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Abstract. The simulation CSTR has been carried out, in whleh exothermal autocatalytic
reaction proceeds. As distinct from a simple fostler kinetics, in case of autocatalytic process in
dimensionless coordinates “conversion — temperatareather diverse picture of possible types of
thermal isoclinic line, including isola, is obsedvét is established, that on the unstable brariciino
isoclinic line only one steady state can exist. Hmalysis of oscillatory modes has shown that at
change of governing parametgrdepending on other parameters, both smooth aitidagay of limit
cycle is possible. The adiabatic CSTR is steadwgbyvand oscillatory modes in it are impossible.

The exothermal reactions in CSTR (continuouslyredtirtank reactor) are a significant object of
macrokinetics [1]. In this field the bridge is tho over the theory of thermal ignition and kinetafs
chemical reactions in open systems.

For the first time, CSTR in which exothermal reastproceeds has been analyzed by Zeldovich
[2, 3]. In his papers, as well as in number subsetjpublications, the simplest kinetic law, i.ee flrst
order reaction, was considered. It was found, tdapending on the values of parameters, the
considered system can have one or three steadg.stat

Further development of the considered area has teadimed in work of Salnikov and Volter [4].
These authors have confirmed the existence of orikree steady states in an exothermal first order
reaction in CSTR and, besides, have consideredtdgmn of stability of steady states.

Vaganov, Samoilenko and Abramov [5] have analyzed stability of steady states. They have
determined also the main types of phase portiaitgas shown that even in such simple procesgsis fi
order reaction an extremely diverse picture arighere are possible at least 35 different phase
portraits.
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Already in the first Zeldovich’'s works the fundan@nanalogy between exothermal processes in
CSTR and phenomena of ignition and combustion wasewed. Later Abramov and Merzhanov have
analyzed in detail the conditions of thermal igmitin reactors of a similar kind [6].

In overwhelming number of the works dealing witto#rermal reactions in CSTR, the simplest
kinetic law, i.e. first order equation was used.tli¢ same time a non-solved problem remains: how
will be the behavior of such reactors in case ofranoomplex kinetic law. Here we consider
autocatalytic reactions. Note, that the conditiohthermal ignition in CSTR for a case of autocgtial
reactions have been reviewed earlier [7].

Further we follow the methodologies used in citbdve papers (see, for example, [5]).

Let's accept following designations:(cal/cnf-sideg) — heat-transfer coefficier®;(cnf) — surface
area of reacto/ (cnt) — volume of reaction mixture in reactdt(K) — temperature of reaction system
in reactor; Ty (K) — ambient temperaturd,,, (K) — temperature of reaction mixture entered into
reactor; Tiia (K) — initial temperature in reacto€) (cal/cn?) - heat effect of reactiorp (g/cn?) —
density of reaction system (on input and outpupsspd identical);, (cal/gdeg) — thermal capacity of
reaction system (supposed a constagtfcnt/s) — volume rate of a mixture flow at input and at
output); » — conversion (dimensionless) — conversion in reaction system on input into t@ac¢ (s) —
time; E (kcal/mol) — activation energ¥ (s*) — preexponential factor.

The system behavior in reactor, in which autocétalyeaction proceeds, is described by the
following equations:

GP(dT/dlt) = kQexp(E/RTY(L = 1)( 70+ 1) = aA(SV)(T-To)= G (AT i)~ (1)
dnldt = keexp(E/RT)(1 —=n)( 70+ 1) — @V) 7 (2)

The equation (1) is an equation of heat balansdeft-hand part is the rate of heat accumulation i
a reaction system, first member of the right-harait ps the rate of heat accumulation due to
exothermal autocatalytic reaction, second membéhdsrate of heat loss through reactor walls into
environment, and third member is the rate of heasemption for heating of an influent. The equation
(2) is an equation of chemical kinetics. Its ledtad part represents the rate of change of reactant
concentration in the reactor, first member of tightrhand part is the rate of concentration chaagea
result of a chemical reaction, and second membaer rigte of reactant concentration change in the
reactor due to output of a flow from reactor.

Initial conditions:t = 0, 7 = Minpus T = Tinitial-

Let's introduce some new designations. et (aSTy + copdTinpu)/(aS + Cy00). The valuel™ has
the sense of scale temperature, ag at0 we havel* = T, and atq — we haveT* = T Let's
accept the following notation for two last membieran equation (1):4S/'V) + c,o0/V

= (aSV)*.

Then after simple transformations the equation(ll)take the form:

co(dT/dt) = kQexp (E/RT)L — (10 + 1) — (@SV)*(T-T*), that is formally equivalent to
Semenov equation for thermal explosion [8].

Let's proceed now to dimensionless variables. #ettkexp(£/RT*), 8= E(T — T*/RT*? y =
(RTYE)(pc, T*/Q), f = RT*E, Da = (VIQ)keexp(£/RT*), Se = (E/RT*Z)[QV/(pcpq + a9)]keexp(-
E/RT*). Here 7is dimensionless timef is dimensionless temperatui®a is Damkdhler parameter,
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describing a dimensionless mean time of the presefica matter in reactoSe is dimensionless
parameter being analogue of Semenov parameteeamttof thermal explosion.

With introduced notations, the equations (1) afccéh be written to a dimensionless kind:
Kdadr) = (1 -n)(70 + mexpld(1+86)] - ASe=F(1.6) 3
dn/dr= (1 -n)(170 + mexpld(1+B6)] - n/Da=G(1,6) 4)

Initial conditions:7= 0, 77 = Pnpu, €= E(Tinitial — T*)/RT %,

Steady states of the system under consideratiorbeaobtained by equating derivatives in the
above-stated equations to zero. In outcome we have:

(A -n)(no + n)exp@/(1+46) —0/Se = 0 ()
(A -n)(no + m)exp@/(1+46) — n/Da =0 (6)
Term by term subtraction of (5) from (6) results in
8= 2,7 7)
Da

In the system of three equations (5) — (7) only awe linearly independent, and we can use any
pair of these equations.

As the equations (5) and (6) correspond to congtaarb) values of derivatives, graphically they
are described by the respective isoclinic linese Kimd of these isoclinic lines in co-ordinates- @
depends on parameters of the process, first obaltheSe value. The isoclinic line depicted by the
equation (5) corresponds to a steady state on tatupe. Hereinafter we shall call it as thermal
isoclinic line.

To obtain a full picture of the types of thermaldknic line, we shall address to the equation If5).

is quadratic equation relativerolts solution is:
g

:1_’70 _,_\/(1""70)2 0 o 10

e =5 % 4 S ®)

Let's introduce following notations:

£(6) = &a_nﬁa
9(7) = Se—(1+Z°)

It is evident that the sign of the subduplicat¢8h (and, therefore, the number of solutions oé thi
equation) depends on the ratio betwd@) and g(n). It is suitable to observe the indicated ratio
graphically showing the functiori€f) andg(s) with fas abscissa. Thé(d) will be described by curve
1 on Fig. 1 andgy(#), as it does not depend frofhwill be represented by horizontal lines 2 — 6.Fiap
1 such relations for the cage 0.2 are shown, and the valugg) for horizontal lines (bottom-up) are
equal accordingly 0.3; 0.35; 0.4; 0.48 and 0.5.
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Figure 1. Functions @) (1) and gf) (2 — 6) atp, = 0.01,5= 0.2. For 2 — e values are equal 1.176;
1.377; 1.568; 1.880 and 1.961 consequently.

We see, that, depending on the ratio betwié@nandg(n), five different situations are possible
(for horizontal lines bottom-up): one interceptiath the left-hand branch, one interception and one
contact, three interceptions, one contact and ieedeption with a right-hand branch, one intericept
with a right-hand branch.

Let's look now, as these different situations Wwél exhibited on a phase plane in co-ordinates
6. For this purpose, supposimg = 0.01, we select valu&e so that the functiog(s) being equal to
mentioned above values 0.3, 0.35, 0.4, 0.48 andTh& correspondin@e values are equal 1.176;
1.377; 1.568; 1.880 and 1.961 respectively.

For the solution of this problem we shall use theation (5).

The casese = 1.176. The thermal isoclinic line for this caseshown on Fig. 2. It represents a
curve with maximum.

The case&e = 1.377. The thermal isoclinic line is shown og.R. It represents a curve and a point
arranged from above.

The casese = 1.568. The thermal isoclinic line presented @ B consists of two parts, lower
branch and isolated upper branch, which is isoktwBen them a “forbidden region” exists. This
region covers the temperature range, which is esgible in steady conditions at selected values of
parameters irrespective of the initial conditioBach nature of isoclinic line has merely kinetituna
and is a consequence of non-linear kinetics. “Fiutdn region” exists because we decided a quadratic
equation (5), not having the solutions at negatiaieie of the subduplicate in (8). Nothing similar i
observed in simple first order kinetics [5].
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The casese = 1.88. The thermal isoclinic line is shown on.Fég Here there is a coalescence of
the lower branch of isoclinic line with isola. Thealescence occurs, when the contact of a curvel1 a
straight line 5 in Fig. 1 takes place. For thisecag have [7]:

s h_An

%:4—952@ W% where, = 1-26+ 21 45

(@+17,) 2p

The caseése = 1.961. The thermal isoclinic line is shown og.F.

The reviewed examples cover all diversity of kimdsa thermal isoclinic line, which can arise in
the studied autocatalytic reaction. The Figs. 2 denonstrate, as the evolution of isoclinic line
proceeds atse value increasing. At smalbe values the isoclinic line represents a curve with a
maximum (Fig. 2). At subseque®t value increasing some value is reached, when &idas (Fig. 3).

It exists in some range & values (Fig. 4), and then disappears at s@mealues, joining with the
lower branch of isoclinic line (Fig. 5). In the asa of further increasin§e values, the branches of
isoclinic line diverge to the right and to the Jefhd isoclinic line takes the form shown on Figltés
interesting to note, that the right-hand branclso€linic line presented on Fig. 6 rather resemhbles
isoclinic line for the case of a simple first ordeaction [5]. In other words, the transition fram
simple kinetics to an autocatalytic reaction auugio“adds” the left-hand branch of isoclinic line o
Fig. 6. As a whole it is possible to draw a conidosthat the transition from a simple kinetics to
complex one (on an example of autocatalysis) resunlta large diversification of kinds of thermal
isoclinic line.
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Figure 2. Dependences (7) and (8)/at= 0.01,=0.2,S¢=1.176.

The steady states of investigated system can belfby solution of a system of equations (5) and
(7). The thermal isoclinic lines corresponding tpation (5) are shown in Fig. 2 - 6, and equation (
is presented with straight lines coming from thénpof origin. As an example such straight lines ar
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shown on Fig. 2 and 6. Comparing the indicatedgitdines with thermal isoclinic lines on Fig. B;
it is easy to see that the considered system camdther one, or three steady states.
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Figure 3. Dependences (7) and (8)/at= 0.01,=0.2,S=1.377.
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Figure 4. Dependences (7) and (8)/at= 0.01,8=0.2,Se = 1.568.
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Figure 6. Dependences (7) and (8)/at= 0.01,5=0.2,S=1.961.

The main problem in research of processes procgédiaopen systems is the problem of stability
of steady states. The approaches to the stabildjysis of dynamic systems are well-known [1, ]. |
frame of these approaches, it is possible to déterthe types of stability of steady states atedéht
values of parameters. On Fig. 7, on the basisehtialysis of equations (5) and (7) in co-ordin&es
— Da, the areas of existence of one (top of a figure) three (bottom) steady states are divided. On
Fig. 8 the result of analysis resulting in deteraion of the type of steady state stability is sho#s
it was just marked, the bottom of a figure corresjsoto the area of three steady states; the syabili
region only of one of them (high temperature) isehgresented. The similar analysis has shown, that
the low temperature steady state is stable (stahwfi the “stable node” type), and the steady state
corresponding to medium temperatures, is absolutetyable (instability such as “saddle”).
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Figure 7. Theregions of steady state stability/at 0.02,y= 0.02,17, = 0.01.

At the research of stability of steady states, ohenain problems is that of the mechanism of
stability change. From equations (3) and (5) itdiek, that parametey does not influence on the
position of steady state. On the other hand, #cf on the type of its stability undoubtedly. &et'
consider a part of right-hand branch of a thermsatlinic line of Fig. 6 between points 1 and 2. Sée
points correspond to extremes on the dependengeoafd for a right-hand branch. The given part is
selected because at very small valug ¢ limit at y— 0), i.e. at very large heat effects of reaction, a
limit cycle takes place, i.e. the system is in ahkt oscillatory state (for reaction of first ordbrs
problem is reviewed in [5]). Therefore hereinaftex shall call the branch between points 1 and 2 as
unstable branch.

Figure 8. The regions of steady state stabilitysat 0.02,) = 0.02,7;, = 0.01.
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1 — stable node, 2 — stable focus, 3 — unstablesfat — stable node, 5 — stable focus, 6 — unstable
focus, 7 — unstable node.

On Fig. 6 straight line coming from point of origimtercepts a thermal isoclinic line in three
points, i.e. for a system three steady states @gsilgle. At that two interceptions take place anl#it-
hand branch and only one — on right hand one. Tiseag@roblem: whether always it so? Whether there
is a situation, when all three interceptions takac® on right-hand branch? Let's show, that it is
impossible.

In point of intersections of thermal isoclinic limgth straight line coming from point of origin,e&h
equations (7) and (8) are simultaneously valid. wes are interested with the right-hand branch of
thermal isoclinic line only, we shall take from tbguation (8) only a solution signed plus. Plading

into (8) and having entered notation= Se/Da, after simple transformations we receive
__on

son _ D
e 1A —f(mr/o)(l—r/) ©)

The right member of this equation as functionroifs described by monotonically decreasing curve
without inflection points. The left-hand part of uadion at positive values of parameters is also
described by monotonically decreasing curve withiaflection points. Therefore, for these curves
three and more interception is impossible. Tworg#ptions are also impossible, because in this case
reactor would have an even number of steady sth#tss invalid. This implies that at positive vasu

of parameters the equation (9) can have not mae dhe solution, quod erat demonstrandum. Thus, at
the given values of parameters on unstable brah¢heomal isoclinic line the only unstable steady
state and the only oscillatory regime are possible.

We already noted that at very small valuegafimit cycle takes place. Wris increased, the limit
cycle step-by-step changes, and at some vatug, it depletes. The value ¢f; can be found from the
relationship [SIOF/06+ ydG/on = 0.

Two mechanisms of limit cycle decay, smooth anddrigire possible [10]. In the first case
increasing the value gfis accompanied by monotonic decreasing the ogoiflamplitude. Finally, at
y= Vo the amplitude becomes equal to zero, i.e. thdlaons cease and limit cycle contracts into the
point. In the second case gt )4 steady state becomes stable, generating an unstafileycle. At
further growth ofy this cycle joins with a stable limit cycle, forngirsemi-stable limit cycle, which
then depletes.

It is possible to judge on character of stabilifyigtion by value of the third focal factor [9, 10]
it is negative, there is a smooth decay of limitleyand if it is positive, rigid decay takes place

We calculated the third focal factor using a metiody described in [11] (we don’t show the
expression for the third focal factor in view o ihconvenience). The results presented in Fignodvs
that both types of stability change are possiblesrAaller values of the mechanism of smooth decay
of a limit cycle will be realized, and at the largmlues offrigid decay takes place. Note, that the kind
of dependence presented in Fig. 9, in many resjiecistermined byvalue. Therefore at othgf the
character of this dependence can be different.
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In conclusion it is useful to consider a speciadecaf adiabatic reactor, when the heat loss from
reactor is absent. In this case 0, and using given above expressionsSpiDa and yin dimensional
guantities, we obtain

Da/Se = y(10)

Subtracting term by term (3) and (4), we shall hexe

do _dp_n _ 8

dr dr Da Se
or in other kind
dyé-n)__ 1
B Da(y9 n)

Integration to an arbitrary constant gives
T

yo-n=e o

This means that at tendency b infinity the following relation takes place:

1
g = n
4
400~
200+ Rigid decay of
limit cycle
0
Smooth decay of
o limit cycle
S 200 Y
-400 1
-600 1
T T T T T T 1
2 4 6 8 10 12 14
n

Figure 9. Dependence of third focal factor froftat 77, = 0.01,5=0.2,Se = 2.

Thus, the phase trajectory approaches at a strighdlepicted by equation (7), not intercepting it
(we remind, that the case is considered, when diuat®n (10) is fulfilled). It is evident, that atich
behavior of phase trajectory the oscillation regimémpossible, and, therefore, adiabatic reacfor i
always steady. Let's remark, that this conclusembtained without use of a kind of the reaction
kinetic law, so that it is correct for any procéskowing to mass action low. It, in turn, meansth
origin of instability in CSTR is largely connectadth the process of a heat loss.

285



The work was carried out under financial supporthef Russian Foundation of Basic Researches,
grantNe 06-03-32053.

References

[1] Frank-Kamenetskii D. A. Diffusion and heat trandfechemical kinetics. Moscow, Nauka, 1987.
492 p. (in Russian).

[2] Zeldovich Ya. B. To the theory of thermal intensiccomplishment of exothermal reaction in
stream. I. // Zhurnal technicheskaoi fiziki, 194bJv11, N 6, p. 493 — 500 (in russian).

[3] Zeldovich Ya. B., Zysin Yu. A. To the theory of theal intensity. Accomplishment of exothermal
reaction in stream. Il. Taking into account of hedéase during reaction. // Zhurnal technicheskoi
fiziki, 1941, vol. 11, N 6, p. 501 — 508 (in rusgja

[4] Salnikov I. E., Volter B. V. Investigation of theoses of a flow chemical reactor under
accomplishment of exothermal unimolecular reactibBoklady Akademii nauk SSSR, 1963, vol.
152,Ne 1, p. 171 — 174 (in russian).

[5] Vaganov D. A., Samoilenko N. G., Abramov V. G. Bdic regimes of continuous stirred tank
reactors. // Chem. Eng. Sci., 1978, vol. 33, N.8 183 — 1140.

[6] Abramov V. G., Merzhanov A. G. Thermal explosionhiamogeneous flow reactors. // Fizika
goreniya i vzryva, 1968, vol. #p 4, p. 548 — 556 (in russian).

[7] Abramov V. G., Samoailenko N. G., Solomonov V. Bitical condition of thermal explosion of
autocatalytic reaction in continuous stirred taelators. // Doklady Akademii nauk SSSR, 1977,
vol. 237,Ne 3, p. 623 — 626.

[8] Semenov N. N. Some problems of chemical kineticd agactivity. Moscow: lIzdatelstvo
Akademii nauk SSSR, 1958. 686 p. (in russian).

[9] Andronov A. A., Vitt A. A, Khaikin C. E. The thegrof oscillations. Moscow: Nauka, 1981. 568
p. (in russian).

[10]Bautin N. N. The behavior of dynamic systems nbarltoundaries of stability region. Leningrad:
Gosudarstvennoye izdatelstvo techniko-teoretichdikoatury, 1949. 164 p.

[11]Zhabotinsky A. M. Concentrational self-oscillatioddoscow: Nauka, 1974. 179 p. (in russian).

286



