ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հայшиտшնի քիմիшկшն ншնդեи 59, №3, 2006 Химический журнал Армении

УДК.547.491.8.07(0.88.8)

СИНТЕЗ И НЕКОТОРЫЕ ПРЕВРАЩЕНИЯ ПРОИЗВОДНЫХ ОКСИПИРИДАЗОНА

В. В. ДОВЛАТЯН, Т. А. ГОМКЦЯН, А. В. КАРАПЕТЯН и А. П. ЕНГОЯН

Государственный аграрный университет Армении, Ереван

Поступило 12 VII 2005

Хлориды 4,6-бис-замещенных-*симм*-триазинилтриметиламмония с калиевыми солями 3-оксипиридазонов образуют триазинилоксипиридазоны-6, алкилированием которых получены их N-замещенные производные. При действии указанных хлоридов на триазинил-оксипиридазон-6 образуются 3,6-бис-триазинилоксипиридазины. Триазинилоксипиридазоны с производными галогенкарбоновой кислоты образуют N-замещенные производные.

Табл. 2, библ. ссылок 5.

В продолжение исследований в области азинилоксипиридазонов[1- 4] нами синтезированы новые производные *симм*-триазина, в молекулах которых морфолино(циклопропиламино) группа сочетается с оксипиридазоновым кольцом. Учитывая то, что оксипиридазон реагирует в форме 3-оксипиридазона-6 [5], нами осуществлено взаимодействие калиевой соли 3-оксипиридазона-6 с хлоридами 4,6-алкил-(диалкил)амино-*симм*-триазинил-2-триметиламмония (I), приводящее к образованию О-замещенных производных пиридазонов II-XI. Показано, что соединения II-XI с алкил(арил)галогенидами образуют не О-, а N-замещенные производные XII-LXIII.

$$\begin{split} & \mathsf{R} = \mathsf{CH_3NH}, \ (\mathsf{CH_3})_2 \mathsf{N}, \ \mathsf{C_2H_5NH}, \ (\mathsf{C_2H_5})_2 \mathsf{N}, (\mathsf{CH_3})_3 \mathsf{CNH}, \ (\mathsf{CH_3})_2 \mathsf{CHCH_2NH}, \ \mathsf{OCH_3}, \mathsf{N} & \\ & \mathsf{R}^{\mathsf{I}} = \mathsf{N} & \mathsf{N} & \\ & \mathsf{R}^{\mathsf{I}} = \mathsf{CH_3}, \ \mathsf{C_2H_5}, \ \mathsf{C_3H_7}, \ \mathsf{i} \text{-} \mathsf{C_3H_7}, \ \mathsf{C_6H_5CH_2}. \\ & \mathsf{R}^{\mathsf{III}} = \mathsf{CH_3}, \ \mathsf{C_3H_7}, \ \mathsf{C_6H_5} \cdot \\ \end{split}$$

Строение полученных соединений установлено встречным синтезом на примере соединений XII-XXXI, XLV. Взаимодействием малеинангидрида с алкилгидразином с последующей реакцией с хлоридом 2-хлор-4,6-бисморфолино-*симм*-триазинил-2-триметиламмония получены соединения, оказавшиеся идентичными с соединениями XVIII и XLV.

Изучено взаимодействие соединений II-XI с I. Установлено, что при этом образуются О-замещенные производные триазинилоксипиридазонов – 3,6-бис[алкил (диалкил)амино-*симм*-триазинил-2]оксипиридазины LXV-LXVI.

 $LXV - R = \stackrel{I}{R} = (CH_3)_2N$, $LXVI - R = C_2H_5NH$, $\stackrel{I}{R} = (CH_3)_2CHNH$.

С целью усиления фито- и рострегулирующей активности соединений II-XI возникла необходимость превращения исходных триазинилоксипиридазонов в производные уксусной кислоты. Взаимодействием соединений II-XI с производными галогенуксусной кислоты были получены N-замещенные производные LIII-LXIII.

Взаимодействием хлорида *симм*-триазинилтриметиламмония I с 3-оксикарбэтоксиметилоксипиридазоном-6 в присутствии едкого кали был получен продукт О-замещения LXVIII с выходом 25%.

Помимо самостоятельного интереса, полученные соединения могут быть успешно применены в качестве исходных веществ для синтеза новых рядов биоактиваторов.

Экспериментальная часть

ИК спектры сняты на спектрометре "UR-10" (в вазелиновом масле), спектры ЯМР 1 Н 1 — на приборе "Varian Mercury-300" с рабочей частотой 300 $M\Gamma\mu$ в растворе ДМСО $^{-}$ d₆ +CCl₄ 1:3. ТСХ проведено на пластинках "Silufol UV-254", проявление 2% AgNO₃ + 2% БФС + 4% лимонной кислоты.

Триазинилоксипиридазоны II-XXXI. К смеси 0,001 *моля* калиевой соли 3,6-оксипиридазона или 1-алкил(фенил)-3-оксипиридазона-6 в 10 *мл* ацетона при 0-4°С порциями добавляют 0,001 *моля* хлорида триметилтриазиниламмония, затем продолжают перемешивание при комнатной температуре до окончания выделения амина. После удаления ацетона остаток обрабатывают водой, отфильтровывают, промывают водой (табл. 1).

 $\label{eq:Tadinu} {\it Tadinu} {\it a 1}$ Триазинилоксипиридазоны и их N-замещенные производные II - LXIII

Соедине-				Выход,	Т.пл.,	Брутто-
ние	R	R^{I}	R^{II}	ънход, %	°C	формула
II	N O	CH ₃ NH	Н	80	250-251	$C_{12}H_{15}N_7O_3$
III	//	(CH ₃) ₂ N	Н	60	248-250	$C_{13}H_{17}N_7O_3$
IV	//	C ₂ H ₅ NH	Н	75	238-240	$C_{13}H_{17}N_7O_3$
V	//	$(C_2H_5)_2N$	Н	74	214-215	$C_{15}H_{21}N_7O_3$
VI	//	(CH ₃) ₃ CNH	Н	70	254-255	$C_{15}H_{21}N_7O_3$
VII	//	(CH ₃) ₃ CNH	Н	87	254-255	$C_{15}H_{21}N_7O_3$
VIII	//	OCH ₃	Н	65	220-222	$C_{12}H_{14}N_6O_4$
IX	//	NO	Н	87	262-264	$C_{15}H_{19}N_7O_4$
X	NH	$(CH_3)_2N$	Н	75	220-221	$C_{12}H_{15}N_7O_2$
XI	NH	(CH ₃) ₃ CNH	Н	75	175-176	$C_{14}H_{19}N_7O_2$
XII	NO	CH ₃ NH	CH ₃	87	230-232	$C_{13}H_{17}N_7O_3$
XIII	//	(CH ₃) ₂ N	CH ₃	50	181-185	$C_{14}H_{19}N_7O_3$
XIV	//	C_2H_5NH	CH ₃	83	214-215	$C_{14}H_{19}N_7O_3$
XV	//	$(C_2H_5)_2N$	CH ₃	83	124-125	$C_{16}H_{23}N_7O_3$
XVI	//	(CH ₃) ₃ CNH	CH ₃	80	230-232	$C_{16}H_{23}N_7O_3$
XVII	//	i-BuNH	CH ₃	70	230-232	$C_{16}H_{23}N_7O_3$
XVIII	//	NO	CH ₃	70	182-184	$C_{16}H_{21}N_7O_4$
XIX	//	OCH ₃	CH ₃	45	158-160	$C_{13}H_{16}N_6O_3$
XX	NH →NH	$(CH_3)_2N$	CH ₃	80	200-202	$C_{13}H_{17}N_7O_2$
XXI	>NH	(CH ₃) ₃ CNH	CH ₃	90	208-210	$C_{15}H_{21}N_7O_2$
XXII	O	CH ₃ NH	C ₆ H ₅	80	212-214	$C_{18}H_{19}N_7O_3$
XXIII	//	$(CH_3)_2N$	C ₆ H ₅	45	124-125	$C_{19}H_{22}N_7O_3$
XXIV	//	C ₂ H ₅ NH	C ₆ H ₅	90	184-185	$C_{19}H_{21}N_7O_3$
XXV	//	$(C_2H_5)_2N$	C_6H_5	90	129-130	$C_{21}H_{25}N_7O_3$
XXVI	//	(CH ₃) ₃ CNH	C_6H_5	86	210-212	$C_{21}H_{25}N_7O_3$
XXVII	// 	i – BuNH	C_6H_5	95	210-212	$C_{21}H_{25}N_7O_3$

Продолжение таблицы 1

						лжение таолицы т
XXVIII	//	NO	C_6H_5	80	168-170	$C_{21}H_{23}N_7O_4$
XXIX	//	OCH ₃	C_6H_5	66	124-125	$C_{18}H_{18}N_6O_4$
XXX	NH	$(CH_3)_2N$	C_6H_5	93	149-150	$C_{18}H_{19}N_7O_2$
XXXI	NH	(CH ₃) ₃ CNH	C_6H_5	93	190-191	$C_{20}H_{23}N_7O_2$
XXXII	NO	N O	C_2H_5	50	220-222	C ₁₇ H ₂₃ N ₇ O ₄
XXXIII	//	CH ₃ NH	C_2H_5	65	194-196	$C_{14}H_{19}N_7O_3$
XXXIV	//	(CH ₃) ₂ N	C_2H_5	58	118-120	$C_{15}H_{27}N_7O_3$
XXXV	//	C ₂ H ₅ NH	C_2H_5	65	134-135	$C_{15}H_{23}N_7O_3$
XXXVI	//	$(C_2H_5)_2N$	C_2H_5	96	134-135	$C_{17}H_{25}N_7O_3$
XXXVII	//	(CH ₃) ₃ CNH	C_2H_5	66	219-220	$C_{17}H_{25}N_7O_5$
XXXVIII	//	i-BuNH	C_2H_5	63	128-129	$C_{17}H_{25}N_7O_3$
XXXIX	//	CH ₃ NH	C_3H_7	40	158-160	$C_{15}H_{21}N_7O_3$
XL	//	(CH ₃) ₂ N	C_3H_7	60	140-142	$C_{16}H_{23}N_7O_3$
XLI	//	C ₂ H ₅ NH	C_3H_7	50	234-235	$C_{16}H_{25}N_7O_3$
XLII	//	$(C_2H_5)_2N$	C_3H_7	94	119-120	$C_{18}H_{27}N_7O_3$
XLIII	//	(CH ₃) ₃ CNH	C_3H_7	64	159-160	$C_{18}H_{27}N_7O_3$
XLIV	//	i-BuNH	C_3H_7	81	169-170	$C_{18}H_{27}N_7O_3$
XLV	//	N_O	C ₃ H ₇	75	176-177	$C_{18}H_{25}N_7O_4$
XLVI	//	(CH ₃) ₂ N	i -C ₃ H ₇	76	138-140	$C_{16}H_{23}N_7O_3$
XLVII	//	$(C_2H_5)_2N$	i -C ₃ H ₇	68	117-118	$C_{18}H_{27}N_7O_3$
XLVIII	//	i-BuNH	i -C ₃ H ₇	68	149-150	$C_{18}H_{27}N_7O_3$
XLIX	//	NO	i -C ₃ H ₇	58	188-190	$C_{17}H_{22}N_8O_5$
L	//	$(C_2H_5)_2N$	C ₆ H ₅ CH ₂	20	100-102	$C_{22}H_{27}N_7O_3$
L	//	i-BuNH	C ₆ H ₅ CH ₂	46	164-165	$C_{22}H_{27}N_7O_3$
LII	//	N 0	C ₆ H ₅ CH ₂	50	218-220	$C_{22}H_{25}N_7O_4$
LIII	//	$(C_2H_5)_2N$	CH ₂ CONH ₂	66	218-220	$C_{17}H_{24}N_8O_4$
LIV	//	(CH ₃) ₃ CNH	CH ₂ CONH ₂	80	220-222	$C_{17}H_{24}N_8O_4$
LV	//	i-BuNH	CH ₂ CONH ₂	81	249-250	$C_{17}H_{24}N_8O_4$
LVI	//	\(\sigma\)	CH ₂ CONH ₂	58	279-280	$C_{17}H_{22}N_8O_5$

Продолжение таблицы 1

LVII	//	CH ₃ NH	CH ₂ COOCH ₃	50	148-150	$C_{15}H_{19}N_7O_5$
LVIII	//	(CH ₃) ₂ N	CH ₂ COOCH ₃	43	148-150	$C_{16}H_{21}N_7O_5$
LIX	//	C ₂ H ₅ NH	CH ₂ COOCH ₃	93	184-185	$C_{16}H_{21}N_7O_5$
LX	//	$(C_2H_5)_2N$	CH ₂ COOCH ₃	75	124-125	$C_{18}H_{25}N_7O_5$
LXI	//	(CH ₃) ₃ CNH	CH ₂ COOCH ₃	76	219-220	$C_{18}H_{25}N_7O_5$
LXII	//	i-BuNH	CH ₂ COOCH ₃	95	189-190	$C_{18}H_{25}N_7O_5$
LXIII	//	N 0	CH ₂ COOCH ₃	40	234-235	$C_{18}H_{23}N_7O_6$

4,6-Бис-морфолино-симм-триазинил-2-N-метил(пропил)-оксипиридазоны-

- **6 XVIII, XLV.** а) Аналогично из 0,16 r (0,001 моля) калиевой соли N-метилоксипиридазона и 0,3 r (0,001 моля) хлорида 2-хлор-4,6-бис-морфолино-симм-триазинилтриметиламмония получают 0,3 r (80%) соединения XVIII, т.пл.182-84°C, а из 0,001 моля калиевой соли N-пропилоксипиридазона и 0,3 r (0,001 моля) хлорида 2-хлор-4,6-бис-морфолино-симм-триазинилтриметиламмония 0,32 r (80%) соединения XLV, т.пл. 176-77°C. Спектры ЯМР 1 Н приведены в табл. 2.
- б) К 0,7 r (0,001 моля) 84% едкого кали в 10 мл диметилформамида прибавляют 0,001 моля триазинилоксипиридазона. Перемешивают 2-3 ч (до солеобразования) при комнатной температуре и добавляют 0,0011 моля метилйодида, продолжают перемешивание при 45-50°С до рН 7. Растворитель удаляют, остаток обрабатывают водой, отфильтровывают. Получают 0,3 r (80%) соединения XVIII, т.пл. 182-84°С. Аналогично из 0,001 моля калиевой соли 4,6-бис-морфолино-симм-триазинил-2-оксипиридазона и 0,14 r (0,0011 моля) пропилбромида получают 0,25 r (70%) соединения XLV, т. пл. 176-78°С. Спектры ЯМР 1 Н приведены в табл. 2.
- **N-Алкилоксипиридазонилокситриазины XXXII-LII.** К калиевой соли 0,001 *моля* тразинилоксипиридазона в 5 *мл* диметилформамида добавляют 0,001 *моля* алкилгалогенида и перемешивают при 50-60°C до рН 7. Растворитель удаляют, остаток обрабатывают водой, отфильтровывают и перекристаллизовывают из этанола (табл. 1).
- 3,6-Бис-(4,6-бис-диметиламино-симм-триазинил-2)оксипиридазон (LXV). К 2,8 г (0,001 моля) калиевой соли 4,6-бис-диметиламино-симм-триазинил-2-оксипиридазона-6 в 10 мл ацетона при 0°С по порциям добавляют 2,6 г (0,001 моля) хлорида 4,6-бис-диметиламино-симм-триазинилтриметиламмония. Перемешивают при комнатной температуре 3 ч и при 50-55°С до окончания выделения амина, охлаждают, прибавляют 30 мл воды, остаток отфильтровывают, промывают водой, 5% раствором КОН, а затем водой.

Таблица 2

Спектры ЯМР 1 Н, d, м. д. (J, \varGamma *ц*) некоторых триазинилоксипиридазонов и их N-замещенных производных (спектры сняты в ДМСО-d₆)

II	$2,77$ д $(0,75$ Н J $4,8)$ и $2,80$ д $(2,25$ Н, J $4,8$, NCH $_3$); $3,56$ - $3,84$ ш $(8$ Η, NC $_4$ Н $_8$ О);
	6,80 д (0,25H, Ј 9,9) и 6,83 д (0,75H, Ј 9,9, Н _{Аг}); 7,18 д (0,75H, Ј 9,9) и 7,22 д
	(0,25H, J 9,9, H _{Ar}); 7,03 к (0,25H, J 4,8) и 7,32 к (0,75H, J 4,8, NH); 12,49 уш
	(1H, NH)
III	3,04 c (3H, NCH ₃); 3,11 c (3H, NCH ₃); 3,59-3,77 ш (8H, NC ₄ H ₈ O); 6,81 д (1H,
	J 9,9, H _{Ar}); 7,19 д (1H, J 9,9, H _{Ar}); 12,50 уш (1H, NH)
IV	1,11 т (0,75Н, Ј 7,2) и 1,13 т (2,25Н, Ј 7,2, СН ₃); 3,23 кд (0,5Н, Ј 7,2, 5,6) и
	3,29 кд (1,5H, J 7,2, 5,6, CH ₂); 3,57-3,79 ш (8H, NC ₄ H ₈ O); 6,80 д (0,25H, J
	9,8) и 6,83 д (0,75H, J 9,8, H _{Ar}); 7,18 д (0,75H, J 9,8) и 7,21 д (0,25H, J 9,8,
	H _{Ar}); 7,07 т (0,25H, J 5,6) и 7,37 т (0,75H, J 5,6, NH); 12,49 уш (1H, NH)
VI	1,22 с и 1,35 с (9H, CH ₃); 3,56-3,70 ш (8H, NC ₄ H ₈ O); 6,88 д (1H, J 8,2, H _{Ar});
	7,45 д (1Н, Ј 8,2, Н _{Аг}); 6,90 уш. с и 7,10 уш. с (1Н, NН); 12,53 ш (1Н, NН)
	0,90 м (6H, CH ₃); 1,85 м (1H, CH); 2,70 м и 3,14 м (2H, NCH ₂); 3,50-3,80 ш
VII	(8H, NC ₄ H ₈ O); 6,70 д (1H, J 8,3, H _{Ar}); 7,20 д (1H, J 8,3, H _{Ar}); 6,88 с и 7,37 с
	(1H, NH); 12,48 ш (1H, NH)
IX	3,59-3,76 ш (16H, NC ₄ H ₈ O); 6,81 д (1H, J 9,9, H _{Ar}); 7,19 д (1H, J 9,9, H _{Ar});
	12,51 уш (1H, NH)
	0,48-0,54 м (2H) и 0,56-0,65 м (2H, C ₃ H ₅); 2,77 м (1H, NCH); 3,06 уш (3H,
X	NCH ₃); 3,17 уш (3H, NCH ₃); 6,81 д (1H, J 9,9, H _{Ar}); 7,18 д (1H, J 9,9, H _{Ar});
	7,37 д (1H, J 4,0, NH); 12,47 с (1H, NH)
	0,49-0,55 м (2H) и 0,58-0,68 м (2H, C ₃ H ₅); 1,32 с и 1,42 с (9H, CH ₃); 2,71 м
XI	(1H, NCH); 6,28 уш. с и 6,69 уш. с (1H, NH); 6,82 д (1H, J 9,9 H _{Ar}); 7,18 д
	(1H, J 9,9 H _{Ar}); 7,24 д и 7,41 д (1H, J 3,5, <u>NH</u> C ₃ H ₇); 12,47 ш (1H, NH)
XVIII	3,59-3,76 ш (16H, NC ₄ H ₈ O); 3,62 с (3H, NCH ₃); 6,89 д (1H, J 9,8, H _{Ar}); 7,25 д
	$(1H, J 9, 8, H_{Ar})$
XXIII	3,07 c (3H, NCH ₃); 3,12 c (3H, NCH ₃); 3,63 м (4H, O(CH ₂) ₂); 3,71 ш (4H,
	$N(CH_2)_2$); 7,02 д (1H, J 9,8, H_{Ar}); 7,05 д (1H, J 9,8, H_{Ar}); 7,33 м (1H, пара-
	C_6H_5); 7,44 м (2H, мета- C_6H_5); 7,65 м (2H, орто- C_6H_5)

Продолжение таблицы 2

	• ***
XXXII	1,33 т (3H, J 7,1, CH ₃); 3,62 м (8H, O(CH ₂) ₂); 3,71 ш (8H, N(CH ₂) ₂); 4,04
	к (2H, J 7,1, N <u>CH₂</u> CH ₃); 6,87 д (1H, J 9,8, H _{Ar}); 7,22 д (1H, J 9,8, H _{Ar})
	1,33 т (3H, J 7,2, CH ₃); 1,26 с (2,7H) и 1,38 с (6,3H, CH ₃); 3,58-3,77 ш
XXXVII	(8H, NC ₄ H ₈ O); 4,03 к (2H, J 7,2, NCH ₂); 6,30 ш (0,3H) и 6,74 ш (0,7H,
	NH); 6,87 д (1H, J 9,7, H _{Ar}); 7,20 д (1H, J 9,7, H _{Ar})
	0,58 д и 0,85 д (6H, J 6,6, CH ₃); 1,23 т (3H, J 6,6, CH ₃); 1,72 м и 1,83 м
XXXVIII	(1H, CH); 2,90 м и 3,05 м (2H, NCH ₂); 3,50-3,75 ш (8H, NC ₄ H ₈ O); 3,93 к
	(2H, J 6,6, N <u>CH₂</u> CH ₃); 6,95 д (1H, J 8,7, H _{Ar}); 7,45 д (1H, J 8,7, H _{Ar}); 7,50
	си 7,60 с (1H, NH)
LII	3,54-3,76 м (16H, NC ₄ H ₈ O); 5,15 с (2H, CH ₂); 6,93 д (1H, J 9,7, H _{Ar}); 7,24
	д (1H, J 9,7, H _{Ar}); 7,24-7,36 м (5H, C ₆ H ₅)
	0,90 м (6H, CH ₃); 1,85 м (1H, CH); 2,70 м и 3,14 м (2H, NCH ₂); 6,80 с и
LV	7,37 с (1H, NH); 6,80 д (1H, J 8,8, H _{Ar}); 7,30 д (1H, J 8,8, H _{Ar}); 4,50 с (2H,
	NCH ₂); 7,25-7,40 шс (2H, NH ₂)
	2,78 д (0,9 H) и 2,81 д (2,1 H, J 4,7, NCH ₃); 3,57-3,83 ш (8H, NC ₄ H ₈ O);
LVII	3,76 с (3H, OCH ₃); 4,71 с (2H, NCH ₂); 6,95 д (0,25 H) и 6,97 д (0,75 H, J
	9,8, Н _{аг}); 7,33 д (0,75 H) и 7,35 д (0,25 H, Ј 9,8, Н _{аг}); 7,08 к (0,25 H) и
	7,40 к (0,75 H, J 4,7, NH)
	1,11 т (0,75 Н) и 1,14 т (2,25 Н, Ј 7,2, СН ₃); 3,24 кд (0,5 Н) и 3,30 кд (1,5
LVIII	H, J 7,2, 5,6, NCH ₂); 3,56-3,82 ш (8H, NC ₄ H ₈ O); 3,75 с (0,75 H) и 3,76 с
	(2,25 H, OCH ₃); 4,71 с (2H, NCH ₂); 6,94 д (0,25 H) и 6,97 д (0,75 H, J 9,8,
	Н _{Аг}); 7,04 т (0,25 H) и 7,45 т (0,75 H, J 5,6, NH); 7,32 д (0,75 H) и 7,33 д
	(0,25 H, J 9,8, H _{Ar})
	0,95 т (3H, J 7,4, CH ₂ CH ₂ CH ₃); 1,08 т (3H, J 7,0, NCH ₂ CH ₃); 1,16 т (3H, J
XLII	7,0, NCH ₂ CH ₃); 1,78 скс (2H, J 7,3, CH ₂ CH ₂ CH ₃); 3,42 к (2H, J 7,0,
	NCH_2CH_3 ; 3,53 \times (2H, J 7,0, NCH_2CH_3); 3,59-3,74 \times (8H, NC_4H_8O); 3,95
	т (2H, J 7,2, NCH ₂); 6,86 д (1H, J 9,7, H _{Ar}); 7,19 д (1H, J 9,7, H _{Ar})
LXIII	3,59-3,74 ш (16H, NC ₄ H ₈ O); 3,75 с (3H, OCH ₃); 4,71 с (2H, NCH ₂); 6,97 д
	(1H, J 9,9, H _{Ar}); 7,30 д (1H, J 9,9, H _{Ar})
XLV	0,87 д (1,2 Н) и 0,90 д (4,8 Н, Ј 6,7, СН ₃); 1,77 м (0,2 Н) и 1,86 м (0,8 Н,
	CH); 3,02 т (0,4 H) и 3,07 т (16H, J 6,4, NCH ₂); 3,57-3,78 ш (8H,
	NC_4H_8O); 4,53 с (2H, OCH ₂); 6,90 д (0,2 H) и 6,92 д (0,8 H, J 9,7, H _{Ar});
	6,92 ш (1H) и 7,36 ш (1H, NH ₂); 7,26 д (1H, J 9,7, H _{Ar}); 7,13 т (0,2 H) и
	7,54 T (0,8 H, J 6,4, NH)

Получают 2 г (68%) соединения LXV, т.пл. 224-26°С. Найдено, %: N 38,4. С18Н26N12O2. Вычислено, %: N 38,0. Спектр ЯМР ¹Н, δ , м.д., ДМСО-d6: 2,98 уш. с (6H, NCH3); 3,07 уш. с (6H, NCH3); 3,10 уш. с (6H, NCH3); 3,13 уш. с (6H, NCH3); 7,48 д (1H, J 9,8, H_{Ar}); 7,51 д (1H, J 9,8, H_{Ar}).

Этиловый эфир бис-диметиламино-*симм*-триазинилоксипиридазонилоксиуксусной кислоты LXVII. К калиевой соли 0.25~r~(0.001~moлs) 3-оксикарбэтоксиметилоксипиридазона в 10~m ацетона при 0-4°C по порциям добавляют 0.26~r~(0.001~moлs) хлорида 4.6-бис-диметиламино-*симм*-триазинилтриметиламмония, затем перемешивают при комнатной температуре до окончания выделения амина. После удаления ацетона остаток обрабатывают водой и получают 0.1~r~(25%) соединения XLVII, т.пл. 108-110°C.

N-Замещенные производные триазинилоксипиридазонилуксусной кислоты LIII-LXIII. К калиевой соли 0,001 *моля* триазинилоксипиридазона в 5 *мл* диметилформамида при перемешивании добавляют 0,001 *моля* соответствующего производного галогенкарбоновой кислоты и продолжают перемешивание при 45-50°C до рН 7. Растворитель удаляют, остаток обрабатывают водой, отфильтровывают, промывают водой (табл. 1).

ՕԶՍԻՊԻՐԻՂԱԶՈՆԻ ՄԾԱՆՑՅԱԼՆԵՐԻ ՍԻՆԹԵԶԸ ԵՎ ՈՐՈՇ ՓՈԽԱՐԿՈՒՄՆԵՐԸ

Վ.Վ.ԴՈՎԼԱԹՑԱՆ, Տ.Ա.ԳՈՄԿՑՑԱՆ, Ա.Վ.ԿԱՐԱՊԵՏՑԱՆ և Ա.Փ.ԵՆԳՈՑԱՆ

4,6-Տեղակալված սիմ-տրիազինների չորրորդային ամոնիումային աղերի և N-ալ-կիլ(ֆենիլ)-3- օքսիպիրիդազոն-6-ի կալիումական աղերի փոխազդմամբ սինթեզվել են համապատասխան տրիազինիլօքսիպիրիդազոններ։ Ստացված տրիացինիլօքսիպիրի-դագոնների կալիումական աղերը ենթարկվել են այկիլ(արիլ)հայոգենիդներով հայոգենթացախաթթվի ածանցյայներով։ Արդյունքում ստացվել են տրիազինիլօքսիպի-րիդազոնների համապատասխան N-տեղակալված ածանցյալներ։ Հաստատվել է, տրիազինիլօքսիպիրիդազոնների տրիացինիլտրիմեթիլամոնիումի փոխազդեցությունից ստացվում քյորիդների են տրիացինիլօքսիպիրիդացոնների Օ-տեղակալված ածանցյայներ՝ phuտրիազինիլօքսիպիրիդազիններ։

SYNTHESIS AND SOME TRANSFORMATIONS OF OXYPYRIDAZONES DERIVATIVES

V. V. DOVLATYAN, T. A. GOMKTSYAN, A. V. KARAPETYAN and A. P. YENGOYAN

The interaction of trimethyl-4,6-substituted-simm-triazinylammonium chlorides with potassium salt of 3-oxypyridazone-6 and N-alkyl(aryl)-3-oxypyridazone-6 leads to corresponding triazinyl- oxypyridazones. By alkylation of sinthesized triazinyloxypyridazones with help of alkyl(aryl) halides in the presence of potassium hydroxide corresponding N-substituted derivatives of triazinyloxypyridazones were obtained. It has been shown that by interaction of triaziniyloxypyridazones with trimethyltriazinylammonium chlorides O-substituted derivatives of triazinyloxypyridazones are obtained.

ЛИТЕРАТУРА

- [1] Довлатян В.В., Хачатрян Н.Х. // Арм. хим. ж, 1971, т. 24, с. 51.
- [2] *Довлатян В.В., Гомкцян Т.А., Оганисян М.Г., Енгоян А.П., Хачатрян Л.А.* // Хим. ж. Армении, 2003, т. 56, №1-2, с. 96.
- [3] *Довлатян В.В., Гомкцян Т.А., Оганисян М.Г.* // Хим. ж. Армении, 2003, т. 56, №4, с. 68
- [4] Довлатян В.В., Гомкцян Т.А., Оганисян М.Г., Хачатрян Л.А., Енгоян А.П. // Хим. ж. Армении, 2003, т. 56, N^{o} 4, с. 75.
- [5] Эльдерфилд Р. Гетероциклические соединения. М., ИЛ, 1961, с.109.