ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ

АРМЕНИЯ

Հայшиտшնի քիմիшկшն ншնդեи 60, №3, 2007 Химический журнал Армении

УДК.547.659.642

СИНТЕЗ И БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ МОНО-И ДИЗАМЕЩЕННЫХ АМИДОВ 1-АМИНО-3,3-ДИЭТИЛ-2-ЦИАНО-3,4-ДИГИДРОНАФТАЛИНА

А. И. МАРКОСЯН, С. А. ПОГОСЯН, М. С. САФАРЯН, Φ . Г. АРСЕНЯН и Р. С. СУКАСЯН

Институт тонкой органической химии имени А.Л.Мнджояна НАН Республики Армения, Ереван

Поступило 5 IX 2006

С целью получения новых биологически активных соединений циклизацией динитрила II с концентрированной серной кислотой получен 3,3-диэтил-1-амино-2-циано-3,4-дигидронафталин. Взаимодействием последнего с хлорангидридами карбоновых кислот получены моно- и дизамещенные амиды.

Табл. 2, библ. ссылок 10.

Литературные данные свидетельствуют о том. что производные бензохиназолинов обладают различными биологическими свойствами [1-8]. Для получения бензо[h]хиназолинов удобным исходным веществом мог бы служить 1-амино-3,3-диэтил-2-циано-3,4-дигидронафталин (III).

Нами разработан доступный метод синтеза β-аминонитрила (III) исходя из продукта конденсации динитрила малоновой кислоты с пентаноном-3, взаимодействие которого с бензилмагнийхлоридом происходит региоселективно с образованием динитрила II. Обработкой последнего концентрированой серной кислотой нами получен β-аминонитрил III. Изучено взаимодействие аминонитрила с хлорангидридами карбоновых кислот. Выявлено, что при использовании хлорангидридов в соотношении 1:1 образуются монозамещенные аминонитрилы IV-XI, а в соотношении 1:2 – амиды XII-XV.

IV. $R=C_2H_5$; V. $R=C_6H_5$; VI. $R=4-Br-C_6H_4$; VII. $R=2,4-Cl_2-C_6H_3$; VIII. $R=2-CH_3-C_6H_4$; IX. $R=3-CH_3-C_6H_4$; X. $R=4-CH_3-C_6H_4$; XI. $R=CH_2C_6H_5$; XII. $R=CH_3$; XIII. $R=2-CH_3-C_6H_4$; XIV. $R=4-CH_3-C_6H_4$; XV. $R=2,4-Cl_2-C_6H_3$;

В опытах in vitro изучено влияние соединений II-XIV на активность моноаминоксидазы (МАО) мозга крыс в концентрации 5 *мкмоль*/*мл* пробы с использованием в качестве субстрата серотонина [9]. Противоопухолевую активность изучали на моделях асцитной карциномы Эрлиха и саркомы 180 согласно [10].

Среди исследованных соединений только соединение X обладает способностью ингибировать активность MAO на 62(3%, а в химиотерапевтических экспериментах лишь соединения III, V и VI в дозе 150 MT/KT вызывают ингибирование роста асцитной карциномы Эрлиха и саркомы 180 соответственно на 40-64 и 36-52%.

Экспериментальная часть

ИК спектры сняты на приборах «FT-IR NEXUS» и «UR-20» в вазелиновом масле, спектры ЯМР 1 Н — на спектрометре «Varian Mercury-300» (США), внутренний стандарт ТМС или ГМДС. Масс-спектры получены на спектрометре «MX-1321A» (СССР) с использованием системы прямого ввода образца в ионный источник. ТСХ проведено на пластинках «Silufol UV-254», проявитель - пары йода.

Нитрил 3-этил-3-бензил-2-цианопентановой кислоты II. К эфирному раствору бензилмагнийхлорида, полученному из $21,6\ r\ (0,9\ \textit{моля})$ магниевых 522

стружек, 114 r (0,9 mоля) бензилхлорида и 400 mл сухого эфира, при перемешивании прибавляют по каплям раствор 80,4 r (0,6 mоля) нитрила 3-этил-2-циано-2-пентановой кислоты в 150 mл эфира, поддерживая температуру реакционной смеси 25-30 °C. По окончании прибавления перемешивают при комнатной температуре 5 q, охлаждают ледяной водой и прибавляют по каплям 250 mл 10% соляной кислоты при 10-15°C. Перемешивают при комнатной температуре до полного разложения комплекса, органический слой отделяют, промывают водой и сушат сульфатом магния. После отгонки растворителя остаток перегоняют в вакууме. Получают 119,3 r (88%) динитрила II. Т.кип. 156-160°C/3mM. ИК спектр, vmax, cm 1 : 1600(С \equiv C, аром); 2265 (С \equiv N). ПМР спектр (ДМСО-d6), δ , м.д.: 1,02 τ (6H, J=7,6, 2CH3), 1,60 κ (2H, J=7,6, CH2), 1,60 κ (2H, J=7,6, CH2), 2,79 κ (2H, 4-CH2), 4,50 κ (1H, CH), 7,18-7,32 κ (3H, C6H5). Найдено, %: C 79,72; H 7,93;N 12,42. С15H18N2. Вычислено, %: C 79,64; H 7,96; N 12,39.

1-Амино-2-циано-3,3-диэтил-3,4-дигидронафталин III. К 45,2 г (0,2 моля) II при перемешивании прибавляют по порциям 90 *мл* концентрированной серной кислоты при 15-18°С. При этой температуре перемешивают еще 3 ч, затем выливают на лед и при перемешивании Выделившийся аминонитрил нейтрализуют 20% раствором аммиака. экстрагируют эфиром, промывают водой и сушат сульфатом натрия. После отгонки растворителя остаток перекристаллизовывают из смеси этанол-вода (2:1). Получают 32,5 Γ (72%) аминонитрила III. Т.пл..82-84 °C, R_f 0,7 (хлороформ : ацетон, 8:2). ИК спектр, v_{max}, см¹: 2190 (С≡N), 3200-3470 (NH₂): ПМР спектр (ДМСО-d₆), δ, м.д.: 0,88 т (6H, J=7,5, 2хСН₃), 1,44 дк (1H, J₁=13,8, J₂=7,5, 8-CH₂), 1,50 дк (1H, J1=13,8, J2=7,5, 8-СН2), 2,68 с (2H, 5-СН2), 5,77 м (2H, NH2), 7,11 м (1H, С6Н4), 7,19-7,28 м (2H, С6Н4), 7,62 м (1H, С6Н4). Найдено, %: С 79,50; Н 7,89; N 12,36. С15Н18N2. Вычислено, %: С 79,64; Н 7,96; N 12,39.

3,3-Диэтил-1-ациламино-2-циано-3,4-дигидронафталины IV-XI. Смесь 3,39 r 0,015 *моля* аминонитрила III, 0,015 *моля* соответсвующего хлорангидрида в 25 $m\pi$ сухого толуола кипятят с обратным холодильником 7 u. После отгонки растворителя остаток перекристаллизовывают из этанола (табл. 1 и 2). Аналогично получают моноамиды IV-XI.

3,3-Диэтил-1-диациламино-2-циано-1,2-дигидронафталины XII-XV. Смесь 2,26 r (0,01 mons) аминонитрила III, 0,02 mons хлорангидрида и 25 mn сухого толуола кипятят с обратным холодильником 20 q. После отгонки растворителя остаток перекристаллизовывают из этанола (табл. 1 и 2).

Работа выполнена при финансовой поддержке Международного научнотехнического центра (Грант A-649)

	R	Выход,	Rf	Т.пл°,С	Найдено,%				Вычислено,%		
Соединение					С	Н	N	Брутто- формула	С	Н	N
IV	C_2H_5	80	0,50	122- 124	71,98	7,15	9,82	C ₁₇ H ₂₂ N ₂ O	72,30	7,13	78,52
V	C_6H_5	82	0,60	193- 195	79,82	6,59	8,52	$C_{22}H_{22}N_2O$	79,96	6,71	8,47
VI	4-Br- C ₆ H ₄	66	0,68	176- 177	64,66	5,08	6,92	$C_{22}H_{12}$ Br N_2 O	64,55	5,17	6,84
VII	2,4-Cl ₂ - C ₆ H ₃	67	0,67	109- 110	66,22	5,02	7,22	$C_{22}H_{21}Cl_2N_2O$	66,17	5,04	7,01
VIII	2-CH ₃ - C ₆ H ₄	77,5	0,75	149- 151	80,22	7,04	8,21	$C_{23}H_{24}N_2O$	80,19	7,03	8,13
IX	3-CH ₃ - C ₆ H ₄	43	0,75	149- 151	80,3	7,05	8,28	$C_{23}H_{24}N_2O$	80,19	7,03	8,13
X	4-CH ₃ - C ₆ H ₄	92	0,80	200- 202	80,12	7,08	8,14	C ₂₃ H ₂₄ N ₂ O	80,19	7,03	8,13
XI	CH ₂ C ₆ H ₅	90	0,58	129- 131	80,32	7,08	8,60	$C_{23}H_{24}N_2O$	80,20	7,02	8,13
XII	CH ₃	65	0,75	110- 112	73,60	7,10	9,11	C ₁₉ H ₂₂ N ₂ O ₂	73,54	7,09	9,03
XIII	2-CH ₃ - C ₆ H ₄	52	0,64	150- 152	80,52	6,50	6,10	$C_{31}H_{30}N_2O_2$	80,51	6,49	6,06
XIV	4-CH ₃ - C ₆ H ₄	65	0,63	154- 156	80,55	6,53	6,10	$C_{31}H_{30}N_2O_2$	80,51	6,49	6,06
XV	2,4-Cl ₂ - C ₆ H ₃	72	0,62	82-83	60,82	3,82	4,92	$C_{29}H_{22}Cl_4N_2O_2$	60,83	3,84	4,90

TCX в системе хлороформ-ацетон, 8:2.

 $\label{eq:2.2} \begin{tabular}{ll} $\it Taблица~2$ \\ \begin{tabular}{ll} $\it C$ Спектральные характеристики 3,3-диэтил-1-ациламино- IV-XI и 3,3-диэтил-1- диациламино-2-циано-3,4-дигидронафталинов XII-XV

Соеди-	Спектр ЯМР ¹Н (ДМСО-d₀), δ, м.д.:	Масс- спектры, М ⁺
IV	0,94 т [6H, (CH ₂ CH ₃) ₂ , J=7,5], 1,19 т (3H, COCH ₂ CH ₃ , J=7,6), 1,48-1,69 м [4H, (<u>CH₂</u> CH ₃) ₂], 2,39 к (2H, CO <u>CH₂</u> CH ₃ , J=7,6), 2,83 с (2H, 4-CH ₂), 7,13-7,29 м (4H, Ar)	282
V	0,99 т [6H, (CH ₂ CH ₃) ₂ , J=7,4], 1,64 м [4H, (<u>CH₂</u> CH ₃) ₂], 2,90 с (2H, 4-CH ₂), 7,16-7,21 м (2H, Ar), 7,25-7,32 м (2H, Ar), 7,47-7,59 м (3H, Ar), 8,05 м (2H, o-CH), 10,13 с (1H, NH)	330
VI	0,98 т [6H, (CH ₂ CH ₃) ₂ , J=7,5], 1,53-1,74 м [4H, (<u>CH</u> ₂ CH ₃) ₂], 2,89 с (2H, 4-CH ₂), 7,16-7,31 м (4H, 5,6,7,10-CH), 7,66 д (2H, m-CH, J=8,5), 7,99 д (2H, o-CH, J=8,5), 10,21 с (1H, NH)	408.410
VII	0,98 т [6H, (CH ₂ CH ₃) ₂ , J=7,4], 1,5-1,74 м [4H, (<u>CH</u> ₂ CH ₃) ₂], 2,89 с (2H, 4-CH ₂), 7,18 дд (1H, 5-CH, J ₁ =7,06, J ₂ =1,6), 7,21-7,33 м (2H, 6,7-CH), 7,46 м (1H, 8-CH), 7,48 дд (1H, dd, m-CH, J ₁ =8,2, J ₂ =2,0), 7,53 д (1H, m-CH, J=2,0), 7,63 д (1H, o-CH, J=8,2), 10,32 с (1H, NH)	-
VIII	0,98 т [6H, (CH ₂ CH ₃) ₂ , J=7,4], 1,54-1,75 м [4H, (<u>CH</u> ₂ CH ₃) ₂], 2,53 с (3H, CH ₃), 2,89 с (2H, 4-CH ₂), 7,17-7,44 м (7H, Ar), 7,62 ш.сд (1H, 8-CH, J=7,4), 10,06 с (1H, NH)	344
IX	0,98 т [6H, (CH $_2$ СН $_3$) $_2$, J=7,4], 1,53-1,74 м [4H, (СН $_2$ СН $_3$) $_2$], 2,47 с (3H, CH $_3$), 2,89 с (2H, 4-CH $_2$), 7,15-7,21 м (2H, Ar), 7,25-7,31 м (2H, Ar), 7,35-7,40 м (2H, Ar), 7,82 дд (1H, o-CH, J $_1$ =7,7, J $_2$ =2,2), 7,85 ш.с. (1H, o-CH), 10,07 с (1H, NH)	344
X	0,98 т [6H, (СН ₂ СН ₃) ₂ , J=7,4], 1,53-1,74 м [4H, (<u>СН</u> 2СН ₃) ₂], 2,45 с (3H, СН ₃), 2,89 с (2H, 4-СН ₂), 7,15-7,21 м (2H, Ar), 7,24-7,31 м (4H, Ar), 7,93 м (2H, o-CH, J=8,2), 10,03 с (1H, NH)	344
XI	0,94 т [6H, (CH ₂ CH ₃) ₂ , J=7,4], 1,48-1,68 м [4H, (<u>CH</u> 2CH ₃) ₂], 2,82 с (2H, 4-CH ₂), 3,70 с (2H, COCH ₂), 7,10-7,14 м (3H, Ar), 7,19-7,26 м (2H, Ar), 7,28-7,34 м (2H, Ar), 7,39 м (2H, Ar), 9,85 с (1H, NH)	344
XII	0,97 т [6H, (CH ₂ CH ₃) ₂ , J=7,5], 1,64 дк (2H, CH ₂ CH ₃ , J ₁ =14,0, J ₂ =7,5), 1,70 дк (2H, CH ₂ CH ₃ , J ₁ =14,0, J ₂ =7,5), 2,36 с (6H, 2xCH ₃), 2,94 с (2H, 4-CH ₂), 7,10 м (1H, Ar), 8,23-7,28 м (2H, Ar), 7,35 тд (1H, Ar, J ₁ =7,3, J ₂ =1,4,)	_
XIII	0.87 т [6H, (CH ₂ CH ₃) ₂ , J=7,5], 1,58;1,62 дк,дк [4H, (<u>CH</u> ₂ CH ₃) ₂ , J ₁ =14,0, J ₂ =7,5], 2,35 с (6H, 2xCH ₃), 2,60 с (2H, 4-CH ₂), 7,10-7,40 м (10H, Ar), 7,69 дд (2H, o-CH, J ₁ =7,6, J ₂ =1,6,)	462
XIV	0,74 т [6H, (CH ₂ CH ₃) ₂ , J=7,4], 1,45-1,58 м [4H, (<u>CH</u> ₂ CH ₃) ₂], 2,39 с (6H, 2хСН ₃), 2,74 с (2H, 4-CH ₂), 7,17 м (1H, 5- CH), 7,24-7,34 м (2H, 6-CH, 7-CH), 7,40 дд (1H, 8-CH, J ₁ =7,5, J ₂ =1,6,), 7,19 м (4H, m-CH), 7,66 м (4H, o-CH)	_
XV	0,89 т [6H, (CH ₂ CH ₃) ₂ , J=7,5], 1,59;1,64 дк,дк [4H, (<u>CH₂</u> CH ₃) ₂ , J ₁ =14,0, J ₂ =7,5], 2,59 с (2H, 4-CH ₂), 7,16 м (1H, 5-CH), 7,31-7,40 м (3H, 6-CH, 7-CH, 8-CH), 7,32 дд (2H, m-CH, J ₁ =8,3, J ₂ = 2,0), 7,42 д (2H, m-CH, J=2,0), 7,56 д (2H, o-CH, J=8,3)	-

1-ԱՄԻՆՈ-3,3-ԴԻԷԹԻԼ-2-ՑԻԱՆՈ-3,4-ԴԻՀԻԴՐՈՆԱՎԹԱԼԻՆԻ ՄՈՆՈ-ԵՎ ԵՐԿՏԵՂԱԿԱԼՎԱԾ ԱՄԻԴՆԵՐԻ ՍԻՆԹԵԶԸ ԵՎ ԿԵՆՍԱԲԱՆԱԿԱՆ ԱԿՏԻՎՈՒԹՅՈՒՆԸ

Ա. Ի. ՄԱՐԿՈՍՑԱՆ, Ս. Հ. ՊՈՂՈՍՑԱՆ, Մ. Ս. ՍԱՖԱՐՑԱՆ, Ֆ. Հ. ԱՐՍԵՆՅԱՆ և Ռ. Ս. ՍՈՒՔԱՍՅԱՆ

3-Էթիլ-3-բենզիլ-2-ցիանոպենտանաթթվի նիտրիլը խիտ ծծմբական թթվի միջավայրում ցիկլացնելով ստացվել է 1-ամինո-3,3-դիէթիլ-2-ցիանո-3,4-դիհիդրոնավթալին։ Կարբոնաթթուների քլորանհիդրիդների և վերջինիս փոխազդեցությամբ սինթեզվել են ինչպես մոնո-, այնպես էլ երկտեղակալված ամիդներ։ Ստացված միացությունների թվում կան հակաուռուցքային և հակամոնոամինօքսիդազային ակտիվությամբ օժտված միացություններ։

SYNTHESIS AND BIOLOGICAL ACTIVITIES OF MONO- AND DISUBSTITUTED AMIDES OF 1-AMINO-3,3-DIETHYL-2-CYANO-3,4-DIHYDRONAPHTHALENE

A. I. MARKOSYAN, S. H. POGHOSYAN, M. S. SAFARYAN, F. H. ARSENYAN and R. S. SUKASYAN

The accessible method of synthesis β -aminonitrile is developed, proceeding from a product of condensation of malononitrile with pentanon-3. Interaction of the last with chlormagnesiamethylbenzene occurs regioselective and nitrile of 3-benzyl-3-ethyl-2-cyanopentanoic acid is formed, at which processing by the concentrated sulfuric acid β -aminonitrile is received. Interaction aminonitrile with chloranhydridies carbonic acids is investigated and revealed, that at use that with chloranhydridies in the ratio 1:1 monoreplaced aminonitriles are formed, and in ratio 1:2 occurs only disubstituted compounds. Antimomoaminoxydase and antineoplastic activity of compounds is investigated.

ЛИТЕРАТУРА

- [1] Duch D.S, Dev IK Banks, Dicerson S., Ferone R., Heath L., Humphrees J., Knick V. // Cancer Res., 1993, v. 53, No4, p. 810..
- [2] *Pavelczak K., Makowski M., Kempne M., Dzik J. M.* // Acta Biochimica Polona, 2002, v. 49, №2, p. 407.
- [3] *Gmeiner W.H.* // Current Med. Chemistry, 2005, v. 12, p. 191.
- [4] Van Treist B., Peters G.J. // Oncology, 1999, v. 57, No3, p. 179.
- [5] *Hanlon M., Ferone R.* // Cancer Res., 1996, v. 56, №14, p. 3301.
- [6] *Takaji K., Hideki H., Hirota T., Ohmori Sh., Ramato M.* // Chem. Pharm. Bull., 1975, № 23, p. 2015. //C.A. 1976, v.84, p. 5232.
- [7] *Hirota T., Kawanishi K., Sasaki K., Nambe T., Iwadoh A., Hayakawa Sh.* // I. Het. Chem., 1986, v. 23, №3, p. 685.
- [8] *Hirota T., Hamazaki R., Odoi T., Sasaki K., Nauba T.* // I. Het. Chem., 1987, v. 24, Nº2, p. 341
- [9] Сафразбекян Р.Р., Сукасян Р.С. // Вопросы медицинской химии, 1970, т.16, с. 623.
- [10] Софина З.Р., Сыркин А.Б. Экспериментальная оценка противоопухолевых веществ в СССР и США. М., Медицина, 1980.