2U3UUSUUF 2UUFUՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱՉԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հայաստանի քիմիական հանդես 63, №1, 2010 Химический журнал Армении

НЕОРГАНИЧЕСКАЯ И АНАЛИТИЧЕСКАЯ ХИМИЯ

УДК 549.07:553.676:546.16.552

ВОЛОКНИСТЫЕ БЕСЩЕЛОЧНЫЕ ФТОРСИЛИКАТЫ ИЗ ГОРНЫХ ПОРОД

Л.А. ХАЧАТРЯН

Институт общей и неорганической химии им. М.Г. Манвеляна НАН Республики Армения Армения, 0051, Ереван, ул. Аргутян 11пер., дом 10 Факс: (374-10) 231275, e-mail: lidakhachat@yahoo.com

Поступило 15 VIII 2009

Впервые показана принципиальная возможность твердофазного синтеза волокнистых бесщелочных фторсиликатов (ВБЩФС) из горных пород магнезиально - силикатного состава, в частности, серпентинита (Сп) и дунита (Дн). С целью получения волокнистых бесщелочных фторсиликатов (фторамфибола) состава Mg- фторкупфферита (Mg7xFex[SisO22]F2, где x(0,2) были изучены модельные системы Сп - MgF2 – NaCl (I) и Дн - MgF2 – NaCl (II) в пирогенных условиях при 500 - 1000 °*C*.

Рис. 2, табл. 3, библ. ссылок 13.

Получение термостойких неорганических полимеров из группы силикатов с ленточным строением кремнекислородного радикала – волокнистых (асбестоподобных) амфиболов с общей кристаллохимической формулой (X₂₋₃Y₅[Z₈O₂₂](OH,F,Cl)₂, где X – одно- и двухвалентные катионы: Na⁺, K⁺, Li⁺, Ca²⁺, Mg²⁺, Cs⁺ и др., Y - двух- и трехвалентные катионы: Mg²⁺, Fe²⁺, Fe³⁺, Mn²⁺, Al³⁺, Cr³⁺ и др., Z - Si⁴⁺, B³⁺, Al³⁺, Fe³⁺, Ti⁴⁺, Ga⁴⁺ и др.), рассматривается как одно из перспективных направлений в материаловедении. Возможность изоморфных замещений в различных структурных позициях этих силикатов служит основой для направленного изменения их свойств, т.е. для получения материалов с более высокими физико-химическими и техническими характеристиками. Ценность волокнистых амфиболов, в том числе и синтетических волокнистых фторсиликатов, определяется многофункциональностью и специфичностью их свойств, таких,как устойчивость к агрессивным средам, эластичность, упругость,

значительная механическая прочность, низкая электро- и теплопроводность, звукоизоляционные свойства, жаростойкость, огнеупорность, способность к адсорбции некоторых газов и жидкостей и др. В настоящее время волокнистые амфиболы в чистом виде или в композиции с другими материалами (смолы, цемент, керамика, фтористый углерод) находят широкое применение в различных отраслях народного хозяйства. Основными потребителями волокнистых амфиболов и композитов на их основе являются химическая и электротехническая промышленность, производства фильтров электролитических камер и кислотных гасителей, электропроводов спецназначения, пластмасс и каучуков для специальных целей, лаков, красок, смазочных материалов в автомобиле-, самолето-, судо- и ракетостроении, реактивных снарядов и космических кораблей, атомная энергетика и т.п. Перечисленные отрасли современной техники и промышленности нуждаются и в волокнистых силикатах, не содержащих в своем составе щелочных элементов [1-3]. Одним из научных направлений усовершенствования методов получения волокнистых бесщелочных фторсиликатов (ВБЩФС) является их твердофазовый синтез в пирогенных условиях из горных пород. Для получения ВБШФС, в частности, Мg- фторкупфферита (Mg7-xFex SisO22]F2, где х(0,2), нами были использованы горные породы магнезиально-силикатного состава.

Согласно [4], Мg-фторкупфферит получается твердофазовым синтезом при 1000–1100°*C* с выдержкой в течение 48 ч при использовании исходных смесей из чистых химических реактивов (MgO, MgF₂, SiO₂, NaCl), отвечающих по составу стехиометрической формуле фторамфибола (Mg₇Fe[Si₈O₂₂]F₂).

В настоящей работе изложены результаты исследований по совершенствованию метода и оптимизации физико-химических условий процессов твердофазового синтеза Mg- фторкупфферита из горных пород магнезиально-силикатного состава: серпентинита (Сп) и дунита (Дн). Данная работа является частью исследований по твердофазовому синтезу волокнистых фторсиликатов из местного сырья в пирогенных условиях [2].

Экспериментальная часть

Методика эксперимента. В качестве исходных веществ использовались горные породы Сп, Дн и реактивы MgF₂, NaCl квалификации "х.ч.". Горные породы применялись в виде тонкорастертых порошков (величина зерен ≤ 50 *мкм*). Сп и Дн были изучены методами химического, микроскопического (табл.1), термического (дериватограф "ОД-103", рис. 1), рентгенографического анализов при комнатной и высокой температурах. Подробности о горных породах и их поведении при нагревании приведены в работе [2].

Фазовые составы продуктов переработки (продуктов синтеза) и полученные ВБЩФС исследовались методами кристаллооптического (микроскоп "МИН-8"), рентгеновского ("УРС-70" и дифрактометр "ДРОН-2", Си *К*_α-излучение, Ni-фильтр), термического и химического анализов.

Составы реакционных смесей рассчитывались исходя из формулы Mg-фторкупфферита (Mg7-xFex[Si8O22]F2, где x(0,2) с переменным содержанием фтора. Были изучены модельные системы: СП/или Дн-MgF2–NaCl (I, II). NaCl в состав смесей вводили в качестве плавня (5-15 *масс.%*).

Таблица 1

Породы	Минералы	Содержание, %	
серпентинит	серпентин (антигорит)	~80	
	моноклинные пироксены (диопсид, диаллаг)	10 - 15	
	магнетит	~5 - 7	
дунит	дунит серпентин (хризотил, антигорит, ~5% хлорита)		
	неизмененный оливин	~40 - 45	
	пироксены (и моноклинный)	~5	
	магнетит и хромшпинелид	~3-8	
	карбонаты	~2.0	

Минералогический состав исходных горных пород

Синтез ВБЩФС осуществляли во фторустойчивых сосудах в электрических печах сопротивления. Методика и аппаратура, применяемые для переработки горных пород с целью получения волокнистых фторсиликатов в пирогенных условиях, описаны в [2].

Рис. 1. Дериватограммы серпентинита (1) и дунита (2). Скорость нагревания 10 *град.мин.*⁻¹.

Результаты и их обсуждение

Синтез ВБЩФС осуществляли путем нагревания исходных смесей до 500-1000°C в течение 1-36 ч. Исследования показали, что фазовый состав синтезируемых образцов, в том числе процент выхода ВБЩФС (т.е. степень преобразования пород или содержание фторсиликата), морфология и размеры кристаллов фторсиликатов зависят от количества фторвводящего компонента (MgF2) и плавня (NaCl) в составе смесей; температурно-временных условий процессов синтеза; минералогического, а следовательно, и химического составов исходных пород и др. Наблюдения за процессами преобразования горных пород Сп и Дн в ВБЩФС в пирогенных условиях показали, что отклонение составов реакционных смесей от стехиометрии (т.е. увеличение или уменьшение количества горных пород, или фторвводящего компонента, или плавня) приводило к снижению количества фторсиликата (< 85 и 90%) и увеличению содержания примесей в виде стекла (со средним показателем преломления nm(1.500-1.514), фторидов (n_m~1.39,) фторгекторита (с n_m≤1,501), фторхондродита (минерала из группы гумита, nm^{~1.602}), промежуточных реакционных агрегатов, галита (NaCl) и др., а также к укорачиванию и утолщению волокон фторамфиболов в синтезируемых образцах. Максимальное содержание фторсиликатов (~85 и 90%) наблюдалось в образцах, полученных из реакционных смесей, составы которых близки к стехометрии Мg-фторкупфферита с небольшим избытком фтора (~0.5-1.0 масс.%) и при содержании галита ~8 -12 масс.%.

На процессы твердофазового синтеза фторсиликатов влияли не только химические составы исходных смесей, но и физико-химические особенности поведения этих смесей при нагревании. Экспериментально было доказано, что в интервале 90-750°С в исследуемых смесях происходят процессы дегидратации и дегидроксилирования серпентинов (хризотила, антигорита 3MgO(2SiO₂(2H₂O, рис. 1, кр. 1, 2), разложение оливина (Mg, Fe)₂SiO₄ и превращение магнетита Fe₃O₄, входящих в состав Сп и Дн, согласно следующим схемам [2, 5].

$$\begin{array}{c|c} -2H_2O & \geq 700^\circ C & \geq 840^\circ C \\ 3MgO^2SiO_2^2H_2O \longrightarrow 3MgO^2SiO_2 \longrightarrow Mg_2SiO_4 + MgO + SiO_2 \longrightarrow Mg_2SiO_4 + MgSiO_3 \\ & 400-620^\circ C \\ xpu3otun & Metacepnehtuh & \phiopcteput & 3Hctatut \end{array}$$
(1)

$$3MgO2SiO_22H_2O \xrightarrow{-2H_2O} Mg_2SiO_4 + MgO + SiO_2 \longrightarrow Mg_2SiO_4 + MgSiO_3$$
(2)

$$ahturoput \qquad \phi opcreput$$

$$(Mg,Fe)_2SiO_4 \xrightarrow{< 800^\circ C} 2MgO SiO_2 + Fe_2O_3 + SiO_2$$
 (3)
оливин аморфный

оливин

$$FeO:Fe_2O_3 \xrightarrow{200-300^{\circ}C} Fe_2O_3 \xrightarrow{530-800^{\circ}C} Fe_2O_3 \qquad (4)$$
Marhetut магтемит гематит

53

Показано, что добавление галогенсодержащих соединений (MgF₂, NaCl) снижает температуры диссоциации и дегидроксилирования серпентинов, разложение оливина и превращение магнетита [2, 6].

В смесях I и II при Т≥350-600°С параллельно с вышеприведенными превращениями, возможно, протекает реакция [7-10]:

$$\geq 350-600^{\circ}C$$
MgF₂+H₂O \longrightarrow MgO + HF \uparrow (5)

Образовавшиеся по реакциям (1) и (2) пары H2O, несомненно, оказывают катализирующее действие на химические превращения, протекающие в реакционных смесях [2, 8, 9, 11, 12]. Одновременно развиваются процессы испарения галогенсодержащих соединений (например, NaCl и др.), пирогидролиза фторидов (MgF2 и др., см. реакцию 5) с образованием фторида водорода (HF). Последний ускоряет разложение исходных пород Сп и Дн, а также промежуточных соединений [9, 12] с образованием оксидов и фторидов с повышенной реакционной способностью. Исходные галогенсодержащие составляющие (MgF2, NaCl) и промежуточные соединения (метасерпентин, форстерит, энстатит, фториды, SiO2 и др.) образуют легкоплавкие эвтектики (расплавы оксидно-солевого состава). В зависимости от температурно-временных условий процессов синтеза образовавшиеся в исследуемых смесях как газовая фаза, так и расплав в локальных участках отличаются друг от друга по количеству, составу и свойствам [2, 7-13]. При твердфазовом взаимодействии в смесях в интервале (400-900°С активное участие принимает газовая фаза, а выше (650°С значительная роль принадлежит как газовой, так и жидкой фазе (расплаву оксидно-солевого состава). Таким образом, в ходе повышения температуры (T~400°C) в реакционных смесях происходят сложные твердофазовые реакции с участием газовой и жидкой фаз, которые способствуют процессам образования ВБЩФС в системах Сп/ или Дн - MgF2 - NaCl (I, II) при сравнительно низких температурах (~700-750°С). Следует отметить, что образование фторсиликатов в указанных смесях происходит в относительно широком интервале температур (~700-900°C) и равномерно во всем объеме смесей.

В исследуемых смесях с повышением температуры от 650 до 950°С и при увеличении продолжительности процессов переработки от 1 до 36 ч (при 900 и 850°С, соответственно) наблюдаются образование при ~750-800°С волокнистых фторамфиболов на поверхности основной массы продуктов переработки исследуемых смесей, а также увеличение количества, длины и толщины их волокон и игл с образованием густой "щетки" при повышении температуры до 830-900°С и увеличении продолжительности процессов синтеза до 15-18 ч, удлинение и утолщение волокон фторамфиболов, в результате чего появляются иглы в основной массе; увеличение показателей преломления волокон и игл от пm~1,587 до nm~1,601. Эти изменения свидетельствуют о том, что структура фторамфиболов формируется в результате последовательной трансформации структуры исходных и промежуточных соединений. С повышением температуры и увеличением продолжительности синтеза протекают процессы совершенствования кристаллической решетки этих фторсиликатов, которые заканчиваются при ~830-900°С. Вышеизложенные преобразования свидетельствуют о сложном характере

взаимодействия прекурсоров исследуемых смесей при синтезе волокнистых бесщелочных фторсиликатов.

Подытоживая вышеизложенное, можно утверждать, что исследуемые реакционные смеси I и II выгодно отличаются от известной смеси, применяемой для получения волокнистого бесщелочнного фторсиликата – Mg-фторкупфферита. Высокую реакционную способность исследуемых смесей, в частности, можно объяснить минералогическим составом, а также текстурно-структурными особенностями пород. Способность к преобразованию пород в ВБЩФС снижается в следующем ряду: Дн \rightarrow Сп.

Синтезированные образцы представлены в основном массой спутанно-волокнистой структуры и мономинеральной "щеткой" волокон фторсиликата (рис. 2а и 2б) длиной до (1 *мм* (в среднем 0.01-0.2 *мм*) и толщиной (0.01-0.2 *мкм* (~10-200 *нм*) на поверхности продукта синтеза.

Рис. 2. Микрофотографии волокнистых кристаллов Mg-фторкупфферита, синтезированного из серпентинита: a) – "щетка" (увел. × 450), б) – основная масса (увел. × 900).

Волокнистые бесщелочные фторсиликаты, полученные из реакционных смесей I и II, соответствуют следующим кристаллохимическим формулам:

$$\begin{split} &Na_{0,1}\,Ca_{0,02}\,Mg_{6,73}\,Fe^{2+}{}_{0,01}\,Fe^{3+}{}_{0,09}\,Cr^{3+}{}_{0,02}\,[Si_8O_{22}]\,F_2,\\ &Na_{0,08}\,Ca_{0,05}\,Mg_{6,51}\,Fe^{2+}{}_{0,06}\,Fe^{3+}{}_{0,11}\,Al^{-3+}{}_{0,06}\,Cr^{3+}{}_{0,04}\,[Si_8O_{22}]\,F_2. \end{split}$$

По химическому составу, структуре и свойствам (табл. 2, 3) синтезированные фторсиликаты относятся к фторамфиболу – Mg-фторкупффериту [4].

Таблица 2

Данные дифрактограммы синтезированного бесщелочного фторсиликата из дунита

d∕n, Å	I/I _o	d∕n, Å	I/I _o	d∕n, Å	I/I _o
8,27	7	3,824	2	2,579	2
5,01	1	3,243	4	2,564	4
4,76	1	3,081	10	2,243	2
4,64	1	2,968	2	2,152	3
3,866	3	2,771	5	1,993	1

d – межплоскостные расстояния, n – порядок отражения,

I/Iо – относительные интенсивности пиков.

Таблица З

Параметры элементарной ячейки, кристаллооптические характеристики и	свойства (син-
тезированных волокнистых бесщелочных фторсиликатов		

Параметры кристаллической ре-			Оптические константы					
a, Å	b, Å	c, Å	β	N _g	N _p	N _g - N _p	с Ng, град.	Т _{разлож.} , ^о С
9,509	17,94	5,29	102°14'	1.601±0.003	1.581±0.003	0.020	8	1070-1130
9,506	17,96	5,28	102°10'	1.601±0.003	1.583±0.003	0.022	8 °02'	1060-1130

Таким образом, впервые показана принципиальная возможность твердофазового синтеза (при ~700-950°С) бесщелочных волокнистых фторсиликатов из горных пород магнезиальносиликатного состава. Применяя прекурсоры с различными химическими и минералогическими составами, синтезированы волокнистые бесщелочные фторсиликаты состава Mg-фторкупфферита (Mg7-xFex[SisO22]F2, где x<0,2). Показана высокая реакционная активность исходных смесей на основе серпентинита и дунита, благодаря которой продолжительность процессов синтеза этих фторсиликатов укорачивается и протекает при более низких температурах (ниже на ~100-150°С). Наибольший выход волокнистых бесщелочных фторсиликатов наблюдается при применении реакционных смесей на основе дунита, а более равномерный по размерам фторсиликат образуется из серпентинита. Выявлены некоторые особенности влияния минералогического состава горных пород, фторвводящего компонента и плавня в составе реакционных смесей на физико-химические процессы, протекающие при их термообработке. Показано, что процессы преобразования указанных пород в волокнистые бесщелочные фторсиликаты носят топотаксический характер и представляют собой совокупность сложных физических и химических превращений в сочетании с заметной перекристаллизацией.

ԹԵԼՔԱՎՈՐ ՈՉ ՀԻՄՆԱՅԻՆ ՖՏՈՐՍԻԼԻԿԱՏՆԵՐ ԼԵՌՆԱՅԻՆ ԱՊԱՐՆԵՐԻՑ

Լ. Ա. ԽԱՉԱՏՐՅԱՆ

Առաջին անգամ ցույց է տրված թելքավոր ոչ հիմնային ֆտորսիլիկատների պինդֆազային սինթեզով ստացման հնարավորությունը մագնեզիումսիլիկատային բաղադրության լեռնային ապարներից` սերպենտինիտից (Սպ) և դունիտից (Դն)։ Мg– ֆտորկուպֆֆերիտի բաղադրության (Mg_{7-x}Fe_x[SisO₂₂]F₂, որտեղ x<0,2) թելքավոր ոչ հիմնային ֆտորսիլիկատների ստացման նպատակով ուսումնասիրվել են Uպ – MgF₂ – NaCl (I) և Դն – MgF₂ – NaCl (II) մոդելային համակարգերը հրածին պայմաններում՝ 500- 1000°C ջերմաստիձանային միջակայքում։

SYNTHESIS OF FIBROUS ALKALI–FREE FLUOROSILICATES FROM MINING ROCKS

L. A. KHACHATRYAN

M. G. Manvelyan Institute of General and Inorganic Chemistry NAS RA Bld. 10, II lanes, Argutyan str., Yerevan, 0051, Armenia E-mail: lidakhachat@yahoo.com

The possibility to synthesize fibrous alkali-free fluorosilicates (FAFFS) from magnesium silicate containing mining rocks, namely serpentinite (Sp) and dunite (Dn), has been shown for the first time. The fibrous alkali-free fluorosilicates (fluoroamfibole) Mg-fluorocupffrite ($Mg_{7-x}Fe_x[Si_8O_{22}]F_2$, with x< 0,2) has been obtained using solid-phase synthesis under pyrogenic conditions (at 500 – 1000°*C*) in the following model systems: Sp – MgF₂ – NaCl (I) and Dn – MgF₂ – NaCl (II). These mixtures displayed a high reactivity, owing to which the synthesis of FAFFS proceeded at temperatures by ~ 100 – 150°*C* lower than those in the other recognized methods. The process of fibrous alkali-free fluorosilicate formation revealed some topotaxic features and was presented by a sequence of complex chemical reactions in combination with structural transformations and recrystallization.

ЛИТЕРАТУРА

- [1] Hawkins J. W. Asbestos today, tomorrow, the day after tomorrow // Sample J., 1971, Des./Jan., p. 17.
- [2] Хачатрян Л.А. Автореферат дисс. "Синтетические волокнистые силикаты типа асбестов из горных пород Армении" канд.техн. наук, Л., ИХС АН СССР, 1969, 189 с.
- [3] Григорьева Л.Ф., Макарова Т.А., Корыткова Э.Н., Чигарева О.Г. Синтетические амфиболовые асбесты. Л., Наука, 1975, 250 с.
- [4] Хаджи И.П., Дриц В.Г., Яроцкий В.Г., Дмитрик А.А. Новые данные о минералах СССР. М., 1979, вып. 28, с. 158.
- [5] Велинский В.В., Павлов А.А. // Доклады РАН, 2002, т. 387, №6, с. 797.
- [6] Koltermann M. // Ber. Dtch. Keram. Ges., 1965, Bd 42, №10, p. 375.

- [7] *Минакова Л.Ю., Минакова Т.С., Фиалко М.Б.* Термодинамический анализ взаимодействий в системах с участием фторида магния. Томский гос. ун.-т., Томск, 1998, 11 с. Рукопись деп. в ВИНИТИ. Деп. 718-1398-деп.
- [8] Eitel W., Hatch A.R., Denny M.Y. // J. Amer. Ceram. Soc., 1956., v. 36, №10, p. 341.
- [9] Рысс И.Г. Химия фтора и его неорганических соединений. М., Госхимиздат, 1956, 718 с.
- [10] *Хачатрян Л.А.* // Физика и химия стекла, 2004, т.30, №1, с. 84.
- [11] Зырянов М.И. // Цветные металлы, 1998, №5, с. 47.
- [12] Когарко Л.Н., Кригман Л.Д. Фтор в силикатных расплавах и магмах. М., Наука, 1981, 124 с.
- [13] Справочник по плавкости систем из безводных неорганических солей. Двойные системы / под ред. Н.К. Воскресенской. М.-Л., Изд. АН СССР, ЛО, 1961, т. 1, 845 с.