2U3UUSUUF 2UUCUMESOF@3UU GFSOF@3OFUUECF U2GU3FU UYUGEUFU НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հшјшиտшնի рիմիшկшն ншићи 61, №3-4, 2008 Химический журнал Армении

УДК 547.69 + 547.435

СИНТЕЗ ГИДРОХЛОРИДОВ 1-(4'-ЭТОКСИФЕНИЛ)-1-АЛКИЛ(АРИЛ)-2-ФЕНИЛ-3-ПИРРОЛИДИНОПРОПАН-1-ОЛОВ

А. У. ИСАХАНЯНа, Г. А. ГЕВОРГЯНа и Г. А. ПАНОСЯН6

Научно-технологический центр органической и фармацевтической химии НАН Республики Армения

> ^а Институт тонкой органической химии им. А.Л.Мнджояна Армения, 0014, Ереван, пр. Азатутян, 26 E-mail: gyulgev@gmail.com

> > ⁶ Центр исследования строения молекул Армения, 0014, Ереван, пр. Азатутян, 26

> > > Поступило 5 XI 2007

Осуществлен синтез 1-(4'-этоксифенил)-1-алкил(арил)-2-фенил-3-пирролидинопропан-1-олов и их гидрохлоридов взаимодействием 1-фенил-2-пирролидино-4'-этоксипропиофенона с различными реактивами Гриньяра в среде абсолютного эфира.

Библ. ссылок 5.

В настоящее время большое внимание уделяется поиску новых биологически активных соединений в ряду аминокетонов и продуктов их восстановления[1-5]. В продолжение наших исследований по поиску новых физиологически активных веществ в настоящей статье описывается синтез гидрохлоридов 1-(4'-этоксифенил)-1-алкил(арил)-2-фенил-3-пирролидинопропан-1-олов **3-14**. Для синтеза последних необходимым исходным веществом является 1-фенил-2-пирролидино-4'-этоксипропиофенон(2), полученный реакцией аминометилирования 4'-этоксифенилбензилкетона(1) с параформальдегидом и пирролидином в среде этанола. Показано, что реакция протекает с высокими выходами при рН 8-9 [2]. 1-Фенил-2-пирролидино-4'-этоксипропиофенон(2) с различными реактивами Гриньяра переведен в среде эфира в третичные аминопропанолы, представляющие собой маслообразные вещества. С целью изучения биологических свойств аминопропанолы переведены в кристаллические гидрохлориды **3-14**.

$$C_{2}H_{5}O \xrightarrow{\qquad \qquad CH_{2}O, \ HNC_{4}H_{8}} C_{2}H_{5}O \xrightarrow{\qquad \qquad } C_{2}H_{5}O \xrightarrow{\qquad } C_{2}H_{5}O \xrightarrow{\qquad \qquad } C_{$$

3. R=CH₃; **4.** R= C_2H_5 ; **5.** R= C_3H_7 ; **6.** R= C_4H_9 ; **7.** R=i- C_4H_9 ; **8.** R=i- C_5H_{11} ; **9.** R= C_6H_{13} ; **10.** R= C_7H_{15} ; **11.** R= C_6H_5 ; **12.** R= C_6H_{11} ; **13.** R= C_4H_9 ; **14.** R=o- C_4H_9 ; **14.** R=o- C_4H_9 ;

Данные ИК- и ЯМР¹Н спектров указывают на то, что исходный аминокетон практически полностью превращается в третичный аминоспирт. В ИК-спектрах конечных продуктов **3-14** наблюдается полоса поглощения гидроксильной группы ($v_{COH}=3510-3290\ cm^1$), в ЯМР¹Н спектрах соединений отчетливо видны сигналы ОН группы в области **4**,98-5,00 м.д. Чистота, индивидуальность и строение синтезированных соединений установлены методами элементного анализа, тонкослойной хроматографии и ЯМР¹Н и ИК-спектров.

Экспериментальная часть

Спектры ЯМР 1 Н сняты на приборе "Mercury-300 Varian" с рабочей частотой 300 $M\Gamma\mu$ с использованием DMSO-d₆,(внутренний стандарт –TMC). ИК-спектры соединений сняты на спектрофотометре "UR-20" в вазелиновом масле. Температуры плавления определялись на микронагревательном столике "Boetius".

Индивидуальность соединений контролировали на пластинках "Silufol UV-254" в системе бутанол—этанол—уксусная кислота—вода (8:2:1:3), проявитель — пары йода.

4'-Этоксифенилбензилкетон(1) получен по методу [2], **1-фенил-2-пирролидино-4'-этокси-пропиофенон (2)** – по методу [3].

Гидрохлориды 1-(4'-этоксифенил)-1-алкил(арил)-2-фенил-3-пирролидинопропан-1-олов(3-14) (общая методика). К реагенту Гриньяра, приготовленному из $2.4\ r$ ($0.1\ moлs$) магния и $0.11\ moлs$ алкил (арил) галогенида в $50\ mn$ абсолютного эфира, прикапывают $3.23\ r$ ($0.01\ mons$) 1-фенил-2-пирролидино-4'-этоксипропиофенона(2) в $30\ mn$ абсолютного эфира. Содержимое колбы нагревают на водяной бане $5\ r$, затем при охлаждении прикапывают медленно $10\ mn$ воды. Сливают эфирный слой, остаток промывают эфиром ($2\times20\ mn$). Объединенные эфирные вытяжки сущат над

безводным карбонатом натрия, Отгоняют эфир, получают 1-(4'-этоксифенил)-1-алкил(арил)-2-фенил-3-пирролидинопропан-1-олы, которые представляет собой густые масла. Затем последние растворяют в сухом эфире и медленно прикапывают эфирный раствор хлористого водорода, осадок отфильтровывают, перекристаллизовывают из абсолютного ацетона.

Гидрохлорид 1-(4'-этоксифенил)-1-метил-2-фенил-3-пирролидинопропан-1-ола(3). Выход 49%, т.пл. 208-210°C. Rf 0.64. Найдено, %: С 70.00; Н 7.67; N 3.55; Cl⁻ 9.33. С22Н29NO2*HCl. Вычислено, %: С 70.30; Н 7.98; N 3.72; Cl⁻ 9.45. ИК-спектр, v, *см*⁻: 3300 (О-H). Спектр ЯМР ¹H (δ, м.д., *Ги*): 1.37 (т, 3H, J=6.9, <u>CH3</u>CH2O); 1.56 (с, 3H, CH3); 1.90(м, 4H, N·CH2 <u>CH2</u>)2); 2.30 (м, 1H); 2.90 (м, 2H), 3.14 (м, 1H, N·CH2)2); 3.60 (м, 1H), 3.70 (м, 1H) и 4.00 (м, 1H, <u>CH</u>CH2); 3.96 (к, 2H, J=6.9, OCH2); 5.29 (ш, 1H, OH); 6.63 (м, 2H) и 6.69 (м, 2H, C6H4); 6.94 (м, 2H) и 7.13 (м, 3H, C6H5); 11.59 (ш, 1H, HCl).

Гидрохлорид 1-(4'-этоксифенил)-1-этил-2-фенил-3-пирролидинопропан-1-ола(4). Выход 52%, т.пл. 204-205°С. Rf 0.65. Найдено, %: С 70.56; Н 8.11; N 3.23; Cl⁻ 9.24. С₂₃Н₃₁NO₂·HCl. Вычислено, %: С 70.86; Н 8.21; N 3.59; Cl⁻ 9.11. ИК-спектр, v, *см*⁻: 3300 (О-Н). Спектр ЯМР ¹Н (δ, м.д., *Гц*): 0.69 (т, 3H, 7.2.CH₃); 1.38 (т, 3H.7.0.CH₃); [1.83 (к, 1H.14.0, 7.2) и 1.91 (к, 1H, 14.0, 7.2.CH₂); 1.90 (ш, 4H, 2CH₂)]; [2.32 (ш, 1H) и 3.01 (ш, 3H.N·CH₂)₂]; [3.61 (ш, 1H) и 3.74 (ш, 1H, 8.0, CHCH₂)]; 3.97 (к, 2 H.7.0.OCH₂); 4.00 (ш, 1H.CH); 4.98 (ш, 1H.OH); [6.65 (д, 2H.8.9) и 6.91 (д, 2H.8.9.C₆H₄)]; [6.91 (ш, 2H) и 7.13-7.17 (м, 3H.5H_{Ar})]; 11.45 (ш, 1H.HCl).

Гидрохлорид 1-(4'-этоксифенил)-1-пропил-2-фенил-3-пирролидинопропан-1-ола(5). Выход 54%, т.пл.158-160°С. Rf 0.65. Найдено, %: С 71.24; Н 8.12; N 3.22; Cl 8.68. С24Н33NO2-HCl. Вычислено, %: С 71.37; Н 8.42; N 3.46; Cl 8.79. ИК-спектр, v, см 1: 3320(О-H). Спектр ЯМР 1H (δ , м.д., Γ д): 0.83 (т, 3H, J=6.9, CH3); 0.90 (м, 1H) и 1.44 (м, 1H, CH2), 1.38 (т, 3H, J=6.9, OCH2CH3); 1.79 (м, 2H, CH2), 1.91 (м, 4H, N·CH2CH2)2); 2.32 (м, 1H); 3.00 (м, 3H, N·CH2)2); 3.62 (м, 1H); 3.74 (м, 1H, N(CH2)2); 3.97 (к, 2H, J=6.9, OCH2); 4.00 (м, 1H, CH); 5.02 (ш, 1H, OH); 6.64 (м, 2H) и 6.90 (м, 2H, C6H4); 6.90 (м, 2H) и 7.15(3H, C6H5); 11.43 (ш, 1H, HCl).

Гидрохлорид 1-(4'-этоксифенил)-1-бутил-2-фенил-3-пирролидинопропан-1-ола(6). Выход 51%, т.пл.165-167°С. Rf 0.65. Найдено, %: С 71.24; Н 8.55; N 3.28, Cl⁻ 8.58. С25Н35NO2(HCl Вычислено, %: С 71.85; Н 8.62; N 3.35; Cl⁻ 8.50. ИК-спектр, v, см⁻: 3360(O-H). Спектр ЯМР ¹H (δ, м.д., Гц): 0.82 (т, 3H, J=7.2, CH3); [0.87 (м, 1H) и 1.13-1.34 (м, 3H, 2CH2)], 1.38 (т, 3H, J=7.0, CH3); 1.73-1.96 (м, 6H, CH2), [2.33 (ш, 1H) и 2.87-3.13(м, 3H, N·CH2)2]]; 3.62 (ш, 1H) и 3.74 (м, 1H); 3.74 (д.д., 1H, J=8.2, J=2.9, CH2CH2)]; 3.97 (к, 2H, J=7.0, OCH2); 4.00 (ш, 1H, OH); 5.00 (ш, 1H, OH); [6.65 (д, 2H, J=8.9) и 6.90 (д, 2H, J=8.9, C6H4)]; [6.90 (ш, 2H) и 7.13-7.17 (м, 3H, C6H5);11.42 (ш, 1H, HCl).

Гидрохлорид 1-(4'-этоксифенил)-1-изо-бутил-2-фенил-3-пирролидинопропан-1-ола(7). Выход 50%, т.пл.167-169°С. Rf 0.63. Найдено, %: С 71.74; Н 8.55; N 3.28; Cl- 8.41. С25Н35NO2(HCl. Вычислено, %: С 71.85; Н 8.62; N 3.35; Cl- 8.50. ИК-спектр, v, см-1: 3320(30(O-H). Спектр ЯМР ¹Н (8, м.д., Гд): 0.61 (д, 3H, J=6.6, CH3); 0.92 (д, 3H, J=6.6, CH3); 1.38 (т, 3H, J=7.0.CH3); 1.50 (м, 1H.CH); 1.79 (д, 2H, J=6.0, CH2); 1.92 (ш, 4H, 2CH2); [2.35 (ш, 1H), 2.88-3.03 (ш, 2H) и 3.17 (ш, 1H, N·CH2)2]; [3.62 (ш, 1H) и 3.72 (ш, 1H, J=6.5, CHCH2)]; 3.92 (ш, 1H, CH); 3.97 (к, 2H, J=7.0, OCH2); 4.99 (ш, 1H, OH); [6.64 (д, 2H, J=8.9) и 6.90 (д, 2H, J=8.9, C6H4)]; [6.88 (ш, 2H) и 7.14-7.18 (м, 3H, C6H5)]; 11.32 (ш, 1H, HCl).

Гидрохлорид 1-(4'-этоксифенил)-1-изо-амил-2-фенил-3-пирролидинопропан-1-ола(8). Выход 53%, т.пл.175-177°С. Rf 0.64. Найдено, %: С 72.10; Н 8.78; N 3.22; Cl 8.40. С26Н37NO2·HCl. Вычислено, %: С 72.30; Н 8.80; N 3.24; Cl 8.22. ИК-спектр, v, см¹: 3325(О-Н). Спектр ЯМР ¹Н (δ, м.д., Гд): 0.71 (м, 1H) и 1.29 (м, 1H, CH2), 0.78 (д, 3H, J=6.9, CH3); 0.84 (д, 3H, J=6.6, CH3), 1.39 (т, 3H, J=7.0, CH3); 1.44 (м, 1H J=6.6, CH); 1.80 (м, 2H, CH2); 1.91 (м, 4H, N·CH2)2); 2.34 (м, 1H); 2.97 (к, 2H); 3.10 (м, 1H, N·CH2)2); 3.61 (м, 1H) и 3.74 (м, 1H, NCH2); 3.98 (к, 2H, J=7.0, OCH2); 4.00 (м, 1H, CHCH2N); 5.00 (ш, 1H.OH); 6.65 (м, 2H) и 6.88 (м, 2H, C6H4); 6.89 (м, 2H) и 7.14-7.18 (м, 3H, C6H5); 11.43 (ш, 1H, HCl).

Гидрохлорид 1-(4'-этоксифенил)-1-гексил-2-фенил-3-пирролидинопропан-1-ола(9). Выход 59%, т.пл. 168-170°С. Rf 0.67. Найдено, %: С 72.70; Н 8.89; N 3.16; Cl-7.97. C27H39NO2·HCl. Вычислено, %: С 72.72; Н 8.97; N 3.14; Cl-7.96. ИК-спектр, v, см¹: 3360(О-Н). Спектр ЯМР ¹Н (δ, м.д., Гц): 0.84 (т, 3H, J=6.8, CH3); [0.84 (м, 1H) и 1.11-1.28 (м, 7H, 4CH2)]; 1.38 (т, 3H, J=7.0, CH3); 1.80 (м, 2H, CH2); 1.91 (м, 4H, 2CH2); [2.33 (ш, 1H) и 3.01 (ш, 3H, N·CH2)2]; [3.62 (ш, 1H) и 3.73 (ш.д., 1H, J= 8.1, CHCH2)]; 3.98 (к, 2H, J=7.0, OCH2); 3.98 (ш, 1H .CH); 5.00 (ш, 1H, OH); [6.65 (д, 2H, J=8.9) и 6.89 (д, 2H, J=8.9, C6H4)]; [6.90 (ш, 2H) и 7.13-7.18 (м, 3H).C6H5]; 11.43 (ш, 1H, HCl).

Гидрохлорид 1-(4'-этоксифенил)-1-гептил-2-фенил-3-пирролидинопропан-1-ола(10). Выход 58%, т.пл. 177-178°С. Rf 0.67. Найдено, %: С 3.05; Н 9.15; N 3.11; Cl⁻ 7.72. С28Н41NO2·HCl. Вычислено, %: С 73.12; Н 9.14; N 3.04; Cl⁻ 7.72. ИК-спектр, v, см⁻1: 3365(O-H). Спектр ЯМР ¹Н (δ, м.д., Гц): 0.85 (т, 3H , J=6.8.CH₃); [0.85 (м, 1H) и 1.19 (м, 9H , 5CH₂)]; 1.38 (т, 3H , J=7.0, OCH₂CH₃); 1.79 (м, 2H, CH₂); 1.91 (м, 4H, N(CH₂CH₂)₂); [2.32 (м, 1H); 2.97 (м, 2H) и 3.07 (м, 1H, N·CH₂)₂]; [3.62 (м, 1H) и 3.73 (м, 1H, NCH₂)]; 3.98 (к, 2H, J=7.0, OCH₂); 4.00 (м, 1H, CH); 4.97 (ш, 1H, OH); [6.65 (м, 2H) и 6.89 (м, 2H, C6H₄)]; [6.89 (м, 2H) и 7.16 (м, 3H, C6H₅]; 11.45 (ш, 1H .HCl).

Гидрохлорид 1-(4'-этоксифенил)-1-фенил-2-фенил-3-пирролидинопропан-1-ола(11). Выход 51%, т.пл.190-192°С. R_f 0.63. Найдено, %: С 73.10; Н 7.29; N 3.21; Cl⁻ 8.11. С₂₇Н₃₁NO₂·HCl. Вычислено, %: С 74.15; Н 7.31; N 3.20; Cl⁻ 8.11. ИК-спектр, v, *см*⁻1: 3340(O-H). Спектр ЯМР ¹Н (δ, м.д., *Гц*): 1.28 (т,

3H, J=7.0, CH₃); 1.84 (м, 4H, N-CH₂CH₂)₂; 2.11 (м, 1H), 2.69 (м, 1H), 2.82 (м, 1H) и 3.43 (м, 1H, N-CH₂)₂); 3.54(2H, NCH₂); 3.83 (к, 2H, J=7.0, CH₂); 4.73 (д.д., 1H, J₁=7.4, J₂=4.8, NCHCH₂); 5.65 (с, 1H, OH); 6.45 (м, 2H) и 6.97 (м, 2H, C₆H₄); 7.05-7.15 (м, 3H), 7.22 (м, 1H), 7.33-7.41 (м, 4H) и 7.93 (м, 2H, 2C₆H₄); 12.34 (ш, 1H, HCl);

Гидрохлорид 1-(4'-этоксифенил)-1-циклогексил-2-фенил-3-пирролидинопропан-1-ола(12). Выход 45%, т.пл.152-155°С. Rf 0.62. Найдено, %: С 73.00;Н 8.42; N 3.10; Cl- 8.04. С27Н37NO2(HCl. Вычислено, %: С 73.05; Н 8.56; N 3.15; Cl- 8.00. ИК-спектр, v, cm^1 : 3290(O-H).Спектр ЯМР 1 H (δ , м.д., Γu): 0.89-1.17 (м, 3H), 1.21-1.30 (м, 3H), 1.49-1.64 (м, 3H), 1.83 (м, 1H) и 2.20 (м, 1H, C₆H₁₁); 1.39 (т, 3H, J=7.0, CH₃); 1.91 (м, 4H, N·CH₂CH₂)2); 2.29 (м, 1H), 2.87-3.08 (м, 3H, N·CH₂)2); 3.63 (м, 1H) и 3.93 (м, 1H, NCH₂); 4.14 (д.д., 1H, J₁=8.0, J₂=2.3, CH); 4.64 (ш, 1H, OH); 6.65 (м, 2H) и 6.98 (м, 2H, C₆H₄); 6.90 (ш, 2H) и 7.18 (м, 3H, C₆H₅); 11.51 (ш, 1H, HCl).

Гидрохлорид 1-(4'-этоксифенил)-1-бензил-2-фенил-3-пирролидинопропан-1-ола(13). Выход 53%, т.пл.244-246°С. R_f 0.65. Найдено, %: С 74.42; Н 7.50; N 3.11; Cl⁻ 7.56. С₂₈Н₃₃NO₂(HCl. Вычислено, %: С 74.47; Н 7.53; N 2.89; Cl⁻ 7.86. ИК-спектр, v, *см*⁻: 3375(O-H). Спектр ЯМР ¹Н (δ, м.д., *Ги*): 1.36 (т,

3H, J=7.0, CH₃); 1.93 (м, 4H, N·CH₂CH₂)₂); 2.39 (м, 1H), 2.95 (м, 1H), 3.15 (м, 2H, N·CH₂)₂); 3.16 (д, 1H, J=14.0) и 3.36 (д, 1H, J=14.0, CH₂Ph); 3.63 (м, 1H) и 3.98 (м, 2H, CH₂CH₂N); 3.93 (к, 2H, J=7.0, OCH₂); 5.29 (с, 1H, OH); 6.58 (ш, 2H) и 6.93 (м, 2H, C₆H₄); 6.97-7.05 (м, 7H) и 7.16-7.20 (м, 3H, 2C₆H₅); 11.35 (ш, 1H, HCl);

Гидрохлорид **1-(4'-этоксифенил)-1-(2-метоксифенил)-2-фенил-3-пи рролидинопропан- 1-ола(14).** Выход 45%, т.пл.225-227°С. R_f 0.68. Найдено, %: С 71.42; Н 7.30; N 3.08; Cl⁻ 7.43. С₂₈Н₃₃NO₃(HCl. Вычислено, %: С 71.87; Н 7.27; N 2.99; Cl⁻ 7.59.

ИК-спектр, v, *см*⁻¹: 3510(О-Н). Спектр ЯМР ¹Н (δ, м.д., *Ги*): 1.28 (т, 3H, J=7.0, CH₃); 1.86 (м, 4H, N·CH₂CH₂); 2.11 (м, 1H), 2.66 (м, 1H), 2.91 (м, 1H) и 3.50 (м, 1H, N(CH₂)₂); 3.62 (с, 3H, OCH₃); 3.70-3.87 (м, 4H, OCH₂ и NCH₂); 4.64 (д, 1H, J=9.3, CH); 5.29 (с, 1H, OH); 6.41 (м, 2H) и 6.78 (м, 2H, C₆H₄); 6.93 (д.д., 1H, J₁=8.2, J₂=1.3, CH); 7.05-7.12 (м, 3H, C₆H₅); 7.19 (т.д., 1H, J₁=7.6, J₂=1.1, H_{Aryl}); 8.40 (д.д., 1H, J₁=7.6, J₂=1.1, H_{Aryl}); 12.40 (ш, 1H, HCl).

1-(4'-ԷԹՕՔՍԻՖԵՆԻԼ)-1-ԱԼԿԻԼ(ԱՐԻԼ)-2-ՖԵՆԻԼ-3-ՊԻՐՐՈԼԻԴԻՆԱՊՐՈՊԱՆ-1-ՕԼԵՐԻ ՀԻԴՐՈՔԼՈՐԻԴՆԵՐԻ ՍԻՆԹԵԶԸ

Ա. Հ. ԻՍԱԽԱՆՅԱՆ , Գ. Ա. ԳԵՎՈՐԳՅԱՆ և Հ. Ա. ՓԱՆՈՍՅԱՆ

1-Ֆենիլ-2-պիրրոլիդինա-4-էթոքսիպրոպիոֆենոնը ստացվել է Էթօքսիֆենիլբենզիլկետոնի ամինամեթիլացմամբ պարաֆորմալդեհիդով և պիրրոլիդինով էթանոլի միջավայրում։ Տարբեր ալկիլ(արիլ)մագնեզիումի հալոգենիդների հետ փոխազդելով 1-ֆենիլ-2-պիրրոլիդինա-4՝- էթոքսիպրոպիոֆենոնը վեր է ածվել 1-(4՝-Էթօքսիֆենիլ)-1-ալկիլ (արիլ)-2-ֆենիլ-3-պիրրոլիդինապրոպան-1-օլերի և նրանց հիդրոքլորիդների։

SYNTHESIS OF THE HYDROCHLORIDES OF 1-(4'-ETHOXYPHENYL)-1-ALKYL(ARYL)-2-PHENYL-3-PIRROLIDINOPROPAN-1-OLS

A. H. ISAKHANYAN, G. A. GEVORGYAN and H. A. PANOSYAN

Scientific and Technological Centre of Organic and Pharmaceutical Chemistry NAS RA

A. L. Mnjoyan Institute of Fine Organic Chemistry Armenia, 0014, Yerevan, Azatutyan str., 26

E-mail: gyulgev@gmail.com

1-Phenyl-2-pyrrolidino-4'-ethoxypropiophenone has been synthesized by aminomethylation of 4'-ethoxyphenylbenzylketones with paraformaldehyde and pyrrolidin. 1-(4'-Etoxyphenyl)-1-alkyl(aryl)-2-phenyl-3-pyrrolidinopropan-1-ols were synthesized by interaction of 1-phenyl-2-pyrrolidino-4'-ethoxypropiophenones with Grignard reagents.

ЛИТЕРАТУРА

- [1] Исаханян А.У. // Хим. ж. Армении, 2005, т. 58, №3, с. 99.
- [2] Геворгян Г.А., Исаханян А.У., Паносян Г.А. // Хим.-фарм. ж., 2003, т. 37, №3, с. 45.
- [3] Гаспарян Н.К., Геворгян Г.А., Исаханян А.У. // Хим. ж. Армении, 2003, т. 56, №4, с. 58.
- [4] Геворгян Г.А. // Хим. ж. Армении, 2006, т. 59, №4, с. 137.
- [5] Машковский М.Д. Лекарственные средства. М., Новая волна, 2007.