2U3UUSUUF 2UUCUMESNEGSUU GESNEGSNEUUECE UQGUSEU UGUGEUEU НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հшјшиտшић рћићшиши ћшићћи 61, №1, 2008 Химический журнал Армении

УДК 547.854.4

СИНТЕЗ И ПРОТИВООПУХОЛЕВЫЕ СВОЙСТВА НОВЫХ 6-СТИРИЛПРОИЗВОДНЫХ ПИРИМИДИНОВ

А. А. АРУТЮНЯН, А. Г. СААКЯН, С. С. МАМЯН и Р. Г. МЕЛИК-ОГАНДЖАНЯН

Институт тонкой органической химии им. А.Л.Мнджояна НАН Республики Армения, Ереван

Центр исследования строения молекул НАН Республики Армения, Ереван

Поступило 10 XII 2006

Осуществлена конденсация 6-метил-5-формилурацила и 5-замещенных -4-гидрокси-2,6-диметилпиримидинов с ароматическими альдегидами в присутствии катализаторов в 6-стирилпроизводные 5-формилурацила и 5-замещенные 4-гидрокси-2-метил-6-стирилпроизводные пиримидинов, соответственно.

Изучены противоопухолевые свойства некоторых синтезированных соединий.

Табл. 2, библ. ссылок 4.

Известно, что аналоги стильбена проявляют противоопухолевые свойства [1], которые еще более выражены в ряду замещенных трифенилэтиленов, из которых препарат тамоксифен широко используется в клинической практике при адьювантной терапии РМЖ. Противоопухолевые свойства трифенилэтиленов обусловлены их способностью конкурировать с рецепторами эстрогенов на клеточной мембране, что приводит к блокированию роста эстрогензависимых злокачественных опухолей молочной железы [2].

В связи с этим представляло интерес получить гетероциклические аналоги стильбенов и трифенилэтилена с заменой арильного остатка на пиримидиновый, т. е. осуществить синтез стирилпроизводных пиримидинов.

Ранее были описаны синтезы некоторых стирилпроизводных пиримидинов реакцией Клайзена метилпиримидинов с ароматическими альдегидами в присутствии катализаторов ($ZnCl_2$, анилин). При этом было установлено, что наличие в пиримидиновом ядре двух электронодонорных групп препятствует протеканию

конденсации, в то время как присутствие одной электронодонорной группы или введение в ядро электроноакцепторной нитрогруппы делает конденсацию Клайзена возможной [3].

В соответствии со сказанным нами установлено, что метильная группа 2,4диоксо-6-метил-5-формилпиримидина I, активированная электроноакцепторной формильной группой, легко конденсируется в мягких условиях с рядом ароматических альдегидов (но не с бензофе-ноном) с образованием Е-изомеров 6стирилпроизводных-5-формилурацила IIa-е по схеме 1.

IIa-e

Ar=Ph (a) 2'-OHPh (б) 2'-Furyl (в) 4-Pyridyl (г) 4'-NO2Ph (д) 2'-FPh (е)

Синтез соединений II а-е осуществлен взаимодействием 2,4-дигидрокси-6-метил-5-формилпиримидина I с избытком соответствующего ароматического альдегида в спирте в присутствии каталитического количества пиперидина. Необходимо отметить, что в данных условиях не происходит самоконденсации альдегида I, в спектрах ЯМР 1 Н соединений II а-е наблюдаются исчезновение синглета в области 2,54 м.д. (6-CH₃) и появление сигналов в области 6,6-8,3 м.д., характерных для ароматических и винильных протонов.

Показано также, что 2,6-диметил-4-гидрокси-5-замещенные пиримидины III а-м конденсируются с ароматическими альдегидами в присутствии $ZnCl_2$ в Е-изомеры 6-стирилпроизводных IVa-ч (табл. 1) по схеме 2. Исходные соединения IIIа-м (в том числе ранее не описанные IIIa-г) получены циклизацией замещенных ацетоуксусных эфиров Va-м с гидрохлоридом ацетамидина в присутствии этилата калия в абсолютном спирте по схеме 2.

$$\begin{array}{c} \text{Cxema 2} \\ \text{NH} \\ \text{NH}_2 \\ \text{KOEt / EtOH} \\ \end{array} \begin{array}{c} \text{OH} \\ \text{N} \\ \text{N} \\ \end{array} \begin{array}{c} \text{OH} \\ \text{ArCHO} \\ \text{ZnCl /140-150}^{\circ} \\ \end{array} \begin{array}{c} \text{OH} \\ \text{N} \\ \text{Ar} \\ \end{array}$$

$$\begin{split} &\text{III,V: R=CH}_2\text{C}_6\text{H}_3(2',\!4'\text{-}(\text{CH}_3)_2) \ (\grave{a}), \ \text{CH}_2\text{C}_6\text{H}_3(2',\!5'\text{-}(\text{CH}_3)_2) \ (\acute{a}),} \\ &\quad \text{CH}_2\text{C}_6\text{H}_4(2'\text{Cl}) \ (\grave{a}), \ \text{CH}_2\text{C}_6\text{H}_4(4'\text{Cl}) \ (\breve{a}), \ \text{CH}_2\text{C}_6\text{H}_5 \ (\breve{a}),} \\ &\quad \text{(CH}_2)_2\text{CH}_3 \ (\grave{a}), \ (\text{CH}_2)_3\text{CH}_3 \ (\thickapprox), \ (\text{CH}_2)_4\text{CH}_3 \ (\varsigma),} \\ &\quad \text{CH}_2\text{CH}_2\text{CH}(\text{CH}_3)_2 \ (\grave{e}), \ \text{CH}_2\text{C}(\text{CH}_3)\text{CH}_2 \ (\grave{e}), \ \text{CH}_3\text{COOC}_2\text{H}_5 \ (\thickapprox),} \\ &\quad \text{CH}_2\text{CH}_2\text{COOC}_2\text{H}_2 \ (\grave{i}), \ \text{III}(\acute{1}): \ \text{R=CH}_2\text{CH}_2\text{COOCH}_2\text{CH}(\text{CH}_3)_2} \end{split}$$

IV: R=, Ar=(CH₂)₂CH₃, C₆H₄(4'-Br) (a); (CH₂)₂CH₃, C₆H₄(4'-NMe₂) (b); (CH₂)₃CH₃, C₆H₄(4'-Br) (B); (CH₂)₃CH₃, C₆H₄(4'-NO₂) (r); CH₂C(CH₃)CH₂, C₆H₄(4'-NMe₂) (Д); (CH₂)₄CH₃, C₆H₄(4'-NO₂) (e); (CH₂)₄CH₃, C₆H₄(4'-Br) (Ж); (CH₂)₄CH₃, C₆H₄(4'-NMe₂) (3); (CH₂)₂CH(CH₃)₂, C₆H₄(4'-NMe₂) (W); (CH₂)₂CH(CH₃)₂, C₆H₄(4'-NO₂) (K); (CH₂)₂CH(CH₃)₂, C₁₀H₆(2'-OH) (Д); (CH₂)₂CH(CH₃)₂, C₆H₄(4'-Br) (M); CH₂C₆H₅, C₆H₄(4'-Br) (H); CH₂C₆H₅, C₆H₄(2'-F) (o); CH₂C₆H₃(2',5'-Me₂), C₆H₄(4'-NMe₂) (Π); CH₂C₆H₃(2',4'-Me₂), C₆H₄(4'-NO₂) (p); CH₂C₆H₄(2'-Cl), C₆H₄(4'-NO₂) (c); CH₂C₆H₄(2'-Cl), C₆H₄(4'-NMe₂) (Τ); CH₂CH₂COOCH₂CH(CH₃)₂, C₆H₄(4'-NMe₂) (Φ); CH₂CH₂COOCH₂CH(CH₃)₂, C₆H₄(4'-NMe₂) (Φ); CH₂COOC₂H₅, C₆H₄(4'-NO₂) (Ψ)

Следует отметить, что конденсация 4-гидрокси-2,6-диметил-5-изоамилпиримидина IIIи с бензофеноном протекает в жестких условиях и целевой продукт VI получается с низким выходом.

В спектрах ЯМР¹Н стирилпроизводных характерны исчезновение синглета 6-метильной группы в области 2,20 м.д. и появление мультиплетов в области 6,5-8,0 м.д., присущих ароматическим и виниловым протонам стирильной группы.

В предварительных экспериментах по изучению противоопухолевой активности соединения IVи, IVк и IVм в дозе 30 mr/kr угнетали рост саркомы 45 крыс на 49,47 и 30%, соответственно.

Выходы, т. пл., данные элементного анализа и Rf стирилпроизводных IV а-ч

Соеди-	Выход,			Найдено	Брутто-	Вычис
нение	%	Т. пл., °С	Rf*	N	формула	лено N
a)	55,0	250-252	0,65	8,52	C ₁₆ H ₁₇ BrN ₂ O	8,41
<u>б)</u>	48,0	272-274	0,29	14,42	$C_{18}H_{23}N_3O$	14,13
в)	51,9	240-241	0,64	8,38	$C_{18}H_{23}H_{3}O$ $C_{17}H_{19}BrN_{2}O$	8,07
				,		
г)	51,3	260-262	0,43	13,33	$C_{17}H_{19}N_3O_3$	13,41
д)	35,5	220-222	0,52	13,48	$C_{19}H_{23}N_3O$	13,58
e)	46,0	270-272	0,54	12,96	$C_{18}H_{21}N_3O_3$	12,84
ж)	44,4	212-214	0,84	7,89	$C_{18}H_{21}BrN_2O$	7,75
3)	46,0	231-232	0,33	12,67	$C_{20}H_{27}N_3O$	12,91
и)	36,8	238-240	0,37	13,01	$C_{20}H_{27}N_3O$	12,91
к)	63,2	264-266	0,64	12,95	$C_{18}H_{21}N_3O_3$	12,84
л)	57,5	288-289	0,31	8,02	$C_{22}H_{24}N_2O_2$	8,04
м)	65,3	230-232	0,74	7,68	$C_{18}H_{21}BrN_2O$	7,75
н)	64,8	278-280	0,80	7,22	$C_{20}H_{17}BrN_2O$	7,35
0)	68,3	222-224	0,49	8,80	$C_{20}H_{17}FN_2O$	8,74
п)	52,1	266-268	0,72	11,26	$C_{24}H_{27}N_3O$	11,25
p)	68,5	297-298	0,71	11,82	$C_{22}H_{21}N_3O_3$	11,19
c)	62,2	317-318	0,73	11,26	$C_{20}H_{16}CIN_3O_3$	11,01
т)	57,3	268-270	0,65	10,91	$C_{22}H_{22}CIN_3O$	11,06
y)	63,5	220-222	0,33	6,42	$C_{20}H_{23}BrN_2O_3$	6,68
ф)	50,4	258-260	0,20	11,09	$C_{22}H_{29}N_3O_3$	10,96
x)	68,3	263-264	0,28	11,10	$C_{22}H_{23}N_3O_5$	10,90
ц)	59,3	250-252	0,51	7,61	C ₁₇ H ₁₇ BrN ₂ O ₃	7,43
ч)	53,6	288-290	0,44	12,53	$C_{17}H_{17}N_3O_5$	12,24

^{*} Система: IV а-м,п,у-ч (эфир-бензол, 1/2), IV н,о,р-т (изопропанол-дихлорэтан, 1/9).

Спектры ЯМР 1 Н соединений IV и-л,о,ф-ч.

Соединение	Сигналы протонов,σ, м.д.		
4-гидрокси-6-(Е)-[2-((4-	0,97д(6H, J6,6,C(CH ₃) ₂), 1,30м (2H, <u>CH₂</u> CH), 1,62н (1H, J6,6,		
диметиламино)фенил)]-винил-5-	CH), 2,23c (3H,2CH ₃), 2,39м (2H, <u>CH₂</u> CH ₂), 3,02c (6H,N(CH ₃) ₂),		
изоамил-2-метилпиримидин (IVи)	6,49д (1Н, Ј 15,9, Е =СН), 6,66м (2Н,3',5'-Н, Аг), 7,37м		
	(2H,2',6'-H, Ar), 7,67д (1H, J 15,9, Е=СН), 11,92ш (1H,ОН).		
4-гидрокси-5-изоамил-2-метил-6-(Е)-	0,98д(6H, J 6,6 (CH ₃) ₂), 1,32м (2H, <u>CH₂</u> CH), 1,63н (1H, J		
[2-((4-нитро)фенил)]винилпиримидин	6,6,CH), 2,27с (3H, 2-CH ₃), 2,42м (2H, <u>CH₂</u> CH ₂), 6,97д (1H, J		
(IVĸ)	16,1, E=CH), 7,78м (2H, 2,6-H,Ar), 7,87д (1H, J 16,1, E= CH),		
	8,24м (2Н, 3,5-Н, Аг), 12,29ш (1Н,ОН).		
4-гидрокси-6-(Е)-[2-(1-(2-	0,99д (6Н, Ј 6,6, (СНз)2), 1,34м (2Н,СН2), 1,64н (1Н, Ј 6,6,СН),		
гидрокси)нафтил)]-	2,31с (3H,СНз), 2,43м (2H,СН2), 7,20-7,26м (2H,Н-Аг), 7,26д		
винил-5-изоамил-2-метилпиримидин	(1H, J16,1, E=CH), 7,44м (1H, H-Ar), 7,64д (1H, J8,8,H-Ar),		
(IVπ)	7,70уш.д(1Н, Ј 8,0, Н-Аг), 8,25д (1Н, Ј 8,8,Н-Аг), 8,38д (1Н, Ј		
	16,1, E=CH), 10,15ш (1H,OH), 12,18ш (1H,OH).		
5-бензил-4-гидрокси-2-метил-6-(Е)-[2-	2,27c (3H,2-CH ₃), 3,82c (2H,CH ₂), 6,91д (1H, J 16,1, E=CH),		
((2-	7,07-7,17 _M (2H, H-Ar),7,18-7,22 _M (5H,H-Ar), 7,34 _M (1H, H-Ar),		
фтор)фенил)]винилпиримидин (IVo)	7,62тд (1Н, Ј 7,7 и 1,9, Н-Аг), 7,94д (1Н, Ј 16,1, Е=СН), 12,43ш		
	(1H, OH).		
4-гидрокси-6-(Е)-[2-(4-	0,93д (6-H, J 6,7 (CH ₃) ₂), 1,91н (1H, J 6,7,CH), 2,32с (3H,2-CH ₃),		
диметиламино)фенил]винил-5-(2-	2,48м (2H,CH ₂), 2,69м (2H,CH ₂), 3,04с (6H,N(CH ₃) ₂), 3,80д (2H, J		
изобутоксикарбонил)этил-2-	6,7,ОСН2), 6,58д (1Н, Ј 16,1, Е=СН), 6,68м (2Н, 3,5-Н,Аг), 7,40м		
метилпиримидин (IVф)	(2H, 2,6-H,Ar), 7,83д (1H, J 16,1,E=CH), 12,00ш (1H,OH).		
4-гидрокси-5-(2-	0,93д (6H, J 6,7, (CH ₃) ₂), 1,91н (1H, J 6,7, CH), 2,32с (3H,2-CH ₃),		
изобутоксикарбонил)этил-2-метил-	2,49м (2H,CH ₂), 2,72м (2H,CH ₂), 3,80д (2H, J 6,7 OCH ₂), 6,98д		
-6-(E)-[2-((4-	(1H, J 16,1, E=CH), 7,78м (2H,2,6- Ar), 7,89д (1H, J 16,1, E=CH),		
нитро)фенил)]винилпиримидин (IVx)	8,24м (2H,3,5-H,Ar), 12,40ш (1H,OH).		
4-(Е)-[2-((4-бром)фенил)винил]-6-	1,27т (3H, J 7,1 CH ₂ CH ₃), 2,24с (3H, 2-CH ₃), 3,44с (2H,CH ₂),		
гидрокси-2-метил-	4,11кв (2H, J 7,1, OCH ₂), 6,82д (1H, J 16,0, E=CH), 7,47м и 7,53м		
5-(этоксикарбонил)метилпиримидин	(2H, C ₆ H ₄), 7,80д (1H, J 16,0, E=CH), 12,38ш (1H,OH)		
(IVц)	(,, -,, (,) 10,0, 2 312, 12,000 (111,011)		
4-гидрокси-2-метил-6-(Е)-[-((4-	1,28т (3H, J 7,1,CH2CH3), 2,26с (3H,2-CH3), 3,46с (2H, CH2),		
нитро)фенил)]винил-	4,12кв (2H, J 7,1, ОСН2), 7,01д (1H, J 16,1, E=СН), 7,80м (2H,2,6-		
-5-(этоксикарбонил)метилпиримидин	Н, Аг),7,93д (1Н, Ј16,1, Е=СН),8,25м (2Н,3,5-Н,Аг), 12,51ш		
(IV _Y)	(1H,OH).		

Экспериментальная часть

ЯМР 1 Н спектры сняты на приборе "Mercury 300 Varian" в ДМСО- d_6 /СС l_4 ТСХ проведена на пластинах "Silufol" с проявлением в УФ-свете.

2,4-Диоксо-6-стирил-5-формилпиримидины IIa-e. Раствор 1,56 г (0,01 моля) 6метил-5-формилурацила [4], 0,02 моля соответствующего ароматического альдегида и 0,5 мл пиперидина в 40 мл этанола кипятят 8 ч с обратным холодильником. Выпавшие кристаллы фильтруют, перекристаллизовывают из смеси ДМФА-вода и сушат. 2,4-Диоксо-6-(Е)-(2-фенил)винил-5-формилпиримидин (Па), выход 66,1%, т.пл.> 300° C, $R_f 0.57$ (10% NH_4OH), спектр SMP^1H , σ , 7,38-7,45 м (3H) и 7,60 м (2H, C_6H_5), 7,91д (1H J16 Γ и, (E) =CH), 8,15д (1H, J 16,7 Γ и, (E)=CH), 10,10с (1H,CHO), 11,36ш (1H,NH); 6-(Е)-[2-(2-гидрокси)фенил]винил-2,4-диоксо-5формилпиримидин (IIб), выход 46,5%, т.пл. $268-270^{\circ}$ C, R_f 0,70(10% NH_4OH),спектр ЯМР¹Н, σ , 6,82 т (1H, J 7,5, 5-H,Ar), 6,89д(1H, J 8,2, 3-H,Ar), 7,17т(1H, J7,7, 4-Ar), 7,47d (1H, J 7.9, 6-H, Ar), 8.01д (1H, J16.7, E=CH), 8.23д (1H, J 16.7, E=CH), 10.06ш (1H,OH), 10,09с (1H,СНО), 11,23ш (1H, NH), 11,35ш (1H, NH); 2,4-диоксо-5-формил-6-(Е)-[2-(2фурил)]винилпиримидин (IIв), выход 64,6%, т.пл.> 300° С, $R_f 0,77(10\% \text{ NH}_4\text{OH})$, спектр ЯМР¹Н, о, 6.69дд (1H, J 3.5, 1.8 4-H, фурил), 6.91д (1H, J3.5, 3-H, фурил), 7.78д (1H, J16,3, E=CH), 7,92д(1H, J16,3, E=CH), 7,95д (1H, J 1,8, 5-H, фурил), 10,06c (1H, CHO), 11,49ш (1H, NH); 2,4-диоксо-6-[2-(пиридил-4)]винил-5-(1H, NH), формилпиримидин (IIг), выход 53,5%, т.пл.>300°С, Rf 0,84 (10% NH4OH); 2,4-диоксо-6-[2-(4-нитрофенил)]винил-5-формилпиримидин (IIд), выход 34,8%, т.пл.>300°С, Rf 0,80; 2,4-диоксо-5-формил-6-[2-(2-фторфенил)]винилпиримидин (IIe), выход 30,8%, т.пл.>300°C, Rf 0,76 (10% NH4OH).

6-Стирилпиримидины IVa-ч. Смесь 0,01 *моля* 4-гидрокси-2,6-диметил-5-R-пиримидина IIIa-н, 0,01 *моля* ароматического альдегида и 100 *мг* безводного ZnCl₂ нагревают при $140\text{-}150^{\circ}\text{C}$ на бане Вуда 1 ч. После охлаждения остаток растирают со спиртом, фильтруют и сушат. Полученные соединения далее очищают перекристаллизацией из спирта или горячим фильтрованием суспензии вещества в спирте (табл. 1). Спектры ЯМP^1 Н некоторых синтезированных соединений IV приведены в табл. 2.

4-Гидрокси-6-(2,2-дифенил)винил-5-изоамил-2-метилпиримидин (VI). Смесь 0,92 r (0,005 mоnя) 4-гидрокси-2,6-диметил-5-изоамилпиримидина (IIIи), 1,27 r (0,007 mоnя) бензофенона и 0,68 r (0,005 mоnя) безводного ZnCl $_2$ нагревают 4 r при 280°C, охлаждают и обрабатывают эфиром. Полученный осадок перекристаллизовывают из спирта. Выход 0,4 r (23,5%), т.пл. 212-214°C, R_f 0,74 (изопропанол-дихлорэтан, 1/9). Спектр M0, м.д.: 0,93д (6H, J 6,6 (CH $_3$) $_2$),1,24м (2H,CH $_2$),1,57н (1H, J 6,6, CH),

1,88c (3H,2-CH₃), 2,30м (2H,CH₂), 6,64 (1H, =CH), 7,13-7,17м (2H) и 7,28-7,32м (8H,H-Ar), 11,51ш (1H, OH). Найдено %, N: 7,73. Вычислено, %: 7,81, $C_{24}H_{26}N_2O$.

Замещенные ацетоуксусные эфиры V а-г. К раствору этилата калия, приготовленному из 1,95 r (0,05 r-ar) металлического калия в 50 $m\pi$ абсолютного этанола, добавляют 6,5 r (0,05 m0m0 замещенного ацетоуксусного эфира и 0,05 m0m0 соответствующего бензилхлорида Смесь кипятят с обратным холодильником 5 m0, отгоняют спирт, к остатку приливают 70 m0 бензола и 20 m0 воды. Бензольный слой отделяют, сушат над Na2SO4, упаривают растворитель и остаток перегоняют в вакууме: (2'-хлор)бензилацетоуксусный эфир (Va), выход 69,4%, т.кип. 170-180°C/15 m0,62(дихлорэтан-нонан, 1-1); (4'-хлор) бензилацетоуксусный эфир V6, выход 75,0%, т.кип. 170-180°/15 m0, m0,

2,6-Диметил-4-гидрокси-5-замещенные пиримидины IIIа-г. К раствору этилата калия, приготовленному из 0,78 r (0,02 r-ar) металлического калия) в 40 $m\pi$ абсолютного этанола, добавляют 0,95 r (0,01 m0n3) предварительно высушенного гидрохлорида ацетамидина и 0,01 m0n5 соответствующего ацетоуксусного эфира. Смесь кипятят с обратным холодильником 6 q7, отгоняют досуха спирт, к остатку приливают 10 m7 воды и подкисляют AcOH до pH5. После охлаждения выпавшие кристаллы фильтруют и сушат, перекристаллизовывают из водного спирта: 4-гидрокси-2,6-диметил-5-(2хлор)бензилпиримидин (IIIa), выход 63,2%, т. пл. 158-160 $^{\circ}$ C, R $_{\rm f}$ 0,47(изопропанол-дихлорэтан, 1-9); 4-гидрокси-2,6-диметил-5-(4-хлор)бензилпиримидин (IIIб), выход 70,6%, т. пл. 204-205 $^{\circ}$ C, R $_{\rm f}$ 0,43 (изопропанол-дихлорэтан, 1-9); 4-гидрокси-2,6-диметил) бензилпиримидин IIIв, выход 69,3%, т.пл. 197-198 $^{\circ}$ C,R $_{\rm f}$ 0,37(изопропанол-дихлорэтан, 1-9); 4-гидрокси-2,6-диметил-5-(2,5-диметил)бензилпиримидин (IIIr), выход 58,8%, т.пл. 225-226 $^{\circ}$ C, R $_{\rm f}$ 0,27(изопропанол-дихлорэтан, 1-9).

Изобутиловый эфир 4-гидрокси-2,6-диметилпиримидинил-5-пропионовой кислоты (IIIн). Раствор 1,96 r (0,01 mоля) 4-гидрокси-2,6-диметилпиримидинил-5-пропионовой кислоты и 0,5 mЛ H_2SO_4 в 50 mЛ изобутилового спирта кипятят с обратным холодильником 10 u. Спирт отгоняют досуха, приливают 50 mЛ дихлорэтана и обрабатывают насыщенным раствором NaHCO3. Органический слой отделяют,сушат над Na₂SO₄ и упаривают досуха. Выпавшие кристаллы растирают с небольшим количеством холодного эфира,фильтруют и сушат. Выход 1,9 r (75,4%), т.пл. 112-114°C, R_f 0,18 (изопропанол-дихлорэтан, 1-9).

ՆՈՐ 6-ՍԹԻՐԻԼ ՊԻՐԻՄԻԴԻՆՆԵՐԻ ԱԾԱՆՑՅԱԼՆԵՐԻ ՄԻՆԹԵԶԸ ԵՎ ՀԱԿԱՈՒՌՈՒՑՔԱՅԻՆ ՀԱՏԿՈՒԹՅՈՒՆՆԵՐԸ Ա. Ա. ՀԱՐՈՒԹՅՈՒՆՅԱՆ, Ա. Գ. ՄԱՀԱԿՅԱՆ, Մ. Մ. ՄԱՄՅԱՆ և Ռ. Գ. ՄԵԼԻՔ-ՕՀԱՆՋԱՆՅԱՆ

Ցույց է տրված,որ 6 -մեթիլ-5 -ֆորմիլուրացիլի մեթիլ խումբը ցուցաբերում է C - թթվային հատկություններ և հեշտ կոնդենսացվում է մի շարք արոմատիկ ալդեհիդների հետ պիպերիդինի կատալիտիկ քանակների ներկայությամբ,առաջացնելով 5-ֆորմիլ ուրացիլի 6-սթիրիլածանցյալներ։ Նման կոնդենսացիա տարբեր 5-տեղակալված 4-հիդրոքսի-2,6-դիմեթիլպիրիմիդինների և մի շարք արոմատիկ ալդեհիդների միջև իրականացված է ցինկի քլորիդի ներկայությամբ ելանյութերի համաձուլման միջոցով, որի արդյունքում ստացվում են 5-տեղակալված 4-հիդրոքսի-2-մեթիլ-6-սթիրիլպիրիմիդինների ածանցյալներ։

Ուսումնասիրված են որոշ նյութերի ՄՄՌ-սպեկտրները և հակաուռուցքային հատկությունները։

SYNTHESIS AND ANTITUMOR PROPERTIES OF THE NOVEL 6-STYRYLPYRIMIDINES DERIVATIVES

A. A. HARUTYUNYAN, A. G. SAHAKYAN, S. S. MAMYAN and R. G. MELIK-OHANJANYAN

It is shown,that the metyl group of the 6-methyl-5-formyluracil reveals the C-acid properties and easily condensed in the presence of piperidine with aromatic aldehydes in the formation of the 6-styryl derivatives of the 5-formyluracil. The same condensation between various 5-substituted 4-hydroxy-2,6-dimethylpyrimidines and number of aromatic aldehydes and benzophenone has been performed by fusion together the starting substances in the presence of $ZnCl_2$ followed by isolation of the corresponding 4-hydroxy-2-methyl-6-styrylpyrimidines. The antitumor properties of the novel 6-styryl pyrimidine derivatives have been investigated.

ЛИТЕРАТУРА

- [1] Ross W.C.J. // J.Chem.Soc., 1948, №8, p.1128.
- [2] *Weinstein I.B.* // Cancer Research, 1988, v.48, №15, p.4135.
- [3] *Brown D.J.* The Pyrimidines. The Chemistry of Heterocyclic Compounds. Interscience Publishers, New York, London, 1962, p.125.
- [4] *Арутюнян А.А.* // Автореф.дисс. "Синтез новых производных природного антибиотика спарсомицина" канд. хим. наук. Ереван, ЕГУ,1994.