazolyl)alanine were obtained. The peptide synthesis was conducted by the method of activated ethers.

ЛИТЕРАТУРА

- [1] Anderson G. W., Zimmerman J.E., Callahan F.M. // Ibid., 1963, v. 85, №19, p. 3039.
- [2] Anderson G. W., Zimmerman J.E., Callahan F.M. // J. Amer. Chem. Soc., 1964, v. 86, 19, p. 1839.
- [3] Чипенс Г.И., Славинская В.А., Силе Д.Е. // Известия АН ЛССР, 1985, т. 3, с. 259.
- [4] Позднев В.Ф. // Химия природных соединений, 1974, №6, с. 764.
- [5] Saghiyan A.S., Dadayan S.A., Petrosyan S.G., Manasyan L.L., Geolchanyan A.V., Djamgaryan S.A., Andreasyan S.A., Maleev V.I., Khrustalev V.N. // Tetrahedron Asymmetry, 2006, v. 17, p. 455.
- [6] Belokon Yu.N., Saghiyan A.S., Djamgaryan S.A., Bakhmutov V.I., Belikov V.M. // Tetrahedron, 1988, v. 44, №17, p. 5507.