2U3UUSUUP 2UUCUՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱՉԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հայաստանի քիմիական հանդես 61, №3-4, 2008 Химический журнал Армении

УДК 541.183+543.544

АДСОРБЦИЯ УГЛЕКИСЛОГО ГАЗА НА ПРИРОДНОМ И Ад-МОРДЕНИТЕ ШИРАКСКОГО МЕСТОРОЖДЕНИЯ

Ф. А.ГРИГОРЯН, М. А. ШАХНАЗАРЯН, А. Р. ХАЧАТРЯН и А. Ш. ГРИГОРЯН

Государственный инженерный университет Армении Армения, 0009, Ереван, ул.Теряна, 105 e-mail: chemdep@seua.am

Поступило 30 X 2007

В настоящей работе изучена адсорбция CO₂ на природном и Ag-мордените Ширакского месторождения. Вычислены теплоты адсорбции и предельные объемы адсорбционных пространств природного и Ag-морденита. Показано, что они являются эффективным адсорбентом для поглощения CO₂ из газовых смесей.

Рис. 2, табл. 2, библ. ссылок 13.

Очистка газов от нежелательной примеси двуокиси углерода – актуальная задача. Она особенно важна при следующих технологических процессах: создание защитной атмосферы [1]; очистка природного газа [2]; получение чистых этана, этилена, пропана и водорода [3]; регенерация атмосферы в замкнутых системах, например, удаления СО₂ в космических кораблях [4]; в плодоовощехранилищах [5,6]; в металлургических процессах; в устройствах разделения воздуха.

Один из способов очистки газов от CO₂ основан на адсорбционной селективности морденита [12,13]. Молекулы CO₂ достаточно малы: кинетический диаметр составляет $d(CO_2) = 3,3 \stackrel{0}{A} [7]$, в то время как размеры окон морденита $\sigma_m = 3,9 \stackrel{0}{A} [7]$, а молекулы CO₂ легко проникают в полости морденита. Молекула CO₂ неполярна и не имеет дипольного момента, однако поляризуемость связи CIIO и наличие π -связи приводит к асимметричному расположению электронов относительно атомных ядер. Несимметричное распределение электронной плотности количественно измеряется квадрупольным моментом, который в случае молекулы CO₂ равен $M(CO_2) = 0,64 \stackrel{0}{A} [7]$. Энергия адсорбции двуокиси углерода значительно увеличивается вследствие квадрупольного взаимодействия. Катионы для двуокиси углерода являются специфическими активными центрами.

364

Ранее нами было показано, что Ag-морденит, полученный из природного цеолита Ширакского месторождения, можно применять при очистке Ar от O₂ [8]. Подвергаемый очистке Ar, получаемый из воздуха, содержит также примесь углекислого газа. Было бы целесообразно избавляться от обеих примесей (кислород и углекислый газ) с помощью одного и того же адсорбента.

Цель настоящей работы – исследование адсорбции углекислого газа на природном мордените Ширакского месторождения и полученном из него Ад-мордените.

Экспериментальная часть

Ад-морденит был получен обработкой природного морденита раствором AgNO₃ по методике, описанной в [9]. Перед адсорбционными исследованиями природный и Ад-морденит подвергали термической дегидратации под вакуумом при t=450°C и р=10⁻³ *Торр* в течение 4 *ч*.

Адсорбционные измерения проводились на обоих сорбентах объемным методом [2]. Адсорбция СО₂ на природном мордените Ширакского месторождения ранее была исследована нами хроматографическим методом [10]. Как показали эти измерения, адсорбция и десорбция полностью обратимы, поэтому десорбционная ветвь изотермы совпадает с адсорбционной. Брек [7] это объясняет тем, что изотермы адсорбции на кристаллических цеолитах не имеют гистерезиса, характерного для изотерм адсорбции на аморфных микропористых адсорбентах.

Результаты и их обсуждение

Полученные изотермы адсорбции CO₂ при T=20°C на природном и Аg-мордените приведены на рис. 1. Для сравнения представлены также изотермы адсорбции O₂ и Ar на Ag-мордените [8].

Как видно из рис. 1, адсорбция CO₂ почти на один порядок больше адсорбции кислорода и аргона. Опытные данные удовлетворительно описываются уравнением Дубинина-Радушкевича [2,7]:

$$lg(aV^*) = lg W_0 - 0,434 B / \beta^2 (T \cdot lg \frac{P_s}{P})^2, \qquad (1)$$

где W_0 – предельный объем адсорбционного пространства ($cm^3 \cdot r^1$); V^* – мольный объем адсорбата ($cm^3 \cdot mmonb^{-1}$); а – величина адсорбции ($mmonb \cdot r^{-1}$); β – коэффициент афинности; P_s –

365

давление насыщенных паров адсорбата (*Topp*); Т и Р – равновесные температура и давление адсорбата; В – постоянная величина, определяющая характеристическую энергию адсорбции, которую можно выразить следующим уравнением:

$$\mathsf{E} = 4,524 \sqrt{\frac{1}{\mathsf{B}}} \,. \tag{2}$$

В табл. 1 приведены данные по адсорбции СО2 на природном и Ад-мордените.

Таблица 1

Морденит				Ад / морденит			
Р, <i>Тор</i> <i>Р</i>	а, <i>мкмоль</i> г -1	lg(a∙V*)	[Tlg(Ps/P)] ² · 10 ⁻⁴	Р, <i>Тор</i> <i>Р</i>	а, <i>мкмоль</i> г -1	lg(a∙V *)	[Tlg(Ps/P)]²⋅ 10⁻⁴
0.2	152.44	-2.049	230.25	3	37.59	-2.99	255.29
4	295.40	-1.76	130.87	11	110.99	-2.53	204.73
22	511.67	-1.52	86.62	25	238.59	-2.35	175.18
68	796.22	-1.33	62.34	70	403.82	-1.97	141.76
290	1047.33	-1.20	37.03	147	603.88	-1.79	119.93
				300	741.48	-1.70	100.67
				357	848.70	-1.64	96.09

Данные по адсорбции CO2 на природном и Ад-мордените

На рис. 2 приведены изотермы адсорбции CO₂ на природном и Ag-мордените в координатах уравнения Дубинина-Радушкевича. Опытные данные в координатах lg(a·V*)–[Tlg(Ps/P)]² удовлетворительно ложатся на прямую линию. По параметрам прямых были вычислены предельные объемы адсорбционного пространства цеолитов W₀ и константы $\frac{B}{B^2}$.

Рис. 2. Изотермы адсорбции CO₂ на природном (1) и Ад-мордените (2) в координатах уравнения Дубинина-Радушкевича.

В табл. 2 приведены расчетные значения Wo и E.

Таблица 2

Константы уравнения Дубини	на-Радушкевича для природного
и Ад-морденита Шиј	ракского месторождения

Цеолит	SiO ₂ /Al ₂ O ₃	Wo, $CM^3 \cdot r^1$	B.10 ⁶	β	Е, қДж моль
природный морденит	6.97	0.1	2.43	1.34	12.24
Ag-морденит	6.97	0.1	3.39	1.34	10.28

Характеристики адсорбции, приведенные в табл. 2, позволяют сделать следующие заключения. Предельный объем адсорбционного пространства не изменяется в результате ионообменного введения ионов серебра. Возможно, это определяется малым количеством ионообменного серебра (0,02%). Характеристическая энергия адсорбции уменьшилась, т. к. при ионном обмене ослабло электростатическое поле, поскольку радиус иона Ag^+ (r(Ag^+)=126 *ПМ*) больше радиуса иона Na⁺ (r (Na⁺)=97 *ПМ*) [11]. В то же время адсорбция углекислого газа на Ag-мордените несколько меньше адсорбции на природном мордените. При этом на Ag-мордените CO₂ адсорбируется в значительно больших количествах, чем O₂ и Ar.

Таким образом, Ад-морденит, полученный из природного морденита Ширакского месторождения, имеет большую адсорбционную селективность по сравнению с О₂. Природный морденит с успехом можно применять при очистке газов от CO₂ в различных технологических процессах, а Ag-морденит – при очистке аргона от кислорода и углекислого газа.

ԱԾԽԱԹԹՈՒ ԳԱՉԻ ԱԴՍՈՐԲՑԻԱՆ ՇԻՐԱԿԻ ՀԱՆՔԱՎԱՅՐԻ ԲՆԱԿԱՆ ԵՎ Ag-ՄՈՐԴԵՆԻՏԻ ՎՐԱ

Ֆ. Հ. ԳՐԻԳՈՐՅԱՆ, Մ. Ա. ՇԱՀՆԱԶԱՐՅԱՆ, Հ. Ռ. ԽԱՉԱՏՐՅԱՆ և Ա. Շ. ԳՐԻԳՈՐՅԱՆ

Աշխատանքում ուսումնասիրվել է Շիրակի բնական մորդենիտի և նրանից ստացված Ag-մորդենիտի վրա CO₂-ի աղսորբցիան։ Հաշվված են ադսորբցիոն տարածության սահմանային ծավալը, ադսորբցիայի ջերմությունը։ Յույց է տրված, որ Շիրակի բնական և Ag-մորդենիտը կարելի է կիրառել որպես արդյունավետ ադսորբենտ գազերից CO₂-ը կլանելու համար։

ADSORBTION OF CO2 ON NATURAL OF SHIRAK AND Ag-MORDENITE

F. H. GRIGORYAN, M. A. SHAHNAZARYAN, H. R. KHACHATRYAN and A. Sh. GRIGORYAN

State Engineering University of Armenia Armenia, 0009, Yerevan, Teryan str., 105 E-mail: chemdep@seua.am

It has been shown that Ag-mordenite received from natural Shirak's mordenite is use to applicate for cleaning of argon from oxygen. Argon, received from air contains CO_2 also and it is comfortable to clean both impurities (CO_2 and O_2) using the same adsorbent. The aim of this work is to investigate the adsorption of CO_2 on Shirak's natural and Ag-mordenite. It was established that the adsorption of CO_2 on Ag-mordenite approximately ten times is higher than adsorption of O_2 and argon, and the modificated Ag-mordenite is very effective adsorbent for absorption of CO_2 from gas mixture.

ЛИТЕРАТУРА

- [1] Тимофеев Н.В., Кабанов О.И.// Изв. АН СССР, ОХН, 1961, №91, с.1569.
- [2] Кельцев Н.В. Основы адсорбционной техники. М., Химия, 1984, с.49.
- [3] Haase H. // Chem.Antagen Vestabren, 1926, №5, p.42.
- [4] Воронин Т.Н., Полливд А.Н. Жизнеобеспечение экипажа космических кораблей. М., Машиностроение, с.211.
- [5] Delleose I., Winniek I. // Ind. Eng. Chem. Process "Design a Development", 1964, v.8, №1, p.469.
- [6] *Журин А.А.* Автореф. дисс. "Очистка газов от двуокиси углерода" канд. техн. наук, М., МИНХ им. Плеханова, 1978.
- [7] Брек Д. Цеолитовые молекулярные сита. М., Мир, 1976, с.652, 613.
- [8] Григорян Ф.А. // Хим. ж. Армении, 2007, т.60, №3, с.446.
- [9] Григорян Ф.А, Арсенян Ш.А., Ароян А.Р. // Годичная научная конференция, ГИУА, 2002, т.1, с.88.
- [10] *Grigoryan F.H, Hambartsumyan A.H, Haroyan H.R., Karapetyan A.A.* // Zeolites and mesoporous materials at the down of the 21st century. 2001 "Elsevier" Amsterdam-London-NewYork-Oxford-Paris-Shannon-Tokyo.
- [11] Карапетянц М.Х., Дракин С.И. Общая и неорганическая химия. М., Химия, 1982, с.50.
- [12] *Близнан Ю.П., Максимов Л.В., Файнштейн В.И.* // Технические газы, 2004, №4. с.56.
- [13] *Lovat V.C.* Rees and Dongmin Shen. Adsorption of gases in zeolite molecular sieves. Studies in Surface Science and catalysis-137 "Elsevier Science BV", 2001, p.579.

368