ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հшјшиտшић ррифшиши ћшићи 60, №4, 2007 Химический журнал Армении

УДК 547.33'34+547.435

ПЕРЕГРУППИРОВКА СТИВЕНСА АММОНИЕВЫХ СОЛЕЙ, СОДЕРЖАЩИХ НАРЯДУ С 4-АЛЛИЛОКСИ(ФЕНИЛОКСИ)-2-БУТИНИЛЬНОЙ БЕНЗИЛЬНУЮ ИЛИ АЛЛИЛЬНОГО ТИПА ГРУППЫ

М. О. МАНУКЯН, А. В. БАБАХАНЯН и Г. А. ПАНОСЯН

Институт органической химии НАН Республики Армения, Ереван Армянский государственный педагогический университет им. Х. Абовяна, Ереван Центр исследования строения молекул

НАН Республики Армения, Ереван

Аммониевые соли, содержащие наряду с 4-аллилокси(фенилокси)-2-бутинильной бензильную или аллильного типа группы, под действием бензольной суспензии гидроксида калия в основном подвергаются 3,2-

перегруппировке Стивенса с образованием ненасыщенных аминоэфиров. В процессе реакции наряду с продуктами перегруппировки образуются также продукты 1,4-отщепления.

Табл. 3, библ. ссылок 10.

Согласно литературным данным, четвертичные аммониевые соли, содержащие наряду с пентен-4-ин-2-ильной, пентадиен-2,4-ильной, пропин-2-ильной или бутин-2-ильной группу аллильного типа, под действием порошка едкого кали в присутствии нескольких капель метанола или в абсолютном бензоле образуют продукты стивенсовской перегруппировки, где в качестве мигрирующей выступает 2-алкенильная группа. В случае же солей, сочетающих бензильную группу с бутин-2-ильной наряду с перегруппировкой Стивенса имеет место отщепление винилацетилена с образованием диметилбензиламина [1-7].

В продолжение исследований нами изучена перегруппировка Стивенса аммониевых солей, содержащих наряду с 4-аллилокси(фенилокси)-2-бутинильной бензильную или аллильного типа группы. С этой целью на основе аллил- и фенилпропаргиловых эфиров синтезированы диметил-4-аллилокси(фенилокси)-2-бутиниламины по реакции Манниха [8]. Взаимодействием полученных аминов с 2-алкенилгалогенидами в абсолютном эфире с высокими выходами получены соответствующие аммониевые соли **I а-3** (табл. 1). Последние

под воздействием порошкообразного гидроксида калия в абсолютном бензоле подвергаются в основном 3,2-стивенсовской перегруппировке.

HC=CCH₂OR+(CH₃)₂NH + (CH₂O)n FeCl₃
$$\rightarrow$$
 (CH₃)₂NCH₂C=CCH₂OR \rightarrow HIgCH₂CR¹=CHR² \rightarrow (CH₃)₂N-CH-C=C-CH₂OR \rightarrow (CH₃)₂N-CH-C=C-CH₂OR \rightarrow II a-3

R= CH₂CH=CH₂ (a-r), R=C₆H₅(π -3) R¹= R²= H(a, π), R¹= CH₃, R²= H(b, e)

Полученные продукты перегруппировки **II в, г, ж, з,** по данным спектров ЯМР ¹Н, вследствие наличия асимметрических углеродных атомов существуют в виде смеси двух диастереоизомеров в процентном соотношении 67:33 (**II в, ж**) и 90:10 (**II г, з**). Соединения **II г, з** при перегонке разлагаются, их очистку проводили методом колоночного хроматографирования.

 $\it Tаблица~1$ Выходы и данные элементного анализа солей $\it Ia-k$

Coorne	Выход, %	Найдено, %		Брутто-	Вычислено, %	
Соединение		N	Hlg-	формула	N	Hlg⁻
Ia	98	4,95	29,68	C ₁₂ H ₂₀ NBrO	5,11	29,2
Іб	85	5,42	15,24	C ₁₃ H ₂₂ NClO	5,75	14,58
Ів	91	5,01	27,25	C ₁₃ H ₂₂ NBrO	4,86	27,77
Iг	92	3,84	23,17	C ₁₈ H ₂₄ NBrO	4,0	22,86
Ιд	88	4,93	25,69	C ₁₅ H ₂₀ NBrO	4,52	25,81
Ie	97	4,85	12,98	C ₁₆ H ₂₂ NClO	5,0	12,7
жІ	95	4,54	24,54	C ₁₆ H ₂₂ NBrO	4,32	24,69
I3ª	80	4,0	20,54	C ₂₁ H ₂₄ NBrO	3,63	20,72
Іи	97	5 ½ 3	111999	C ₁₆ H ₂₂ NClO	51AD	121₹
Ικ ^a	89	4104	111/5	C ₁₉ H ₂₂ NClO	4 14 4	11125

 $^{^{}a}$ Т. пл соли **I з** 50-52, соли **I к** – 82-84 $^{\circ}$ С.

 $R^1 = H, R^2 = CH_3(B, \mathbb{X}), R^1 = H, R^2 = C_6H_5(\Gamma, 3)$

Hlg=Br(a,B-д,ж,3), Hlg=Cl(в, e)

Установлено, что в условиях реакции наряду с продуктами перегруппировки Стивенса образуются продукты 1,4-отщепления – диметил-2-алкениламины.

Взаимодействием эквимольных количеств диметил-4-аллилокси(фенилокси)-2-бутиниламинов с бензилхлоридом синтезированы аммониевые соли \mathbf{I} \mathbf{u} , \mathbf{k} (табл. 1), подвергнутые перегруппировке Стивенса под действием порошкообразного гидроксида калия в бензоле (табл. 1 и 2).

$$CH_{2}C_{6}H_{5}$$
 $CH_{3}C_{6}H_{5}$
 $CH_{3}C_{6}H_{5}$
 $CH_{2}C_{6}H_{5}$
 $CH_{3}C_{6}H_{5}$
 $CH_{3}C_{6}H_{5}$
 $CH_{3}C_{6}H_{5}$
 $CH_{3}C_{6}H_{5}$
 $CH_{3}C_{6}H_{5}$
 $CH_{3}C_{6}H_{5}$
 $CH_{3}C_{6}H_{5}$
 $CH_{2}C_{6}H_{5}$
 $CH_{3}C_{6}H_{5}$
 $CH_{2}C_{6}H_{5}$
 $CH_{2}C_{6}H_{5}$
 $CH_{2}C_{6}H_{5}$
 $CH_{2}C_{6}H_{5}$
 $CH_{2}C_{6}H_{5}$
 $CH_{2}C_{6}H_{5}$
 $CH_{2}C_{6}H_{5}$
 $CH_{2}C_{6}H_{5}$

R= $CH_2CH=CH_2$ (H) R= C_6H_5 (K)

Однако, если при перегруппировке соли **I и** наряду с перегруппировкой Стивенса с образованием аминоэфира **II и** имеет место и 1,4-отщепление, то в случае соли **I к** полностью происходит отщепление диметилбензиламина. Строение полученных соединений подтверждено данными ИК и ЯМР 1 Н и 13 С спектров (табл. 3), а индивидуальность проверена методом ГЖХ и ТСХ.

Учитывая выраженную антимикробную активность поверхностно-активных аммониевых солей, содержащих группы аллильного и пропаргильного типа [9], нами взаимодействием аминоэфира **II е** с алкиловыми эфирами монохлоруксусной кислоты (алкил С₁₀H₂₁, С₁₂H₂₅) получены соответствующие соли и изучена их антимикробная активность согласно методике [10]. Результатами проведенных исследований установлено бактерицидное действие 0,05% водных растворов изученных соединений в отношении эталонных штаммов кишечной палочки (шт. 1257) и золотистого стафилококка (шт. 906). Наиболее активна аммониевая соль, содержащая децильный радикал в сложноэфирной группе, обеспечивающая гибель указанных штаммов в течение 10 и 5 мин, соответственно.

Экспериментальная часть

ИК спектры сняты на приборе "Specord IR-75" в вазелиновом масле или в тонком слое. Спектры ЯМР получены на спектрометре "Varian Mercury-300" (300,075 $M\Gamma\mu$ для 1 H и 75,46 $M\Gamma\mu$ для 13 C) в ДМСО- d₆- CCl₄, и CDCl₃ при 303 К; химические сдвиги приведены относительно внутреннего сдандарта – ТМС.

Анализ методом ГЖХ осуществлен на приборе "ЛХМ-80" с детектором по теплопроводности, температура колонки 50-220 0 C (16 *град/мин*), 2000х3 *мм*, 10% Apiezon-L на носителе Inerton-AW (0,2-0,25 *мм*), скорость газа-носителя (гелий) 60 *мл/мин*.

Анализ методом ТСХ проведен на пластинах "Silufol UV-254" в системе толуол-ацетон, 7:1; проявление – парами йода. Препаративное

 $\label{eq:2.2} \mbox{\sc Bыходы, константы, данные элементного анализа продуктов перегруппировки Стивенса}$

Соеди-	Выход,	Т.кип., ℃		Найдено, %			Брутто-	Вычислено, %			Амин.
нение	%	(мм рт ст)	n D 20	С	Н	N	формула	С	Н	N	пр. расщ., %
IIa	72	90-91/3	1,4720	74,95	10,0	7,15	C ₁₂ H ₁₉ NO	74,61	9,84	7,25	20
IJб	59	106-107/3	1,4750	75,74	9,94	7,04	$C_{13}H_{21}NO$	75,36	10,14	6,76	25
Пв	58	101-102/3	1,4700	75,52	10,05	6,23	$C_{13}H_{21}NO$	75,36	10,14	6,76	20
IIr	62	_	1,5600	80,62	8,14	5,44	C ₁₈ H ₂₃ NO	80,29	8,55	5,20	26
ΙΙд	31	145-146/4	1,5300	77,99	8,51	6,28	$C_{15}H_{19}NO$	78,60	8,29	6,11	45
IIe	36	150-152/4	1,5450	80,26	8,15	5,44	$C_{16}H_{21}NO$	79,01	8,64	5,76	40
жІІ	38	142-143/4	1,5370	78,74	8,27	5,95	$C_{16}H_{21}NO$	79,01	8,64	5,76	41
IIз	64	_	1,5770	81,99	7,83	5,21	C ₂₁ H ₂₃ NO	82,62	7,54	4,59	35
Ши	44	153-155/4	1,5220	80,35	8,27	5,43	C ₁₆ H ₂₁ NO	79,01	8,64	5,76	48

при перегонке разлагаются, $R_{\rm f}$ соединений **ІІг, з** 0,78 и 0,8, соответственно.

ИК и ЯМР 1 Н и 13 С спектры соединений Іи,к и ІІа-и

Nº	ИК спектр, v, <i>см</i> ¹	Спектр ЯМР 1 Н и 13 С , δ , м. д. (J, $arGamma$ μ)
IIa	920, 990, 1640, 3025, 3090 (CH=CH ₂), 2240 (C≡C), 1040, 1080, 1140 (COC).	2,19 (6H, c, NCH ₃); 2,31 (2H, π π T, J_1 = 7,6, J_2 = 6,9, J_3 = 1,5, CH ₂); 3,34 (1H, τ T, J_1 = 7,6, J_2 = 1,9, NCH); 4,00 (2H, π T, J_1 = 5,5, J_2 =1,6, OCH ₂ CH=CH ₂); 4,13 (2H, π , J = 1,9, OCH ₂); 5,01 (1H, π π T, J = 10,2, J = 2,1, J = 1,3, =CH ₂); 5,07 (1H, π κ , J = 17,1, J = 1,7, =CH ₂); 5,16 (1H, π κ , J = 10,4, J = 1,6, =CH ₂); 5,25 (1H, π κ , J = 17,2, J = 1,7, =CH ₂); 5,81 (1H, π π T, J = 17,1, J = 10,2, J = 6,9, =CH); 5,85 (1H, π π T, J = 17,2, J = 10,4, J = 5,5, =CH),
II6	890, 920, 1650, 3015, 3085 (C=CH ₂ , CH=CH ₂), 2255 (C≡C), 1040, 1135, 1240 (COC).	1,75 (3H, т, J=1,2, CH ₃); 2,18 (6H, c, NCH ₃); 2,27 (2H, м, CH ₂ CH); 3,48 (1H, т т, J ₁ = 7,7, J ₂ = 1,5, NCH); 4,00 (2H, д т, J ₁ = 5,5, J ₂ =1,5, OCH ₂ CH=CH ₂); 4,12 (2H, д, J=1,8, OCH ₂); 4,74 (2H, м, =CH ₂); 5,15 (1H, д к, J ₁ = $\overline{10}$,4, J ₂ = 1,5, =CH ₂); 5,25 (1H, д к, J ₁ = $\overline{17}$,2, J ₂ = 1,5, =CH ₂); 5,85 (1H, д д т, J ₁ = $\overline{17}$,2, J ₂ = $\overline{10}$,4, J ₃ = 5,5, =CH). Спектр ЯМР ¹³ С: 21,67 (CH ₃); 40,57 (2C, NCH ₃); 41,61(CHCH ₂); 55,27 (CHCH ₂); 56,41 (OCH ₂ CH=CH ₂); 69,09 (OCH ₂); 81,15 и 82,42 (C≡C), 112,15 и 16,35 (2C, =CH ₂); 133,89 (=CH); 141,25 (C=CH ₂),
Пв	915, 975, 1640, 3015, 3085 (CH=CH ₂), 2245 (C≡C), 1035, 1075, 1120, 1245 (COC).	1,03 (1H, д, J=6,7) и 1,11(2H, д, J=6,7, CHC \underline{H}_3); 2,16 (4H, c) и 2,18 (2H, c, NCH ₃); 2,30 (1H, м, С \underline{H} CH ₃); 2,96 (0,3 H, д т, J ₁ = 9,8, J ₂ =1,9) и 3,02 (0,7 H, д т, J ₁ = 10,2, J ₂ =1,9, NCH); 4,00 (0,7H, д т, J ₁ = 5,5, J ₂ =1,5) и 4,01(1,3 H, д т, J ₁ = 5,5, J ₂ =1,5, OC \underline{H}_2 CH=CH ₂); 4,13 (0,7 H, д, J= 1,9) и 4,15 (1,3 H, д, J= 1,9, OCH ₂); 4,89-5,08 (2H, м, =CH ₂); 5,16 (1H, м) и 5,25 (1H, м, =CH ₂); 5,79 (1H, м, CHC \underline{H} =CH ₂); 5,85 (1H, м, CH ₂ C \underline{H} =CH ₂),
IIr	920, 1640, 3015, 3090 (CH=CH ₂), 700, 770, 958, 1490, 1605, 3030, 3065, 3085 (C_6H_5), 2240 (C=C), 1040, 1135, 1245 (COC).	2,22 (6H, c, NCH ₃); 3,40 (1H, д д, J ₁ = 11,0, J ₂ = 8,2, C <u>H</u> Ph); 3,62 (1H, д т, J ₁ = 11,0, J ₂ = 1,8, NCH); 4,00 (2H, д т, J ₁ = 5,5, J ₂ = 1,5, OC <u>H</u> ₂ CH=CH ₂); 4,15 (2H, д, J= 1,9, OCH ₂); 5,0 (1H, д т, J ₁ = 17,1, J ₂ = 1,4, =CH ₂); 5,07 (1H, м, =CH ₂); 5,16 (1H, м, =CH ₂) и 5,25 (1H, м, =CH ₂); 5,85 (1H, м, CH ₂ C <u>H</u> =CH ₂); 6,13 (1H, д д д, J ₁ = 17,1, J ₂ = 10,3, J ₃ = 8,2, =CH); 7,15-7,31 (5H, м, C ₆ H ₅),
Іід	920, 1640, 3025, 3085 (CH=CH ₂), 720, 765, 1500, 1600, 3020, 3065 (C_6H_5), 2235 (C=C), 1040, 1140, 1245 (COC).	2,13 (6H, c, NCH ₃); 2,28 (2H, д д т, J_1 = 7,6, J_2 = 6,9, J_3 = 1,7, CH ₂); 3,32 (1H, т т, J_1 = 7,6, J_2 = 1,8, NCH); 4,72 (2H, д , J_1 = 1,8, OCH ₂); 4,98 (1H, м, =CH ₂); 5,04 (1H, д к, J_1 = 17,1, J_2 = 1,7, =CH ₂); 5,76 (1H, д д т, J_1 = 17,1, J_2 = 10,2, J_3 = 6,9, =CH); 6,90-6,94 (3H, м) и 7,23 (2H, м, C_6 H ₅),

Iie	890, 1650, 3090 (C=CH ₂), 770, 985, 1490, 1600, 3020, 3065 (C ₆ H ₅), 2255 (C=C), 1070, 1135, 1240 (COC).	1,72 (3H, т, J=1,1, CH ₃); 2,12 (6H, с, NCH ₃); 2,24 (2H, м, CH ₂); 3,46 (1H, т т, J ₁ = 7,7, J ₂ = 1,8, NCH); 4,70 (1H, м) и 4,71(1H, м, =CH ₂); 4,71 (2H, д, J= 1,8, OCH ₂); 6,87-6,93 (3H, м) и 7,23 (2H, м, C ₆ H ₅). Спектр ЯМР 13 С: 21,65 (CH ₃); 40,52 (2C, NCH ₃); 41,41(CH <u>C</u> H ₂); 55,15 (CH ₂); 55,24 (<u>C</u> HCH ₂); 80,33 и 83,73 (C≡C), 112,25 (=CH ₂); 114,49; 120,45; 128,58; 141,10 (<u>C</u> =CH ₂); 157,01.
жІІ	920, 990, 1640, 3025 (CH=CH ₂), 720, 765, 1500, 1605, 3065, 3090 (C ₆ H ₅), 2235 (C=C), 1035, 1145, 1240 (COC).	1,01 (1H, д, J=6,7) и 1,08 (2H, д, J=6,7, CHC \underline{H}_3); 2,15 (4H, c) и 2,18 (2H, c, NCH ₃); 2,30 (1H, м, С \underline{H} CH ₃); 2,96 (0,3 H, д т, J ₁ = 9,8, J ₂ =1,8) и 3,01 (0,7 H, д т, J ₁ = 10,2, J ₂ =1,9, NCH); 4,72 (0,7H, д, J= 1,9) и 4,75 (1,3 H, д, J= 1,9, OCH ₂); 4,85-5,05 (2H, м, =CH ₂); 5,79 (1H, м, =CH); 6,85-6,93 (3H, м) и 7,23 (2H, м, C ₆ H ₅).
IIз	920, 990, 1640, 3030, 3085 (CH=CH ₂), 720, 770, 1490, 1610, 3065, 3090 (C ₆ H ₅), 2240 (C=C), 1040, 1140, 1235 (COC).	2,26 (6H, c, NCH ₃); 3,41 (1H, д д, J_1 = 11,0, J_2 = 8,2, $C\underline{H}$ Ph); 3,64 (1H, д т, J_1 = 11,0, J_2 = 1,8, NCH); 4,58 (2H, д, J_2 = 1,8, OCH ₂); 5,00 (1H, д т, J_1 = 17,1, J_2 = 1,4, =CH ₂); 5,08 (1H, м, =CH ₂); 6,12 (1H, д д д, J_1 = 17,1, J_2 = 10,3, J_3 = 8,2, =CH); 6,82 (2H, м), 6,95 (1H, м, OC ₆ H ₅); 7,12-7,31 (7H, м, C ₆ H ₅ и OC ₆ H ₅).
Пи	920, 990, 1640, 3025, 3090 (CH=CH ₂), 720, 765, 1500, 1600, 3020, 3065, 3080 (C ₆ H ₅), 2240 (C=C), 1045, 1135, 1240 (COC).	2,25 (6H, c, NCH ₃); 2,79 (2H, д д т, J_1 = 7,6, J_2 = 6,9, J_3 = 1,6, CH ₂ CH); 3,48 (1H, т т, J_1 = 7,6, J_2 = 1,8, NCH); 4,00 (2H, д т, J_1 = 5,5, J_2 =1,6, OCH ₂ CH=CH ₂); 4,12 (2H, д , J_2 = 1,9, OCH ₂); 5,18 (1H, д к, J_1 = 10,4, J_2 = 1,5, =CH ₂); 5,27 (1H, д к, J_1 = 17,2, J_2 = 1,5, =CH ₂); 5,90 (1H, д д т, J_1 = 17,2, J_2 = 10,4, J_3 = 5,5, =CH); 7,19-7,30 (3H, м) и 7,49 (2H, м, C_6H_5).
Іи	920, 990, 1640, 3025, 3080 (CH=CH ₂), 720, 765, 1500, 1610, 3020, 3065, 3085, 3090 (C_6H_5), 2240 (C=C), 1075, 1135, 1240 (COC).	3,21 (6H, c, NCH ₃); 4,04 (2H, д т, J ₁ = 5,4, J ₂ =1,5, OC <u>H</u> ₂ CH=CH ₂); 4,29 (2H, т, J= 1,9, OCH ₂); 4,69 (2H, т, J=1,8, NCH ₂ C=C); 4,89 (2H, c, NCH ₂ Ph); 5,19 (1H, д д т, J ₁ = 10,4, J ₂ = 1,8, J ₃ = 1,5, =CH ₂); 5,29 (1H, д д т, J ₁ = 17,2, J ₂ = 1,8, J ₃ = 1,5, =CH ₂); 5,87 (1H, д д т, J ₁ = 17,2, J ₂ = 10,4, J ₃ = 5,4, =CH); 7,39-7,51 (3H, м) и 7,60 (2H, м, C ₆ H ₅).
Iκ	720, 765, 1500, 1600, 3020, 3065, 3080, 3090 (C ₆ H ₅), 2235 (C≡C), 1070, 1135, 1245 (COC).	3,19 (6H, c, NCH ₃); 4,62 (2H, т, J =1,8, NCH ₂ C \equiv C); 4,87 (2H, c, NCH ₂ Ph); 4,96 (2H, т, J= 1,8, OCH ₂); 6,94 (1H, м), 7,00-7,05 (2H, м) и 7,28 (2H, м, OC ₆ H ₅); 7,39-7,50 (3H, м) и 7,59 (2H, м, C ₆ H ₅),.

разделение осуществлено методом колоночной хроматографии на силикагеле L 40/100.

Исходные диметил-4-аллилокси(фенилокси)-2-бутиниламины получены по реакции Манниха [8] с выходами 50-55%.

Аммониевые соли Іа-и. К 0,02 *моля* диметил-4-аллилокси(фенилокси)-2-бутиниламина в 5 *мл* абсолютного эфира по каплям добавляли 0,02 *моля* соответствующего алкенил- или бензилгалогенида (при необходимости смесь охлаждали водой). Реакционную смесь выдерживали 24 q при комнатной температуре (в случае солей \mathbf{I} \mathbf{G} , \mathbf{e} , \mathbf{u} , \mathbf{k} 2-3 \mathbf{cyr}). Образовавшуюся соль несколько раз промывали абсолютным эфиром и высушивали в эксикаторе над CaCl₂. Данные приведены в табл. 1. ИК спектры, \mathbf{v} , \mathbf{cm} ¹: 890, 920, 990, 1640, 3025, 3090 (C=CH₂, CH=CH₂), 720, 770, 1500, 1600, 3020, 3065 (C₆H₅), 2230-2240 (С \mathbb{I} C), 1070-1075, 1130-1135, 1230-1240 (СОС).

Перегруппировка аммониевых солей I а-и. К суспензии 0,015 моля соли I а-и в 10 мл абсолютного бензола порциями добавляли 0,03 моля порошкообразного гидроксида калия. Смесь перемешивали и растирали. После окончания экзотермической реакции нагревали 20 мин при 50°С и, охладив, добавляли воду и эфир. Отделяли органический слой, водный дважды обрабатывали эфиром. Объединенные эфирные вытяжки сушили сульфатом магния и методом ГЖХ определяли количество продуктов расщепления − диметил-2-алкенил- или бензиламинов. После отгонки растворителя остаток перегоняли в вакууме (табл. 2).

4-ԱԼԻԼՕՔՍԻ(ՖԵՆԻԼՕՔՍԻ)-2-ԲՈՒՏԻՆԻԼ ԽՄԲԻ ՀԵՏ ՄԵԿՏԵՂ ԲԵՆԶԻԼ ԿԱՄ ԱԼԻԼԱՅԻՆ ՏԻՊԻ ԽՄԲԵՐ ՊԱՐՈՒՆԱԿՈՂ ԱՄՈՆԻՈՒՄԱՅԻՆ ԱՂԵՐԻ ՍՏԻՎԵՆՍԻ ՎԵՐԱԽՄԲԱՎՈՐՈՒՄԸ

Մ. Օ. ՄԱՆՈՒԿՑԱՆ, Ա. Վ. ԲԱԲԱԽԱՆՑԱՆ և Հ. Ա. ՓԱՆՈՍՑԱՆ

Ամոնիումային աղերը, որոնք 4-ալիլօքսի(ֆենիլօքսի)-2-բուտինիլ խմբի հետ մեկտեղ պարունակում են բենզիլ կամ ալիլային տիպի խմբեր, կալիումի հիդրոքսիդի բենզոլային սուսպենզիայի ազդեցությամբ հիմնականում ենթարկվում են Մտիվենսի 3,2-վերախմբավորման չհագեցած ամինոեթերների առաջացմամբ։ Ռեակցիայի ընթացքում վերախմբավորման արգասիքների հետ մեկտեղ առաջանում են նաև 1,4-պոկման արգասիքներ։

STEVENS'S REARRANGEMENT OF AMMONIUM SALTS WITH 4-ALLILOXY(PHENYLOXY)-2-BUTYNYL- AND BENZYL-OR ALLYL- GROUPS

M. O. MANUKYAN, A. V. BABAKHANYAN and H. A. PANOSYAN

Ammonium salts containing along with 4-allyloxy(phenyloxy)-2-butynyl group benzyl- or allyl-groups generally undergo under the action of benzene suspenzion of potassium hydroxide a 3,2-rearrangement in formation of unsaturated aminoethers. In the course of reaction 1,4-elimination takes place also.

ЛИТЕРАТУРА

- [1] Бабаян А. Т., Тагмазян К. Ц., Ананян Э. С. // ЖОрХ, 1966, т. 2, с. 1984.
- [2] Ананян Э. С., Тагмазян К. Ц., Бабаян А. Т. // Арм. хим. ж. 1969, т. 22, №2, с. 131.
- [3] Бабаян А. Т., Ананян Э. С., Чухаджян Э. О. // Арм. хим. ж., 1969, т. 22, №10, с. 894.
- [4] Iwai I., Hiraoka T. // Chem. Pharm. Bull., 1963, v. 11, p. 1556.
- [5] Кочарян С. Т., Осян А. М., Карапетян В. Е., Григорян В. В., Бабаян А. Т. // Арм. хим. ж., 1991, т. 44, №4, с. 229.
- [6] Бабаян А. Т., Кочарян С. Т., Восканян В. С., Оганджанян С. М. // Арм. хим. ж., 1977, т. 30, №3, с. 233.
- [7] Кочарян С. Т., Восканян В. С., Григорян В. В., Паносян Г. А., Бабаян А. Т. // Арм. хим. ж., 1985, т. 38, №1, с. 37.
- [8] Coffman D. D. // J. Am. Chem. Soc., 1935, V. 57, №10, P. 1978.
- [9] *Бабаханян А. В., Овакимян С. А., Бабаян Ж. Р., Кочарян С. Т.* // Биол. ж. Армении, 2002, т. 54, №3-4, с. 284.
- [10] *Лярский П. П., Соколова Н. Ф.* Проблемы дезинфекции и стерилизации. Сб. науч. тр. ВНИИ дезинфекции и стерилизации. М., 1971. В. 2. т. 2, с. 186.