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Abstract 

Sal’nikov’s reaction: P → A → B involves a precursor, P, in two consecutive, first-order 

chemical reactions, yielding a final product B via an intermediate A. Partly as an academic exercise, 

but partly because of its relationship with cool flames, the situation is considered where the second 

step is faster than the first one, which is taken to be thermoneutral without an activation energy. The 

second step is assumed to have a significant activation energy, although it is exothermic. The reaction 

proceeds batchwise inside a spherical reactor, whose walls are held at a constant temperature, but do 

not participate chemically. Natural convection becomes important, once the temperature is high 

enough for the Rayleigh number (Ra) to reach ~ 103. The subsequent behaviour of the system 

depends on the interaction between convection, diffusion of heat and mass, and chemical kinetics. By 

examining the governing equations, we develop and evaluate scales for the characteristic velocity, the 

concentration of the intermediate A and the temperature rise during the progress of the reaction, for 

the two extreme cases when transport is dominated, in turn, by diffusion and then by natural 

convection. These scales depend on the characteristic timescales for the interacting phenomena of 

chemical reaction, diffusion and natural convection. Typically, the characteristic velocity in a 

relatively small reactor of radius 0.27 m is as large as 0.3 m s-1, when the temperature rise is ≈ 100 K 

near the centre of the vessel. These theoretical predictions from scaling are verified by full numerical 

simulations. Oscillations of both the temperature and the concentration of the intermediate, A, can 

occur and the conditions for their appearance are identified. Any accompanying flow field proves to 

be toroidal, with the fluid ascending close to the reactor’s axis, but descending adjacent to its walls. 
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In addition, the effects of variables, such as the initial temperature of the batch reactor and its 

contents, the pressure and also the size of the reactor are all assessed, together with a consideration of 

what happens when the reaction proceeds in the liquid phase. In this case, because of the different 

physical properties of a liquid and a gas, natural convection is more intense than in the gas-phase and 

is quite likely to lead to turbulence and good mixing. 

 
NOMENCLATURE 

 

a concentration of intermediate A 

a' dimensionless concentration of A, a' = a / a0 

a0 scale for concentration of A 

CP specific heat at constant pressure 

CV specific heat at constant volume 

DA diffusion coefficient of species A 

Ei activation energy of step i of Sal’nikov’s reaction (I)   

g acceleration due to gravity 

ki rate constant of step i of the reaction 

k2,0 rate constant of step 2 evaluated at T = T0 

L characteristic length of the reactor 

Le Lewis number = κ / DA 

p concentration of precursor P 

p' dimensionless concentration of P, p' = p / p0 

p0 initial concentration of P 
P pressure in the reactor 

P ' dimensionless pressure, P ' = (P – P 0) / ρ0 U
2 

P 0 initial pressure 

Pr Prandtl Number, Pr = ν / κ 

qi exothermicity of step i of the reaction 

R universal gas constant 

Ra Rayleigh number, Ra = β g ∆T L3 / (κν) 

t time 

t' dimensionless time, t' = U t / L 

T temperature 

T' dimensionless temperature, T' = (T – T0) / ∆T 

T0 constant wall temperature 

u velocity vector 

u' dimensionless velocity vector, u' = u / U 

U scale for velocity 

x spatial coordinates 

x' dimensionless spatial coordinates, x' = x / L 
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Z2 pre-exponential factor in Arrhenius expression for k2 

β coefficient of thermal expansion, β = 1 / T 

γ ratio of specific heats = Cp / Cv 

∆T scale for temperature increase 

∆Tad adiabatic temperature increase, ∆Tad = q2 / CV 

κ thermal diffusivity 

ν kinematic viscosity 

ρ density 

ρ0 density at T = T0 

τconvection timescale for convection 

τdiffusion A timescale for diffusion of species A 

τdiffusion H timescale for diffusion of heat 

τstep i  timescale for step i of reaction (I) 

 
1. Introduction  
 
During any exothermic reaction in a batch reactor, spatial temperature gradients develop. If these 

gradients are sufficiently large, natural convection occurs. The intensity of the flow resulting from 

natural convection is determined by the Rayleigh number, Ra = β g L3 ∆T / κ ν. In general, the 

overall behaviour of the system will be determined by the interaction of three of its basic properties: 

chemical reaction, diffusion (of both heat and matter) and natural convection. Several exothermic 

reactions exhibit oscillations in both the local temperature and concentration of intermediates (Gray 

& Scott, 1990). One example is a ‘cool flame’, as displayed by a mixture of a paraffin and oxygen, in 

which the temperature and concentration of an intermediate display sustained oscillations.  

 

 
 

 

 

 

 

Fig. 1. Cool flame of butane + oxygen in (a) micro- and (b) terrestrial gravity. From 

http://www.grc.nasa.gov/WWW/RT1999/6000/6711wu.html 

 

Figure 1(a) shows the development of a real cool flame in a mixture of butane and oxygen without 

natural convection, as achieved under microgravity. If this is compared with Fig. 1(b), which shows 
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the equivalent cool flame under full gravity, we can see that natural convection removes the spherical 

symmetry. Instead, a horizontal ‘flat’ flame moves vertically downwards through the mixture of 

reactants. This is seen below to depend on the interaction of chemical kinetics, diffusion of both heat 

and matter, and also natural convection. These interactions have attracted the attention of Professor 

Merzhanov (Merzhanov & Shtessel, 1973). This contribution is offered as a tribute to Merzhanov, as 

well as to celebrate his 75th birthday and wish him “Many Happy Returns”.  

 

2. Sal’nikov’s Reaction 
 
Interestingly, Sal’nikov’s reaction (1949) is probably the simplest way of modelling the chemical 

reactions in a cool flame (Bardwell & Hinshelwood, 1951). Of course, it fails to describe all the 

complexities (Griffiths & Barnard, 1995), but it facilitates an exploration of the interaction between 

chemical reaction, diffusion (of both heat and matter) and natural convection. The reaction consists of 

two, consecutive first-order steps: 

BAP 21 →→   (I)  

This scheme is the simplest to display thermokinetic oscillations and so is investigated here in some 

detail. The first step of the reaction is assumed here to be thermoneutral (i.e. E1 and q1, the activation 

energy and exothermicity of the reaction are both zero). Step 2 is exothermic with E2 and q2 > 0. 

Oscillations occur due to the nonlinear thermal feedback arising from the Arrhenius temperature 

dependence of the rate of step 2. 

 

3. Governing Equations 
 
We consider, initially pure, gaseous P undergoing Sal’nikov’s reaction in a closed spherical vessel of 

radius L, whose wall is held at a constant temperature, T0. The equation for a, the concentration of the 

active intermediate A, is  

( ) aktkpkaDau
t

a
A 2101
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∂
∂

,  (1) 

where p0 is the initial concentration of P. It is assumed in this equation that the concentration of P in 

the reactor is initially uniform, and that it remains so, equal to p0 exp (– k1 t), throughout the course of 

the reaction. This assumption depends on k1 being independent of temperature (because E1 = 0) and 

holds only for relatively small increases in temperature. The conservation of energy is: 
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where ρ0 is the density at the initial temperature T0. The Navier-Stokes equations describe the 

conservation of momentum in: 
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where 
0
P  is the initial pressure in the reactor. The conventional Boussinesq approximation is 

adopted, i.e. it is assumed that the density only varies in the buoyancy term of the Navier-Stokes 

equations. In this term the density varies as ρ = ρ0[1 – β (T – T0)], where β is the coefficient of 

thermal expansion. The final equation required is the continuity equation. The adoption of the 

Boussinesq approximation allows the continuity equation to be written in its incompressible form, i.e. 

0. =∇ u  (4) 

Initially the gas is pure P at a temperature T0, and is motionless. The wall of the reaction vessel is 

held at T0 throughout, and the usual no-slip condition applies. There is also assumed to be no flux of 

any species at the wall, where no heterogeneous reactions occur. However, there is of course heat 

transfer to the wall. 

 
4. Scaling Analysis 

 In order to make equations (1) – (4) dimensionless, the following seven dimensionless variables 

can be defined: 
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where a0 is a characteristic value of the concentration of species A, ∆T is the characteristic 

temperature rise and U is the characteristic velocity. At this stage, these three scales are unknown, 

whereas p0 and L (the radius of the reactor) are defined for a given system. It is also useful at this 

stage to define five characteristic timescales:  
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for the various interacting phenomena in the system, namely the two steps of reaction (I), diffusion of 

both heat and the intermediate A and finally convection. Here k2,0 is k2 evaluated at the wall’s 

temperature, T0. The relative values of these timescales will determine the behaviour of the system. 

For a gas Adiffusion τ  = Hdiffusion  τ . This implies that κ = DA or the Lewis number Le = κ / DA is unity. 

This leaves four characteristic timescales. In fact, it can be shown (Campbell et al., 2005a,b) that if 

the initial temperature, T0, is fixed, together with the variables: Cp, Cv, DA, κ, ν, and q2, the behaviour 

of the system is totally defined by the three dimensionless groups: 
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Thus it turns out that in general the behaviour of the system is determined by the position of a point 

on Fig. 2, the regime diagram. This plots ratios of the above four time constants, as indicated by Eq. 

(7). On Fig. 2 a straight line is drawn in the vertical plane defined by the axes : 2 stepτ / diffusionτ and 

2 stepτ / convectionτ . This line passes through the origin of Fig. 2 and can be shown to have a slope of 

1/(RaPr)1/2. The line is accordingly the locus of constant Ra. 
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Fig. 2. The general 3-D regime diagram describing the system, when both natural convection and 

diffusion are important. The axes represent ratios of the characteristic timescales for the two chemical 

steps, as well as of diffusion and convection. A line of constant Rayleigh number (Ra) is shown. 

 
Figure 3 is a plot derived from Fig. 2 for constant (τstep 2/τstep 1)  p′ . It shows the available space 

divided by the lines for Ra = 103 and 106. Thus for Ra << 103 no natural convection is expected, for 

103 < Ra < 106 natural convection will be laminar, but will be turbulent for Ra > 106. 
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Fig. 3. Simplified 2-D regime diagram, showing (for a fixed p/ττ stepstep ′1 2 ) two lines of constant 

Ra, and the nature of the flow in each region. 

 

Of course, transport can be controlled by either diffusion or convection, and the form of the 

unknown scales (a0, ∆T, U) will depend on which mechanism dominates. We examine each case, in 

turn, in order to determine the most appropriate scales in that case. It is important to note that in Fig. 

3, a straight line through the origin has a slope 1/(RaPr)1/2, with Pr ~ 1 for a gas, but Pr = 6.6 for 

liquid water at 22oC.  
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4.1 Transport Controlled by Diffusion 
For Rayleigh numbers less than a threshold value (of ≈ 103) (Tyler, 1966; Turner, 1979), natural 

convection will be unimportant, so that diffusion will be the dominant mechanism for the transfer of 

mass. Likewise, heat transfer is by thermal conduction, i.e. the diffusion of heat. When diffusion 

dominates transport, the temperature and concentration fields are approximately spherically 

symmetric, with the maximum temperature occurring close to the centre of the reactor. In this case, 

the characteristic velocity, U, is given by D / L, where D is either the thermal or the molecular 

diffusivity. We firstly assume that Eq. (1) for species A is dominated by the kinetic terms. This yields 

a scale for the characteristic concentration of species A: 

0
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1 step

 step
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= , (8) 

i.e. the steady state hypothesis. If we similarly assume that the diffusion and generation terms 

dominate in the dimensionless version of the energy balance (2), we can derive a scale for ∆T as: 
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where ∆Tad is the adiabatic temperature increase (= q2 / CV) and γ is the ratio of specific heats (CP / 

CV). This scaling assumes that τconvection >> τdiffusion >> τstep 2, i.e. the working point in Fig. 3 is to be 

found in the region of low Ra. 
 
4.2 Transport Controlled by Convection 

When the Rayleigh number becomes sufficiently large, natural convection becomes the dominant 

transport mechanism. Thus for 103 < Ra < 106, the convective flow is expected (Turner, 1979) to be 

laminar. Natural convection distorts the spherical symmetry observed when diffusion dominates 

transport; it also leads to the formation of a hot zone above the centre of the reactor (Cardoso et al., 

2004a, b). If we assume that the convective and buoyancy terms dominate in the Navier-Stokes Eqs. 

(3), we can define an appropriate scale for the characteristic velocity as 

( )[ ] 21
~ TgLU ∆β . (10) 

Similarly, if we assume that the chemical kinetic terms dominate Eq. (1) (as in the previous section) 

and that convection and the generation of heat dominate the thermal balance (2), we can define a 

scale for ∆T as: 
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This scaling for ∆T assumes that τdiffusion >> τconvection >> τstep 2. Interestingly, by assuming that 

convection and the generation of A in step 1 dominate Eq. (1) one obtains: 
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This is for the working point being located on Fig. 3 in a region of medium Ra. In the next section we 

compare these scales to the results of a full numerical solution of all the governing equations, for the 

two separate cases where either diffusion or natural convection is the dominant mode of transport. 

 
5. Numerical Solution 

Equations (1) – (4) were solved numerically for a spherical batch reactor with a fixed wall 

temperature, T0, containing initially pure gas P, which then undergoes Sal’nikov’s reaction. The 

equations were solved using Fastflo (Fastflo Tutorial Guide, 2000), which is a PDE solver utilising 

the finite element method. The algorithm used was the same as that outlined by Cardoso et al. 

(2004b). 

For the purpose of the numerical simulations, we take physical and chemical data for the thermal 

decomposition of di-t-butyl peroxide in a spherical reactor. This reaction was chosen, because it can 

be shown to behave like Sal’nikov’s reaction under certain conditions (Griffiths et al., 1988; Gray 

and Griffiths, 1989); thus experimental studies using a semi-batch reactor with the slow admission of 

reactant mimics the effect of step 1 in Sal’nikov’s reaction. Such an arrangement is suitable for 

investigating Sal’nikov’s reaction in the well-mixed limit; however, it is not suitable for cases which 

are not spatially uniform. Sal’nikov’s reaction has been studied numerically by Fairlie and Griffiths 

(2002) in both the well-mixed and zero-gravity extremes, as well as by Cardoso et al. (2004a, b) 

when natural convection is important. The following constants were chosen to match those used by 

Cardoso et al. (2004a, b). The temperature of the wall of the spherical reactor, T0, was held constant 

at 500 K and the physicochemical properties used were as follows: the initial molar density ρ0 = 

8.2 mol m–3 (corresponding to a pressure of 0.34 bar at 500 K), the heat capacity at constant volume 

CV = 190 J mol–1 K–1, and the exothermicity of step 2, q2 = 400 kJ mol–1. We define the base case 

chemistry such that the rate constant k1 = 0.025 s–1, corresponding to τstep 1 = 40 s, and k2 = Z2 exp (-

E2 / R T) with Z2 = 2 × 1015 s–1 and E2 / R = 18280 K. These values give k2,0 = 0.265 s–1, and hence 

τstep 2 = 3.77 s, which is thus approximately an order of magnitude faster than step 1. Furthermore, the 

simplifying assumption that the Lewis and Prandtl numbers are unity was made. Computations were 

done for reactors of different sizes at several values of Ra, both in the region where diffusion controls 

transport and when convection dominates. To further verify the scales developed, the kinetic rate 

constants were also varied. Given that the two scales for ∆T (Eqs. (9) and (11)) depend on k1 only, a 

range of values for k1 was considered. The pre-exponential factor in k2 was hypothetically halved to 

confirm that ∆T is indeed independent of k2.  

 
6. NUMERICAL RESULTS 
6.1 Diffusive Regime 

We begin by exploring all the cases when diffusion controls transport by considering in detail the 

cases Ra = 0 and Ra ~ 600. This means that as far as Fig. 3 is concerned, we are only considering 

systems on, or very near, the vertical axis (so g ~ 0),  
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Fig. 4. Plots of the temperature (T) and concentration (a) of the intermediate A at the centre of the 
reactor against time, when diffusion controls transport for: (a) τdiffusion = 1 s; L = 10 mm (b) τdiffusion = 4 
s; L = 20 mm (c) τdiffusion = 9 s; L = 30 mm, all for the base-case chemistry with g = 0 m s-2 and κ = 
1×10-4 m2 s-1.  

 

where only diffusion and reaction occur. Another example of Ra being low is a gaseous system at a 

low pressure; in this context it is noted below that Ra is proportional to the square of the pressure. 

Nevertheless, it turns out that there are three identifiable regions, where the system behaves 

differently, as shown more clearly in Fig. 4(a – c). The temporal development of the temperature and 

the concentration of A at the centre of the reactor for three different values of τdiffusion are plotted. In 

the three cases presented, the chemistry is that of the base case, i.e. τstep 1 = 40 s and τstep 2 = 3.77 s at 
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500 K, and τdiffusion has been varied by changing the radius, L, of the reactor (in this case the graphs 

represent L = 10, 20 and 30 mm, respectively). For a small reactor (L < 0.01 m), the working point is 

on the vertical axis of Fig. 3, far away from the origin. For this case, Fig. 4(a) shows slow growths 

and decays of both the temperature and the concentration of A with time. In addition, there is only a 

relatively small increase in temperature (of ~ 8 K) to the maximum at the centre of the reactor, so the 

system behaves almost isothermally. For these cases with a small τdiffusion, we would expect the 

temperature and concentration fields to be in effect spatially uniform, with the exception of the 

thermal and concentration boundary layers at the wall. This approximate spatial uniformity decreases 

the magnitude of the convective and diffusive terms in Eq. (1) relative to that of the reaction terms. 

Therefore, we expect ∆T to have the form of Eq. (9), i.e. there is a dependence on k1, but not k2. 

Indeed, the concentration and temperature fields obtained numerically were virtually uniform in these 

cases. The temperature and concentration only change by ~ 1%, on moving from the wall to the 

centre of the reactor. This small variation in temperature and concentration leads us to describing the 

system as approximately spatially uniform. Additionally our numerical results show that the decay in 

temperature and concentration (as shown by Fig. 4(a)) is proportional to exp(-k1 t), thus lending 

support to the hypothesis that k1 is the dominant kinetic parameter in this system. In all three cases 

plotted in Fig. 4(a-c), the fields of temperature and of the concentration of the intermediate A were in 

fact spherically symmetric. 

When we increase the size of the reactor, we move into a region of instability, where the 

temperature and the concentration of A exhibit temporal oscillations, as shown in Fig. 4(b) for the 

centre of the reactor. In fact, the concentration of A oscillates in anti-phase with the temperature, as 

has been shown previously (Cardoso et al. 2004a, b). It was found that oscillations only occurred for 

values of the reactor’s radius, L, in a narrow band, whose location depended on the physical and 

kinetic parameters used. It seems that (see below), when diffusion is the dominant transport 

mechanism, the range of L, over which oscillatory behaviour is observed, corresponds to the region 

where the characteristic timescales for diffusion and reaction in step 2 are of similar magnitude, i.e. 

τdiffusion ≈ τstep 2.  

For L > 0.03 m, the working point moves along the vertical axis of Fig. 3 closer to the origin. 

Now the temporal evolutions of temperature and the concentration of A at the centre of the reactor 

are shown by Fig. 4(c). Instead of the oscillations, there is now an initial peak in the concentration 

curve, which then rapidly decays to almost zero. The temperature now rises by ~ 100 K, because of 

heat removal from a larger vessel being slower. The plot in Fig. 4(c) shows an initially fast rise in 

temperature and then there is a distinct ‘kink’ in the curve (at ~ 2 s), when the concentration of the 

intermediate reaches a steady value, close to zero. The ‘kink’ in the temperature curve can be 

explained by examining Eq. (2) for the conservation of energy. When the concentration of A falls 

rapidly to virtually zero, the heat generation term in Eq. (2) effectively disappears. It is this swift 

change in the form of the governing equation that causes the observed change in the temporal 

development of the temperature.  

The plot in Fig. 5 checks Eq. (9) by showing the computed values of γ (∆T / ∆Tad) plotted against 

(τdiffusion / τstep 1) for when diffusion is the dominant transport mechanism. The temperature rise was 
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taken to be that at the centre of the reactor, because this is where ∆T is at its maximum value, due to 

the spherical symmetry. Figure 5 evidently reveals three regimes. There is linearity for high and very 

low (τdiffusion / τstep 1); the region between them is where oscillations occur. Equation (9) suggests that 

there should be a linear plot in Fig. 5. Therefore our scale, Eq. (9), for ∆T is of the correct form. 

When τdiffusion / τstep 1 > 0.1, Eq. (13) can be modified by adding a constant factor, which can be found 

from Fig. 5 by the least squares method. Thus the characteristic temperature rise is given by: 
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In the narrow region between these two linear regimes, where oscillations occur, the ‘error bars’ 

in Fig. 5 show the range of the oscillations, measured from the first peak to the first trough. 

Oscillations were only observed in this narrow band, where τdiffusion ~ τstep 2, as noted above. 
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Fig. 5. Plot of γ (∆T/ ∆Tad) against τdiffusion / τstep 1 in the diffusive regime. The line shown corresponds 
to Eq. (14). (���� k1 = 0.025 s-1, k2,0 = 0.265 s-1, Ra = 0;���� k1 = 0.0125 s-1, k2,0 = 0.265 s-1, Ra = 0; ���� k1 
= 0.0375 s-1, k2,0 = 0.265 s-1, Ra = 0; ���� k1 = 0.025 s-1, k2,0 = 0.132 s-1, Ra = 0; × k1 = 0.025 s-1, k2,0 = 
0.265 s-1, Ra ~ 600). 

 

6.2 Oscillations in Microgravity 
A region of oscillations was identified by performing very many simulations for when diffusion 

is the only transport mechanism, as in microgravity, but for different τstep 1/τstep 2. Figure 6 shows the 

approximate regions defined through simulations for g = 0 and different τstep 1/τstep 2. The axes of the 

regime diagram in Fig. 6 are the reciprocal of those in Fig. 2. This is to ensure that the region of 
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oscillations is closed. Also, p′  has been omitted from the abscissa, because it is a function of the 

two quantities being plotted in Fig. 6, when the precursor P is uniformly distributed throughout the 

reactor. Regions of sustained and damped oscillations were found. These areas in Fig. 6 are an order 

of magnitude larger than the region of oscillations defined analytically for a pseudo-1-D system by 

Gray and Scott (1990). An example of a sustained oscillation was seen in Fig. 4(a). Interestingly, 

these sustained oscillations disappear when Ra > 103 and the oscillations become noticeably damped. 

The dotted lines shown in Fig. 6 correspond to areas where the numerical scheme broke down. As an 

aside, one of our initial assumptions was that τstep 2 < τstep 1, which partly explains the dotted lines in 

Fig. 6. The oscillations occur in the region defined approximately by 0.04 τstep 1 < τdiffusion < 0.2 τstep 1, 

subject to the constraint that τdiffusion < 4 τstep 2. Before, for Ra < 103 it was decided that τdiffusion ~ τstep 2 

for oscillations to occur. Figure 6 for Ra = 0 broadens that criterion by also considering the 

importance of τstep 2/τstep 1. In addition to the region of oscillations, two distinct types of non-

oscillatory behaviour are shown in Fig. 6. These correspond to a slow reaction with a low temperature 

rise, and a rapid reaction with a large temperature rise. This situation is very similar to the conditions 

for the occurrence of cool flames, which on an ignition diagram are found to lie between those for a 

rapid thermal explosion and a very slow reaction. 

 

 
Fig. 6. A 2-D regime diagram showing the approximate region of oscillations for zero-gravity, as 
identified after many simulations. The dashed lines are extrapolations of the boundaries into regions 
where the numerical scheme and model broke down.  

 

6.3 Convective Regime 
The behaviour of the system when convection is more important than diffusional transport was 

investigated by again examining full numerical solutions, but for Ra ~ 5000 and 21500. The 

convective flow in both these cases should be laminar. The flow-field is such that the gas rises 

vertically along the axis of symmetry and falls downwards close to the cooler walls, thus forming a 

toroidal vortex. Figure 7(a) plots the streamlines computed for the flow induced by natural 

convection. In outline, the system behaves as follows. The walls of the reactor are held at a constant 



 228

temperature. Whilst reaction proceeds, heat is released and consequently the temperature of the gas 

rises. Because the gas becomes hotter than the walls, heat is removed from the system at the walls. 

This coupling of heat generation and loss causes a hot zone to form at the centre of the reactor. This 

in turn results in a gravitationally unstable density distribution in the top section of the reactor and so 

leads to the development of the familiar Rayleigh-Bénard convection (Turner, 1979). Figure 7(b) 

plots the temperature and density along the vertical axis of the reactor. The hot gas near the centre of 

the reactor rises quickly initially and moves into the hottest part of the reactor (in the top half). 

However, it slows as it passes through the hot zone, due to the decreased density difference. The hot 

gas then contacts the relatively cold walls, where it cools and descends relatively rapidly due to the 

large density differential. In the lower half of the reactor the density distribution is intrinsically stable, 

with the flow being induced by the descending, cooler gas at the wall. This downward flow of cool 

gas results in a relatively slow upward flow (around the centreline of the reactor) of gas displaced 

from the bottom of the reactor. Whilst this gas rises, it heats up and hence accelerates. The situation 

in Fig. 7 refers not just to Sal’nikov’s mechanism, but to any exothermic reaction proceeding in a 

similar vessel.  

 

 
 
Fig. 7. (a) Streamlines of the flow due to natural convection in a vertical cross section through the 
axis of the reactor. The toroidal vortex typifying the flow (upwards near the axis, downwards near the 
wall) is shown. (b) Temperature and density profiles along the vertical axis of the reactor, showing 
the unstable density distribution in the top half of the reactor, which drives flow, and the stable 
density distribution in the bottom half of the reactor, where flow is driven by conditions in the 
boundary layers. 

 

As mentioned previously, the spherical symmetry of the temperature and concentration fields 

seen in the diffusive regime is disrupted by the convective flow. Because of the ‘hot zone’ above the 
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centre of the reactor (Cardoso et al., 2004a, b), we examine below, the temperature rise, ∆T, at a point 

L / 2 above the centre of the reactor (i.e. a point three quarters of the way up the vertical axis), instead 

of at the centre, to give a better indication of the maximum value of ∆T within the reactor. 

Oscillations were observed over a much wider range of values than in the diffusive regime, and in 

fact, virtually every case studied when convection was significant exhibited oscillations. 

Figure 8 shows a plot of the computed maximum vertical velocity at the centre of the reactor 

against (g L2)1/3, which arises from substituting Eq. (11) into (10). The ‘error bars’ show the range of 

the observed oscillations in the velocity. The linear form of this plot indicates that our scale, Eq. (10), 

is of the correct form. It is interesting to note that for a 10 cm diameter vessel undergoing a reaction 

in terrestrial conditions (i.e. g = 9.81 m s-2), velocities of ~ 10 cm s-1 were observed. Velocities of up 

to 30 cm s-1 were computed for similarly sized vessels for larger values of g (= 30 m s-2). The 

characteristic velocity, U, can therefore be expressed as: 

( ) ( )[ ] 21
02.031.0 TgLU ∆±= β . (15) 

This equation contains ∆T. To check its magnitude, Fig. 9 shows γ (∆T / ∆Tad) plotted against 

τconvection / τstep 1; as predicted by Eq. (11), there is a clear linear relationship. In fact, the characteristic 

temperature rise when convection dominates transport can be expressed as: 

( )
1

08.000.4
 step

convection

adT

T

τ
τ

γ ±=
∆
∆

.  (16) 

Thus our numerical simulations have confirmed the form of the scales developed above, when 

diffusion and convection are, respectively, the dominant transport mechanism. These scales allow the 

general behaviour of any given system to be predicted. It should be noted, however, that these scales 

were developed for a system where τstep 1 is the dominant kinetic timescale. Thus, the behaviour may 

well change if τstep 1 and τstep 2 are of similar magnitude.  

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 0.2 0.4 0.6 0.8 1

(g L 2) 1/3
 (m s

-2/3
)

M
ax

im
u

m
 v

er
tic

al
 v

el
oc

ity
 

at
 c

en
tr

e 
(m

 s
-1

)

 
Fig. 8. Plot of the maximum vertical velocity of the gas at the centre of the reactor, versus (g L2)1/3. 
The line shown corresponds to Eq (15), Ra ~ 21500. (���� g = 9.81 m s-2, k1 = 0.025 s-1, k2,0 = 0.265 s-1; 
���� g = 4.9 m s-2, k1 = 0.025 s-1, k2,0 = 0.265 s-1; ���� g = 30 m s-2, k1 = 0.025 s-1, k2,0 = 0.265 s-1). 
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Fig. 9. Plot of γ (∆T/ ∆Tad) versus τconvection / τstep 1 in the laminar convection regime. The line shown 
corresponds to Eq. (16). ‘Error bars’ showing the range of oscillations have been suppressed for clarity. 
(���� g = 9.81 m s-2, k1 = 0.025 s-1, k2,0 = 0.265 s-1, Ra ~ 21500; ���� g = 4.9 m s-2, k1 = 0.025 s-1, k2,0 = 
0.265 s-1, Ra ~ 21500; ���� g = 30 m s-2, k1 = 0.025 s-1, k2,0 = 0.265 s-1, Ra ~ 21500; × g = 9.81 m s-2, k1 = 
0.0125 s-1, k2,0 = 0.265 s-1, Ra ~ 21500; ���� g = 9.81 m s-2, k1 = 0.01875 s-1, k2,0 = 0.265 s-1, Ra ~ 21500; 
���� g = 9.81 m s-2, k1 = 0.0375 s-1, k2,0 = 0.265 s-1, Ra ~ 21500; ���� g = 9.81 m s-2, k1 = 0.025 s-1, k2,0 = 
0.132 s-1, Ra ~ 21500; ���� g = 9.81 m s-2, k1 = 0.025 s-1, k2,0 = 0.265 s-1, Ra ~ 5000). 

 
 
7. Oscillations 

The oscillations of a and T in the above systems result from the interaction between chemical 

kinetics and heat transfer. This truth is not just restricted to Sal’nikov’s reaction (Gray and Scott, 

1990), but consideration of Sal’nikov’s system indicates how more complex mechanisms might 

behave. Previous work in the well-mixed region (e.g. Gray and Scott, 1990) has shown that 

oscillations in the temperature and the concentration of the intermediate A occur in anti-phase. The 

observed oscillations are sustained, but in fact are slightly damped (as in Fig. 4(a)), because the 

precursor, P, is continually consumed during the course of the reaction, so the production of A 

follows an exponential decay arising from the kinetics of step 1. This oscillatory behaviour is due to 

the interaction of the highly non-linear thermal feedback, due to the Arrhenius temperature 

dependence of step 2, the timescales of steps 1 and 2 of reaction (I) and the nature of heat transfer 

from the reactor. Interestingly, oscillations with T and a in phase can occur; they are discussed 

elsewhere by Campbell et al. (2005b). The entire region of Fig. 3 where oscillations occur has been 

found by performing very many simulations and is shown approximately in Fig. 10. There are two 

distinct parts to the oscillatory region. For Ra < 103, the boundaries between the oscillatory and non-
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oscillatory zones are approximately constant, and are very similar to those seen in the purely diffusive 

case. For Ra > 103, natural convection dominates over diffusion of heat and mass. Oscillations are 

observed over a much wider range of parameters when natural convection is important. As Ra 

increases, the oscillatory region also widens. 

 

 
Fig. 10. Regime diagram showing the effect (on the position of the working point in Fig. 3) of 
increasing the gas pressure, increasing the reactor’s size, and the effect of performing the reaction in 
the liquid-phase. The area in grey denotes approximately where the concentration of the intermediate 
and the temperature oscillate. 

 
8. The Effect of Varying Parameters 

Examination of the form of the scales developed in the previous sections, along with the 

expression for the Rayleigh number allows us to predict how the system will respond to variations in 

certain parameters. In particular, it is important to reveal the effects of pressure, the size of the reactor 

and the phase of the system (i.e. gas or liquid) on the intensity of convection in the reactor. Let us 

first consider the effect of increasing the pressure in a gas-phase reaction. The kinetic theory of gases 

indicates that ν and κ, the momentum and thermal diffusivities, are both inversely proportional to 
pressure. This means that the Rayleigh number is proportional to P2. Thus, increasing the pressure 

increases the Rayleigh number and therefore the intensity of the convective flow. A system 

represented by a point on the regime diagram of Fig. 10 actually moves vertically downwards, when 

the pressure is increased, because the terms in the abscissa are independent of pressure. The system 

could accordingly move from a situation of negligible convection at low pressure, through one of 

laminar flow, to eventually turbulent convection, when the pressure is increased.  

The effect of increasing the reactor’s size is shown by the solid curved line in Fig. 10. (n.b. 
2

2 1    Ldiffusionstep ∝ττ ; 31
2 1    Lconvectionstep ∝ττ ). It is clear from this plot that making the 

reactor smaller significantly reduces the Rayleigh number, thereby making diffusive processes more 
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significant. Figure 10 shows that when small reactors are considered, even relatively small increases 

in their size can significantly alter the Rayleigh number, which ex hypothesi has an explicit 

dependence on L3. There is also a dependence of ∆T on L via Eq. (9) or (11). 

As for the effect of temperature on Ra, for a purely gaseous system in the convective regime, Ra 

turns out to be inversely proportional to
311

0T , according to the simplest version of the kinetic theory 

of gases. Otherwise, the main effect of temperature on the location of the working point in Fig. 10 is 

via the exponential in the Arrhenius function for k2. Consequently any increase in temperature 

reduces τstep 2 and so moves the working point towards the origin of Fig. 10, whose abscissa and 

ordinate are both proportional to τstep 2 .  

The final effect highlighted on Fig. 10 is the effect of moving from a reaction in the gas-phase to 

one in the liquid-phase. Comparing the relative magnitudes of the terms in the Rayleigh number for 

typical gases and liquids indicates that Rayleigh numbers will be at least an order of magnitude 

higher for liquid-phase systems, for similar increases, ∆T, in temperature and identical values of L. 

Thus comparing Ra for reactions with the same ∆T, g and L in water and air at normal temperature 

and pressure indicates that Ra with water is some 240 times Ra with air. In fact, ∆T for a reaction in 

the liquid-phase is likely to be only ~ 10% larger than for a reaction with the same kinetic parameters 

(q2, k1, k2,…) in the gas-phase. The overall result is that gaseous and liquid systems occupy quite 

different areas of Fig. 10. In a liquid-phase reaction, natural convection is therefore likely to be more 

vigorous and important than in a gas-phase reaction with similar kinetic parameters. Certainly Fig. 10 

indicates that natural convection is likely to be most important (i.e. turbulent) in reactors on an 

industrial scale, because of the dependence on L3. Whenever natural convection is stronger, Fig. 10 

makes it clear that there is a greater likelihood of oscillations in the reactor. This is because of the 

quite different portions of the two axes (of Fig. 10) occupied by the region wherein oscillations occur. 

Thus on the vertical axis, the region for oscillations roughly extends over 0.5 < τstep 2 / τdiffusion < 2, 

whereas along the horizontal axis, oscillations occur over approximately 5 < τstep 2 / τconvection < 90, i.e. 

a change by a factor of 18. No attempt has been made to investigate what happens when Ra > 106 and 

turbulence occurs. 

 
9. Conclusions 

Scales have been developed for the characteristic concentration of intermediate A, temperature 

rise and velocity when Sal’nikov’s reaction occurs in a closed spherical vessel, both for the case 

where diffusion is the dominant transport mechanism, and when convection dominates. In both cases 

the characteristic concentration of the intermediate A was determined purely by the kinetics and the 

temperature rise was shown to be proportional to the ratio of the characteristic timescales for the 

dominant transport mechanism and the rate-controlling step of the reaction. It should be noted that 

this behaviour may differ if the relative magnitudes of the kinetic parameters are significantly altered. 

Using these scales, along with order of magnitude arguments, predictions have been made as to how 

the system will respond to changes in parameters, such as gas pressure, the size of reactor and if the 

reaction is conducted in the liquid-phase. It has been shown that natural convection is favoured by a 

high pressure in gas-phase reactions, and by a larger reactor. Because liquids have different physical 
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properties, reactions in the liquid-phase develop more intense convection than gas-phase reactions 

with similar kinetic parameters. The above analysis reveals when oscillations are possible. 
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