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Abstract

Sal'nikov’s reaction: P» A - B involves a precursor, P, in two consecutivestfarder
chemical reactions, yielding a final productvB an intermediate A. Partly as an academic exercise,
but partly because of its relationship with coalnfles, the situation is considered where the second
step is faster than the first one, which is takebd thermoneutral without an activation energye Th
second step is assumed to have a significant #ictivanergy, although it is exothermic. The reactio
proceeds batchwise inside a spherical reactor, evin@dls are held at a constant temperature, but do
not participate chemically. Natural convection bmes important, once the temperature is high
enough for the Rayleigh numbeRd) to reach ~ 1 The subsequent behaviour of the system
depends on the interaction between convectionyglgh of heat and mass, and chemical kinetics. By
examining the governing equations, we develop aatlate scales for the characteristic velocity, the
concentration of the intermediate A and the tentpeearise during the progress of the reaction, for
the two extreme cases when transport is domindtedurn, by diffusion and then by natural
convection. These scales depend on the charaitdisescales for the interacting phenomena of
chemical reaction, diffusion and natural convectidiypically, the characteristic velocity in a
relatively small reactor of radius 0.27 m is agéaas 0.3 ms when the temperature rise<isl00 K
near the centre of the vessel. These theoretiedigions from scaling are verified by full numexiic
simulations. Oscillations of both the temperatund ghe concentration of the intermediate, A, can
occur and the conditions for their appearance deatified. Any accompanying flow field proves to
be toroidal, with the fluid ascending close to thactor’s axis, but descending adjacent to itsswall
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In addition, the effects of variables, such as ithidal temperature of the batch reactor and its
contents, the pressure and also the size of tlutoreare all assessed, together with a considerafio
what happens when the reaction proceeds in théligliase. In this case, because of the different
physical properties of a liquid and a gas, natcoalvection is more intense than in the gas-phage an
is quite likely to lead to turbulence and good mixi

NOMENCLATURE
a concentration of intermediate A
a' dimensionless concentration of &,=a/ ag
Qg scale for concentration of A
Cp specific heat at constant pressure
Cv specific heat at constant volume
Da diffusion coefficient of species A
E activation energy of stepof Sal'nikov’s reaction (1)
g acceleration due to gravity
ki rate constant of stamf the reaction
Ko.0 rate constant of step 2 evaluated atT,
L characteristic length of the reactor
Le Lewis number « / Da
p concentration of precursor P
p' dimensionless concentration off®=p/ po
Po initial concentration of P
g pressure in the reactor
P’ dimensionless pressure, = (2— @) / o U?
Py initial pressure
Pr Prandtl NumberPr=v/ «
of exothermicity of step of the reaction
R universal gas constant
Ra Rayleigh numbeiRa= Bg AT L/ (kv)
t time
t dimensionless time,=U t/L
T temperature
T dimensionless temperatur®,= (T —Ty) / AT
To constant wall temperature
u velocity vector
u' dimensionless velocity vectar,=u/U
U scale for velocity
X spatial coordinates
X dimensionless spatial coordinatgss x / L
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Z, pre-exponential factor in Arrhenius expressionkfor

B coefficient of thermal expansiofi=1/T

1% ratio of specific heats €,/ C,

AT scale for temperature increase

AT.q adiabatic temperature increaddqq= 0, / Cy
K thermal diffusivity

v kinematic viscosity

Yo, density

o density afl =T,

Teonvection timescale for convection

Tgiffusion A timescale for diffusion of species A
Tiffusion H timescale for diffusion of heat

Tstep i timescale for stepof reaction (I)

1. Introduction

During any exothermic reaction in a batch reacspatial temperature gradients develop. If these
gradients are sufficiently large, natural conveattaxcurs. The intensity of the flow resulting from
natural convection is determined by the Rayleigmber, Ra= Sg L* AT / xv. In general, the
overall behaviour of the system will be determitgdthe interaction of three of its basic properties
chemical reaction, diffusion (of both heat and emtnd natural convection. Several exothermic
reactions exhibit oscillations in both the locahfgerature and concentration of intermediates (Gray
& Scott, 1990). One example is a ‘cool flame’, &pthyed by a mixture of a paraffin and oxygen, in
which the temperature and concentration of an nméeliate display sustained oscillations.

Fig. 1. Cool flame of butane + oxygen in (a) micrand (b) terrestrial gravity. From
http://www.grc.nasa.gov/IWWW/RT1999/6000/6711wu.html

Figure 1(a) shows the development of a real c@whd in a mixture of butane and oxygen without
natural convection, as achieved under micrograVfthis is compared with Fig. 1(b), which shows
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the equivalent cool flame under full gravity, wencsee that natural convection removes the spherical
symmetry. Instead, a horizontal ‘flat’ flame movesrtically downwards through the mixture of
reactants. This is seen below to depend on theaictten of chemical kinetics, diffusion of both hea
and matter, and also natural convection. Theseaictiens have attracted the attention of Professor
Merzhanov (Merzhanov & Shtessel, 1973). This cbation is offered as a tribute to Merzhanov, as
well as to celebrate his ?hirthday and wish him “Many Happy Returns”.

2. Sal'nikov’s Reaction

Interestingly, Sal'nikov’s reaction (1949) is prdihathe simplest way of modelling the chemical
reactions in a cool flame (Bardwell & Hinshelwod®51). Of course, it fails to describe all the
complexities (Griffiths & Barnard, 1995), but itcititates an exploration of the interaction between
chemical reaction, diffusion (of both heat and e1dtand natural convection. The reaction consists o
two, consecutive first-order steps:

PM'_ A?-B ()

This scheme is the simplest to display thermokinesicillations and so is investigated here in some
detail. The first step of the reaction is assumee to be thermoneutrald. E andq;, the activation
energy and exothermicity of the reaction are battox Step 2 is exothermic with, and g, > 0.
Oscillations occur due to the nonlinear thermaldBsek arising from the Arrhenius temperature
dependence of the rate of step 2.

3. Governing Equations

We consider, initially pure, gaseous P undergoiatngkov’s reaction in a closed spherical vessel of
radiusL, whose wall is held at a constant temperafligeT he equation foa, the concentration of the
active intermediate A, is
da
a—+g.Da = D,0%a+k,p, exp(- kt) - k,a, 1)

t
wherepy is the initial concentration of P. It is assumedhis equation that the concentration of P in
the reactor is initially uniform, and that it remaiso, equal tpy exp (—k; t), throughout the course of
the reaction. This assumption dependskpheing independent of temperature (becdtise 0) and
holds only for relatively small increases in tengiare. The conservation of energy is:

oT k
&—+9.DT = k02T + 252 5 )
Cp Ot PoCp
where g, is the density at the initial temperatufg The Navier-Stokes equations describe the

conservation of momentum in:

ou 1 -
;+9.Dg:—_m(q>—@0)+m2g+ug, (3)
ot Po Po

219



where @, is the initial pressure in the reactor. The cotiosmal Boussinesq approximation is

adopted,.e. it is assumed that the density only varies in llbeyancy term of the Navier-Stokes
equations. In this term the density variesgas o[l — f (T — To)], wherep is the coefficient of
thermal expansion. The final equation requiredhie tontinuity equation. The adoption of the
Boussinesq approximation allows the continuity digueto be written in its incompressible forine.
Ou=0 (4)

Initially the gas is pure P at a temperatlige and is motionless. The wall of the reaction vesse
held atT, throughout, and the usual no-slip condition appliehere is also assumed to be no flux of
any species at the wall, where no heterogeneousiora occur. However, there is of course heat
transfer to the wall.

4. Scaling Analysis

In order to make equations (1) — (4) dimensionlgssfollowing seven dimensionless variables
can be defined:
a=2ip=Ppoll U, @_@2 x =2 andr =2, 5a-g)

a, Py AT U PV L L
where a, is a characteristic value of the concentrationspécies A,AT is the characteristic
temperature rise and is the characteristic velocity. At this stage,sthehree scales are unknown,
whereasy, andL (the radius of the reactor) are defined for a igiggstem. It is also useful at this
stage to define five characteristic timescales:

1 1 L? L? L
stepl = k7’ Z-step2 = K v TdiffusionH = 7’ T giffusionA — D and T convection = 7 (6 a- e)
1 2,0 A

for the various interacting phenomena in the systeamely the two steps of reaction (1), diffusidn o
both heat and the intermediate A and finally cotieec Herek;, is k, evaluated at the wall's
temperatureT,. The relative values of these timescales will detee the behaviour of the system.
For a gasT gusiona = difiusionn - 1 NiS implies thak = D, or the Lewis numbelre = « / D4 is unity.

T

This leaves four characteristic timescales. In,faatan be shown (Campbell et al., 2005a,b) that i
the initial temperaturely, is fixed, together with the variablesS;, C,, Da, 4, v, andg,, the behaviour
of the system is totally defined by the three disienless groups:

Tstepfz o kl p . Tstepz _ K . Tstepz _ U

(7)

Tste;l k2,0 pO ’ Tdiffusion k2,0 L2 ’ Tconvection k2,OL
Thus it turns out that in general the behaviouthef system is determined by the position of a point
on Fig. 2, the regime diagram. This plots ratioshef above four time constants, as indicated by Eq.
(7). On Fig. 2 a straight line is drawn in the icat plane defined by the axesl gy, / T giysion@Nd

T T,

step2 ! Toonvection- 1NiS line passes through the origin of Fig. 2 aad be shown to have a slope of

1/(RaPp*2. The line is accordingly the locus of constRat
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Ts:epz/ Tpiffusion

Diffusion

and reaction Tstep 2/ TConvection

Convecttiion and
reaction
(TStep2/ rStepl)p '

Fig. 2. The general 3-D regime diagram describing theesystwhen both natural convection and
diffusion are important. The axes represent ragfdbe characteristic timescales for the two chainic
steps, as well as of diffusion and convection.n® lof constant Rayleigh numbé&td) is shown.

Figure 3 is a plot derived from Fig. 2 for consté@mip 4 7sep ) P’ - It Shows the available space
divided by the lines foRa= 10’ and 16. Thus for Ra << 10no natural convection is expected, for
10° < Ra< 1@ natural convection will be laminar, but will behulent forRa> 1¢.
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Fig. 3. Simplified 2-D regime diagram, showing (for a fike g, /7y P') two lines of constant

Ra, and the nature of the flow in each region.

Of course, transport can be controlled by eithéiusion or convection, and the form of the
unknown scalesag, AT, U) will depend on which mechanism dominates. We eémamach case, in
turn, in order to determine the most appropriatdescin that case. It is important to note thaEim
3, a straight line through the origin has a slof®aPn*? with Pr ~ 1 for a gas, buPr = 6.6 for

liquid water at 22C.

221



4.1 Transport Controlled by Diffusion

For Rayleigh numbers less than a threshold valfie (@) (Tyler, 1966; Turner, 1979), natural
convection will be unimportant, so that diffusioilliee the dominant mechanism for the transfer of
mass. Likewise, heat transfer is by thermal coridoci.e. the diffusion of heat. When diffusion
dominates transport, the temperature and concemtrdields are approximately spherically
symmetric, with the maximum temperature occurrifgge to the centre of the reactor. In this case,
the characteristic velocity), is given byD / L, whereD is either the thermal or the molecular
diffusivity. We firstly assume that Eq. (1) for sppes A is dominated by the kinetic terms. Thisgsel
a scale for the characteristic concentration otigseA:
Po (8)

k T
- 1 _ " step2
aO pO -

kz,o T stepn

i.e. the steady state hypothesis. If we similarly assuhmt the diffusion and generation terms
dominate in the dimensionless version of the enbejgnce (2), we can derive a scalefdras:

2
AT ~ g,k,L _ AT,y TiftusionH ' ©)

CPK 4 Tstepl
whereAT,q is the adiabatic temperature increase{# C,) andy is the ratio of specific heat&{ /
Cy). This scaling assumes thRbnvection™> Tiftusion >> Tstep a I-€. the working point in Fig. 3 is to be

found in the region of loRa

4.2 Transport Controlled by Convection

When the Rayleigh number becomes sufficiently langgural convection becomes the dominant
transport mechanism. Thus for*10 Ra < 16, the convective flow is expected (Turner, 1979b¢o
laminar. Natural convection distorts the spherisginmetry observed when diffusion dominates
transport; it also leads to the formation of a hate above the centre of the reactor (Cardxsal,
20044, b). If we assume that the convective angdmay terms dominate in the Navier-Stokes Egs.
(3), we can define an appropriate scale for theaaiteristic velocity as

2
U ~[poL(aT)]*>. (10)
Similarly, if we assume that the chemical kinedentis dominate Eq. (1) (as in the previous section)

and that convection and the generation of heat dat@ithe thermal balance (2), we can define a
scale forAT as:

23 y3
AT ~ (i} (klzLJ - ATad Tconvection. (11)
Cp IBg 4 Tstepl

This scaling forAT assumes thatgitusion >> Teonvecion >> Tsiep 2 INtErestingly, by assuming that
convection and the generation of A in step 1 doteii. (1) one obtains:
0 klpOL — Tconvection pO' (12)
u Tste[i
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This is for the working point being located on R3gn a region of mediurRa In the next section we
compare these scales to the results of a full nigalesolution of all the governing equations, fbet
two separate cases where either diffusion or nlatoravection is the dominant mode of transport.

5. Numerical Solution

Equations (1) — (4) were solved numerically forphesical batch reactor with a fixed wall
temperatureT,, containing initially pure gas P, which then undergdsal’nikov’s reaction. The
equations were solved usim@stflo (Fastflo Tutorial Guide, 2000), which is a PDEwsuwl utilising
the finite element method. The algorithm used wes ¢ame as that outlined by Cardasoal.
(2004b).

For the purpose of the numerical simulations, vke fahysical and chemical data for the thermal
decomposition of di-butyl peroxide in a spherical reactor. This reattivas chosen, because it can
be shown to behave like Sal'nikov’s reaction undertain conditions (Griffiths et al., 1988; Gray
and Griffiths, 1989); thus experimental studiesi\gsa semi-batch reactor with the slow admission of
reactant mimics the effect of step 1 in Sal'nikov&action. Such an arrangement is suitable for
investigating Sal'nikov’s reaction in the well-mikdimit; however, it is not suitable for cases whic
are not spatially uniform. Sal’nikov’s reaction Haesen studied numerically by Fairlie and Griffiths
(2002) in both the well-mixed and zero-gravity exties, as well as by Cardoso et al. (2004a, b)
when natural convection is important. The followicmnstants were chosen to match those used by
Cardoscet al. (20044, b). The temperature of the wall of thieesjzal reactorT,, was held constant
at 500 K and the physicochemical properties usedkas follows: the initial molar densigy =
8.2 mol m? (corresponding to a pressure of 0.34 bar at 50GH€) heat capacity at constant volume
Cv = 190 J mot* K™, and the exothermicity of step @ = 400 kJ mol*. We define the base case
chemistry such that the rate constnt 0.025 §', corresponding t0sep 1= 40 S, and; = Z, exp (-
E,/R T) with Z, = 2 x 16° s* andE, / R= 18280 K. These values gike,= 0.265 §', and hence
Tsep 2= 3.77 s, Which is thus approximately an order efmitude faster than step 1. Furthermore, the
simplifying assumption that the Lewis and Prandtibers are unity was made. Computations were
done for reactors of different sizes at severaleslofRa, both in the region where diffusion controls
transport and when convection dominates. To furtheify the scales developed, the kinetic rate
constants were also varied. Given that the twoesclrAT (Egs. (9) and (11)) depend &nonly, a
range of values fok; was considered. The pre-exponential factdiiwas hypothetically halved to
confirm thatAT is indeed independent kf.

6. NUMERICAL RESULTS
6.1 Diffusive Regime

We begin by exploring all the cases when diffugiontrols transport by considering in detail the
casesRa= 0 andRa~ 600. This means that as far as Fig. 3 is condenwe are only considering
systems on, or very near, the vertical axisg(so0),
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Fig. 4. Plots of the temperaturd)(and concentratiora) of the intermediate A at the centre of the
reactor against time, when diffusion controls tporsfor: (a) Zyirusion= 1 S;L = 10 mm (b)zyitrusion = 4
s;L = 20 mm (C)Zuirusion = 9 S;L = 30 mm, all for the base-case chemistry with 0 m & and =

1x10% n? st

where only diffusion and reaction occur. Anotheamyple ofRabeing low is a gaseous system at a
low pressure; in this context it is noted belowttRa is proportional to the square of the pressure.
Nevertheless, it turns out that there are threentifilgble regions, where the system behaves
differently, as shown more clearly in Fig. 4(a —~The temporal development of the temperature and
the concentration of A at the centre of the reafdotthree different values afjusion are plotted. In
the three cases presented, the chemistry is tithediase caseg. fep1= 40 S andiep 2= 3.77 S at
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500 K, andrymusion has been varied by changing the radiysf the reactor (in this case the graphs
represent. = 10, 20 and 30 mm, respectively). For a smakt@al. < 0.01 m), the working point is
on the vertical axis of Fig. 3, far away from thégm. For this case, Fig. 4(a) shows slow growths
and decays of both the temperature and the comtmmtrof A with time. In addition, there is only a
relatively small increase in temperature (of ~ 8t&}he maximum at the centre of the reactor, so th
system behaves almost isothermally. For these caitbsa small Zyfusion We Would expect the
temperature and concentration fields to be in effgatially uniform, with the exception of the
thermal and concentration boundary layers at the Wais approximate spatial uniformity decreases
the magnitude of the convective and diffusive teimgq. (1) relative to that of the reaction terms.
Therefore, we expedT to have the form of Eq. (9).e. there is a dependence &y but notk,.
Indeed, the concentration and temperature fieldaiodd numerically were virtually uniform in these
cases. The temperature and concentration only ehbgpg~ 1%, on moving from the wall to the
centre of the reactor. This small variation in tenmgure and concentration leads us to describiag th
system as approximately spatially uniform. Addiaiiy our numerical results show that the decay in
temperature and concentration (as shown by Fig) 4¢aproportional to expk; t), thus lending
support to the hypothesis thatis the dominant kinetic parameter in this systémall three cases
plotted in Fig. 4(a-c), the fields of temperatunel @f the concentration of the intermediate A wiare
fact spherically symmetric.

When we increase the size of the reactor, we mat@ & region of instability, where the
temperature and the concentration of A exhibit teraposcillations, as shown in Fig. 4(b) for the
centre of the reactor. In fact, the concentratib@ @scillates in anti-phase with the temperata®,
has been shown previously (Cardesal. 20044a, b). It was found that oscillations only wrted for
values of the reactor’s radiuk, in a narrow band, whose location depended orpthesical and
kinetic parameters used. It seems that (see belawgn diffusion is the dominant transport
mechanism, the range bf over which oscillatory behaviour is observed,responds to the region
where the characteristic timescales for diffusiod aeaction in step 2 are of similar magnitude,
Tdiffusion ™~ Tstep 2

ForL > 0.03 m, the working point moves along the vaitiaxis of Fig. 3 closer to the origin.
Now the temporal evolutions of temperature anddtwcentration of A at the centre of the reactor
are shown by Fig. 4(c). Instead of the oscillatiadhgre is now an initial peak in the concentration
curve, which then rapidly decays to almost zerce Tdmperature now rises by ~ 100 K, because of
heat removal from a larger vessel being slower. pglbe in Fig. 4(c) shows an initially fast rise in
temperature and then there is a distinct ‘kinkthe curve (at ~ 2 s), when the concentration of the
intermediate reaches a steady value, close to Zdve. ‘kink’ in the temperature curve can be
explained by examining Eq. (2) for the conservatidrenergy. When the concentration of A falls
rapidly to virtually zero, the heat generation temmEq. (2) effectively disappears. It is this dwif
change in the form of the governing equation thatises the observed change in the temporal
development of the temperature.

The plot in Fig. 5 checks Eg. (9) by showing thenpated values of (AT / AT,g) plotted against
(Tuittusion / Tstep 9 fOr when diffusion is the dominant transport mewism. The temperature rise was
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taken to be that at the centre of the reactor, usecthis is wherAT is at its maximum value, due to
the spherical symmetry. Figure 5 evidently revélalee regimes. There is linearity for high and very
low (Zgirusion ! Tsiep 9; the region between them is where oscillationsuocEquation (9) suggests that
there should be a linear plot in Fig. 5. Therefove scale, Eq. (9), foAAT is of the correct form.
When Tyitusion ! Tstep 1> 0.1, Eq. (13) can be modified by adding a camsfactor, which can be found
from Fig. 5 by the least squares method. Thus llagacteristic temperature rise is given by:

AT T gifrusi T gifrusi
y — (0.14].i 0002) difffusion , difffusion < 004 (13)
A ad Tstem. Tstem.
AT 7 gifffusi T ditfrusi
and y—— = (0100+ 0003~ 4 (0030+ 0002), | —T= > 01 |. (14)
A ad Tstepl Tstepl

In the narrow region between these two linear regimvhere oscillations occur, the ‘error bars’
in Fig. 5 show the range of the oscillations, meadufrom the first peak to the first trough.
Oscillations were only observed in this narrow bamlere ryysion ~ Tsep 2 8S NOted above.

0.18

0.16 -

0.14 -

y (ATIATaq)

0 0.1 02 03 04 05 06 07 08 09 1 11 12 13 14
Tdiffusion/ Tstep 1

Fig. 5. Plot of y (AT/ AT.q) againstriusion/ Zsiep 11N the diffusive regime. The line shown correspond
to Eq. (14). ® k; = 0.025 &, ky o= 0.265 &, Ra= Ol k; = 0.0125 8, k, o= 0.265 &, Ra= 0; A k;
=0.0375 %, k0= 0.265 8, Ra= 0; ® k; = 0.025 &, ky o= 0.132 &, Ra= 0; xk; = 0.025 &, kyo =
0.265 &, Ra~ 600).

6.2 Oscillations in Microgravity

A region of oscillations was identified by perforrgi very many simulations for when diffusion
is the only transport mechanism, as in microgra\biyt for differentzyep { Zeep 2 Figure 6 shows the
approximate regions defined through simulationsgfer 0 and differentrep { 7step 2 The axes of the
regime diagram in Fig. 6 are the reciprocal of éhas Fig. 2. This is to ensure that the region of
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oscillations is closed. Alsop’ has been omitted from the abscissa, becausaaifisction of the

two quantities being plotted in Fig. 6, when theqursor P is uniformly distributed throughout the
reactor. Regions of sustained and damped oscilaticere found. These areas in Fig. 6 are an order
of magnitude larger than the region of oscillatialedined analytically for a pseudo-1-D system by
Gray and Scott (1990). An example of a sustainaillatsion was seen in Fig. 4(a). Interestingly,
these sustained oscillations disappear wRar 10° and the oscillations become noticeably damped.
The dotted lines shown in Fig. 6 correspond tosarelaere the numerical scheme broke down. As an
aside, one of our initial assumptions was thap »< Zep s Which partly explains the dotted lines in
Fig. 6. The oscillations occur in the region defirmproximately by 0.04ep 1< Zittusion < 0.2 Tstep 3
subject to the constraint thag,sion < 4 Tsep 2 Before, forRa< 10 it was decided thatysion ~ Tstep 2

for oscillations to occur. Figure 6 fdRa = 0 broadens that criterion by also considering th
importance of7yep 47sep 3+ IN addition to the region of oscillations, twostinct types of non-
oscillatory behaviour are shown in Fig. 6. Theseaspond to a slow reaction with a low temperature
rise, and a rapid reaction with a large temperatisee This situation is very similar to the coimatits

for the occurrence of cool flames, which on antigni diagram are found to lie between those for a
rapid thermal explosion and a very slow reaction.

6

non-oscillatory, high temperature rise

damped oscillations

Tdiffusion / z'step 2
w

non-oscillatory, low temperature rise

0 10 20 30 40 50 60 70
z'step 1/ Tstep 2

Fig. 6. A 2-D regime diagram showing the approximate regdb oscillations for zero-gravity, as

identified after many simulations. The dashed liass extrapolations of the boundaries into regions

where the numerical scheme and model broke down.

6.3 Convective Regime

The behaviour of the system when convection is nmoportant than diffusional transport was
investigated by again examining full numerical $iolus, but forRa ~ 5000 and 21500. The
convective flow in both these cases should be lamiithe flow-field is such that the gas rises
vertically along the axis of symmetry and falls dovards close to the cooler walls, thus forming a
toroidal vortex. Figure 7(a) plots the streamlineemputed for the flow induced by natural
convection. In outline, the system behaves asv@ldrhe walls of the reactor are held at a constant
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temperature. Whilst reaction proceeds, heat isaselé and consequently the temperature of the gas
rises. Because the gas becomes hotter than the, Wwaklt is removed from the system at the walls.
This coupling of heat generation and loss caude® @aone to form at the centre of the reactor. This
in turn results in a gravitationally unstable d@nslistribution in the top section of the reactadao
leads to the development of the familiar Rayleigim@rd convection (Turner, 1979). Figure 7(b)
plots the temperature and density along the vérixia of the reactor. The hot gas near the ceoftre
the reactor rises quickly initially and moves irttee hottest part of the reactor (in the top half).
However, it slows as it passes through the hot zdue to the decreased density difference. The hot
gas then contacts the relatively cold walls, whemols and descends relatively rapidly due to the
large density differential. In the lower half oktheactor the density distribution is intrinsicadbable,
with the flow being induced by the descending, eogjas at the wall. This downward flow of cool
gas results in a relatively slow upward flow (arduhe centreline of the reactor) of gas displaced
from the bottom of the reactor. Whilst this ga®sisit heats up and hence accelerates. The situatio
in Fig. 7 refers not just to Sal'nikov’'s mechanisbut to any exothermic reaction proceeding in a
similar vessel.

Vertical Coordinate

Temperature, Density
(a) (b)

Fig. 7. (a) Streamlines of the flow due to natural coniecin a vertical cross section through the
axis of the reactor. The toroidal vortex typifyitige flow (upwards near the axis, downwards near the
wall) is shown. (b) Temperature and density prefigdong the vertical axis of the reactor, showing
the unstable density distribution in the top hdiftloe reactor, which drives flow, and the stable
density distribution in the bottom half of the rem¢ where flow is driven by conditions in the
boundary layers.

As mentioned previously, the spherical symmetrythaf temperature and concentration fields
seen in the diffusive regime is disrupted by thevextive flow. Because of the ‘hot zone’ above the
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centre of the reactor (Cardosbal, 2004a, b), we examine below, the temperatueg &, at a point

L / 2 above the centre of the reactiog.@ point three quarters of the way up the vertdd), instead
of at the centre, to give a better indication o tmaximum value ofAT within the reactor.
Oscillations were observed over a much wider ramigealues than in the diffusive regime, and in
fact, virtually every case studied when convecti@s significant exhibited oscillations.

Figure 8 shows a plot of the computed maximum eaktvelocity at the centre of the reactor
against ¢ L% which arises from substituting Eq. (11) into (1Dhe ‘error bars’ show the range of
the observed oscillations in the velocity. The dinéorm of this plot indicates that our scale, Bd),
is of the correct form. It is interesting to nobat for a 10 cm diameter vessel undergoing a i@acti
in terrestrial conditionsi.e. g = 9.81 m %), velocities of ~ 10 cmswere observed. Velocities of up
to 30 cm & were computed for similarly sized vessels for dargalues ofg (= 30 m &). The
characteristic velocity), can therefore be expressed as:

U = (031+ 002)[ gL (aT)]**. (15)

This equation containAT. To check its magnitude, Fig. 9 show§AT / AT,y plotted against
Teonvection! Tstep 3 @S predicted by Eq. (11), there is a clear limekationship. In fact, the characteristic
temperature rise when convection dominates trahsporbe expressed as:

AT T .
y—— = (4004 008)—convection (16)
ATad Tstepl

Thus our numerical simulations have confirmed thenf of the scales developed above, when
diffusion and convection are, respectively, the oh@mt transport mechanism. These scales allow the
general behaviour of any given system to be predidt should be noted, however, that these scales
were developed for a system whetg, ;is the dominant kinetic timescale. Thus, the ba&havmay
well change iffyep 1and Zyep 2are of similar magnitude.
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Fig. 8. Plot of the maximum vertical velocity of the gastize centre of the reactor, versgsLf)*”.

The line shown corresponds to Eq (18~ 21500. ® g = 9.81 m &, k; = 0.025 &, k, o= 0.265 §;
Ag=49m& k =0.0258,k,0=0.2655;Mg=30m &, k; = 0.025 &, k o= 0.265 8).
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Toonvection / Tstep1

Fig. 9. Plot of y (AT/ AT.g) VersuSTeonveciion! Tstep 11N the laminar convection regime. The line shown
corresponds to Eq. (16). ‘Error bars’ showing taege of oscillations have been suppressed fortylari
(@ g=981m¢g k =0.025 8, kyo= 0.265 &, Ra~ 21500;A g = 4.9 m &, k; = 0.025 &, ky =
0.265 &, Ra~ 215008 g = 30 m &, k; = 0.025 &, ko= 0.265 &, Ra~ 21500; >3 = 9.81 m &, k; =
0.0125 &, k, = 0.265 §, Ra~ 21500, g = 9.81 m &, ky = 0.01875 S, ky o = 0.265 8, Ra~ 21500;
Og=9.81m§g k, =0.0375 &, kyo = 0.265 &, Ra~ 21500;A g = 9.81 m &, k; = 0.025 &, ky =
0.132 §, Ra~ 21500,0 g = 9.81 m &, k; = 0.025 &, k, o= 0.265 §, Ra~ 5000).

7. Oscillations

The oscillations ofr andT in the above systems result from the interactietwben chemical
kinetics and heat transfer. This truth is not jresttricted to Sal'nikov’s reaction (Gray and Scott,
1990), but consideration of Sal'nikov’'s system gales how more complex mechanisms might
behave. Previous work in the well-mixed region (eGray and Scott, 1990) has shown that
oscillations in the temperature and the concentnadf the intermediate A occur in anti-phase. The
observed oscillations are sustained, but in faet fightly damped (as in Fig. 4(a)), because the
precursor, P, is continually consumed during thare® of the reaction, so the production of A
follows an exponential decay arising from the kicebf step 1. This oscillatory behaviour is due to
the interaction of the highly non-linear thermaledback, due to the Arrhenius temperature
dependence of step 2, the timescales of steps 2 afideaction (I) and the nature of heat transfer
from the reactor. Interestingly, oscillations withand a in phase can occur; they are discussed
elsewhere by Campbaedk al. (2005b). The entire region of Fig. 3 where ostidlas occur has been
found by performing very many simulations and iswsh approximately in Fig. 10. There are two
distinct parts to the oscillatory region. lRa< 10°, the boundaries between the oscillatory and non-
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oscillatory zones are approximately constant, aadrary similar to those seen in the purely diffesi
case. FoiRa> 10°, natural convection dominates over diffusion ofithend mass. Oscillations are
observed over a much wider range of parameters wiadural convection is important. ARa

increases, the oscillatory region also widens.

3 _— |
Ra=10" / |
cases | |
: .'II [ increasing the size of the reactar
|
|
g R " /
g ?\ | increasing /
Y 4 | gas pressure /
ks 'a'r |I
Ll ‘ III
5 /
&
LIQUIDS
oscillations
L e -T‘EE- = 106
3 o
100

Tstep 2 ! Teonvection

Fig. 10. Regime diagram showing the effect (on the positiérthe working point in Fig. 3) of
increasing the gas pressure, increasing the rémaiae, and the effect of performing the reaciion
the liquid-phase. The area in grey denotes appateiy where the concentration of the intermediate

and the temperature oscillate.

8. The Effect of Varying Parameters
Examination of the form of the scales developedtha previous sections, along with the

expression for the Rayleigh number allows us taigtéhow the system will respond to variations in
certain parameters. In particular, it is importEnteveal the effects of pressure, the size ofehetor
and the phase of the systene.(gas or liquid) on the intensity of convectiontie reactor. Let us
first consider the effect of increasing the pressaora gas-phase reaction. The kinetic theory séga
indicates thatv and «, the momentum and thermal diffusivities, are biotrersely proportional to
pressure. This means that the Rayleigh numberagoptional to#. Thus, increasing the pressure
increases the Rayleigh number and therefore thensity of the convective flow. A system
represented by a point on the regime diagram of Fdgactually moves vertically downwards, when
the pressure is increased, because the terms mb#wssa are independent of pressure. The system
could accordingly move from a situation of negligittonvection at low pressure, through one of
laminar flow, to eventually turbulent convectiorhen the pressure is increased.
The effect of increasing the reactor’s size is sidwy the solid curved line in Fig. 100.b.

Tstepz/rdiﬁusion 0 YL? ;Tstepz/rcom,ection O ]/L]/3). It is clear from this plot that making the

reactor smaller significantly reduces the Raylaigimber, thereby making diffusive processes more
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significant. Figure 10 shows that when small rectoe considered, even relatively small increases
in their size can significantly alter the Rayleiglumber, whichex hypothesihas an explicit
dependence ob®. There is also a dependence\dfonL via Eq. (9) or (11).

As for the effect of temperature &#, for a purely gaseous system in the convectivanmegRa

turns out to be inversely proportional'l'tém, according to the simplest version of the kinétieory

of gases. Otherwise, the main effect of temperataréhe location of the working point in Fig. 10 is
via the exponential in the Arrhenius function flr. Consequently any increase in temperature
reducesrye, ;and so moves the working point towards the oridirFig. 10, whose abscissa and
ordinate are both proportional Qe ».

The final effect highlighted on Fig. 10 is the effef moving from a reaction in the gas-phase to
one in the liquid-phase. Comparing the relative mitages of the terms in the Rayleigh number for
typical gases and liquids indicates that Rayleigminers will be at least an order of magnitude
higher for liquid-phase systems, for similar inges®AT, in temperature and identical valuesLof
Thus comparindRa for reactions with the sansT, g andL in water and air at normal temperature
and pressure indicates tHaa with water is some 240 timé®a with air. In fact, AT for a reaction in
the liquid-phase is likely to be only ~ 10% largjean for a reaction with the same kinetic paranseter
(0, ki, ko,...) in the gas-phase. The overall result is thategas and liquid systems occupy quite
different areas of Fig. 10. In a liquid-phase reaxtnatural convection is therefore likely to berm
vigorous and important than in a gas-phase reaetiinsimilar kinetic parameters. Certainly Fig. 10
indicates that natural convection is likely to b@smimportant i(e. turbulent) in reactors on an
industrial scale, because of the dependence®oWhenever natural convection is stronger, Fig. 10
makes it clear that there is a greater likelihobaszillations in the reactor. This is becausehsf t
quite different portions of the two axes (of Fi§) bccupied by the region wherein oscillations @ccu
Thus on the vertical axis, the region for oscitlaé roughly extends over 0.5Tsp 2/ Taittusion < 2,
whereas along the horizontal axis, oscillationsuo@ver approximately 5 Fep 2/ Tconvecion< 90, i.€.

a change by a factor of 18. No attempt has beere maihvestigate what happens wha> 1¢ and
turbulence occurs.

9. Conclusions

Scales have been developed for the characteristicentration of intermediate A, temperature
rise and velocity when Sal’'nikov’s reaction occimsa closed spherical vessel, both for the case
where diffusion is the dominant transport mechanana when convection dominates. In both cases
the characteristic concentration of the intermediatwas determined purely by the kinetics and the
temperature rise was shown to be proportional ¢éor#tio of the characteristic timescales for the
dominant transport mechanism and the rate-comigplitep of the reaction. It should be noted that
this behaviour may differ if the relative magnitsds the kinetic parameters are significantly aiter
Using these scales, along with order of magnituderaents, predictions have been made as to how
the system will respond to changes in parametarcd) as gas pressure, the size of reactor and if the
reaction is conducted in the liquid-phase. It hasrbshown that natural convection is favoured by a
high pressure in gas-phase reactions, and by arlaegctor. Because liquids have different physical
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properties, reactions in the liquid-phase develaperintense convection than gas-phase reactions
with similar kinetic parameters. The above analysigals when oscillations are possible.
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