ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հшјшиտшић ррифшиши ћшићи 58, №3, 2005 Химический журнал Армении

ОБЩАЯ И ФИЗИЧЕСКАЯ ХИМИЯ

УДК 541.124.7:518.5

КИНЕТИЧЕСКИЙ АНАЛИЗ ПРЕВРАЩЕНИЯ ОКСИДОВ СЕРЫ SO₂ И SO₃ В СРЕДЕ ЦЕПНОЙ РЕАКЦИИ ОКИСЛЕНИЯ МЕТАНА МЕТОДОМ МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

А. М. АВЕТИСЯН

Институт химической физики им. А. Б. Налбандяна НАН Республики Армения, Ереван

Поступило 17 I 2005

Методом математического моделирования проведен кинетический анализ возможных путей превращения оксидов серы SO_2 и SO_3 в среде цепной реакции окисления метана. Оценены константы скоростей элементарных реакций:

 $SO_2 + CH_3O_2 (HO_2) \rightarrow SO_3 + CH_3O (OH),$ $SO_3 + CH_3O_2 (HO_2) \rightarrow SO_2 + CH_3O (OH) + O_2,$

при которых кинетика накопления SO₃ соответствует экспериментально установленным в работе [6] кинетическим характеристикам.

Рис. 1, табл. 1, библ. ссылок 9.

Кинетические исследования реакции окисления углеводородов в присутствии добавок сернистого газа показали, что SO₂ ускоряет окислительный процесс, превращаясь в SO₃ [1,2]. Интерес к установлению влияния серусодержащих соединений на процессы медленного и высокотемпературного горения возрастает, т. к. они содержатся в топливах различного вида, используемых на практике. Следует отметить, что серусодержащие соединения в этих процессах, очевидно, в основном окисляются в SO₂, а затем могут иметь место различные реакции с участием этого газа. По этой причине важным представляется установление возможных путей превращения SO₂ в различных окислительных средах и процессах высокотемпературного горения [3]. Следует отметить, что сернистый газ, как правило, содержится в

отходящих из горелочных устройств газах как конечный продукт окисления серусодержащих соединений. В связи с этим, в частности, встает вопрос утилизации диоксида серы из этих газов, а также из газовых выбросов металлургических производств. Эта проблема является экологически важной.

Реакциям превращения SO_2 с участием свободных радикалов в газовой фазе в процессах окисления и высокотемпературного горения посвящен ряд работ [1-4]. В частности, в работах [1,2] установлено, что в среде цепной реакции окисления метана SO_2 окисляется в SO_3 . Предполагается, что превращение SO_2 в SO_3 происходит в результате реакций SO_2 с пероксидными радикалами CH_3O_2 и HO_2 , возникающими в этой цепной реакции окисления метана в значительных концентрациях:

$$SO_2 + CH_3O_2 \rightarrow SO_3 + CH_3O,$$
 (1)
 $SO_2 + HO_2 \rightarrow SO_3 + OH.$ (2)

В результате SO_2 окисляется в SO_3 , а перекисные радикалы переходят в более активные радикалы CH_3O и OH, что и приводит к ускорению окислительного процесса в целом. Однако образование SO_3 наблюдается на начальных стадиях процесса. При этом несмотря на существенное ускоряющее воздействие SO_2 на окисление метана на протяжении всего процесса сам SO_2 практически не расходуется. В связи с этим было сделано предположение, что образующийся в реакциях (1) и (2) SO_3 вступает также в реакции взаимодействия с теми же радикалами, вновь восстанавливаясь до SO_2 :

$$SO_3 + CH_3O_2 \rightarrow SO_2 + CH_3O + O_2,$$
 (3)
 $SO_3 + HO_2 \rightarrow SO_2 + OH + O_2.$ (4)

В результате ускоряющее воздействие на окислительный процесс будет возрастать, а SO₂ будет мало расходоваться.

Относительно реакции SO_2 с радикалами и, в частности с HO_2 , можно предположить, что она протекает в две стадии:

$$\begin{split} & \hat{\text{II}}_2 + \text{SO}_2 + \text{M} \rightarrow \text{HO}_2 \text{SO}_2 + \text{M}, \\ & \text{HO}_2 \text{SO}_2 + \text{M} \rightarrow \text{SO}_3 + \text{OH} + \text{M}. \end{split}$$

В работе [5] делается предположение, что с участием радикалов может протекать также превращение SO_3 по реакциям:

$$HO_2 + SO_3 \rightarrow HOSO_2 + O_2$$
,
 $HOSO_2 + M \rightarrow SO_2 + OH + M$.

Однако при этом отметим, что реакции (2) и (4) могут быть рассмотрены как суммарные реакции превращения SO₂ и SO₃ при взаимодействии с радикалами HO₂, с учетом протекания указанных стадий.

В работе [6] для установления кинетических характеристик образования и расхода SO₃ в среде цепной реакции окисления метана с добавками SO₂ процесс был изучен в струевых условиях, что позволяло осуществлять процесс на различных стадиях его протекания, накапливая SO₃ при различных временах контакта, и получить полную кинетическую картину. В результате оказалось, что SO₃ образуется и расходуется по ходу процесса, достигая максимальной концентрации при времени контакта τ_{κ} =20 c. Реакция изучалась при атмосферном давлении CH₄:O₂:SO₂:N₂=1:1:0,2:0,2, T=500°C. Максимальная концентрация SO₃ в этих условиях достигает C=4,8x10-9 *моль/см*³. Эти экспериментально полученные результаты подтверждают справедливость сделанных предположений о возможном протекании реакций (3) и (4) в совокупности реакций оксидов серы (реакции (1)-(4)).

Исходя из этого в данном сообщении проводился кинетический анализ модели окисления метана методом математического моделирования, дополненной реакциями (1)-(4). Модель окисления метана, взятая в основу расчетов, состоит из 43 основных элементарных актов, отражающих механизм окисления этого простейшего углеводорода. Ее адекватность экспериментальным данным по кинетическим характеристикам окисления метана была показана в работах [7,8].

Для констант скоростей элементарных реакций (1)-(4) достоверных данных нет. Считается, что реакции (1) и (2) должны иметь константу скорости $K_1=K_2\leq 10^{-18}~\text{см}^3\cdot\text{c}^1$. Относительно констант скоростей реакции (3) и (4) и предполагаемых значений нет.

В силу этих обстоятельств провели расчеты, в основу которых взяты приведенные выше значения констант скоростей (1) и (2), варьируя их в определенном интервале значений и проводя при этом поиск с целью установления, при каких значениях констант скоростей реакций (3) и (4) кривая накопления SO_3 пройдет через максимум соответствии кинетическая экспериментальными максимальной данными при $\tau_{\rm K}=20$ С И концентрации $[SO_3]=4,8x10^{-9}$ моль/см³.

Наряду с этим проводились сравнительные расчеты, в которых использовались значения констант скоростей для аналогичных реакций радикалов CH_3O_2 и HO_2 с оксидом азота NO [9]:

$$NO + CH3O2 \rightarrow NO2 + CH3O,$$

$$NO + HO2 \rightarrow NO2 + OH.$$
(5)

Расчеты показывают, что при значениях констант скоростей $K_5=K_6\leq 10^{-13}~cm^3\cdot c^1$, приведенных в [9], величина и время достижения максимальной концентрации SO_3 не соответствуют данным, полученным в эксперименте. Так, расчетная максимальная концентрация SO_3 на 2 порядка превышает экспериментальную, а полученное в расчетах время достижения максимальной концентрации составляет

 $0.5 \div 1.5~c$ против 20 c. Дальнейшие расчеты были продолжены, принимая для констант скоростей реакций (1)-(4) вышеприведенные значения ($K \ge 10^{-18}~cm^3 \cdot c^1$). В таблице представлены значения максимальных концентраций SO_3 и времени достижения максимальной концентрации при вариации констант скоростей реакций (1)-(4).

 $\begin{tabular}{ll} \begin{tabular}{ll} \be$

N	Константы скоростей реакций (1)-(4), [$\mathit{cm}^3 \cdot \mathit{c}^1$]	Максимальная концентрация SO ₃ x10 ⁻⁹ , [<i>моль</i> / <i>см</i> ³]	Время достижения максимальной концентрации SO ₃ , [<i>c</i>]
1	K ₁ =10 ⁻¹⁹ ; K ₂ =10 ⁻¹⁶ ; K ₃ =10 ⁻¹⁴ ; K ₄ =10 ⁻¹⁸	8,6	28
2	$K_1=10^{-19}; K_2=10^{-16}; K_3=10^{-14}; K_4=10^{-19}$	8,6	28
3	K ₁ =10 ⁻¹⁹ ; K ₂ =10 ⁻¹⁶ ; K ₃ =10 ⁻¹⁵ ; K ₄ =10 ⁻¹⁸	77	32
4	K ₁ =10 ⁻¹⁸ ; K ₂ =10 ⁻¹⁶ ; K ₃ =10 ⁻¹⁴ ; K ₄ =10 ⁻¹⁸	8,7	26
5	K ₁ =10 ⁻¹⁸ ; K ₂ =10 ⁻¹⁶ ; K ₃ =10 ⁻¹⁴ ; K ₄ =10 ⁻¹⁷	8,7	26
6	K ₁ =10 ⁻¹⁸ ; K ₂ =10 ⁻¹⁶ ; K ₃ =10 ⁻¹⁴ ; K ₄ =10 ⁻¹⁶	8,4	26
7	K ₁ =10 ⁻¹⁷ ; K ₂ =10 ⁻¹⁶ ; K ₃ =10 ⁻¹⁴ ; K ₄ =10 ⁻¹⁷	9,9	24
8	K ₁ =10 ⁻¹⁷ ; K ₂ =10 ⁻¹⁶ ; K ₃ =10 ⁻¹⁴ ; K ₄ =10 ⁻¹⁶	9,6	24
9	K ₁ =10 ⁻¹⁷ ; K ₂ =10 ⁻¹⁶ ; K ₃ =10 ⁻¹⁴ ; K ₄ =10 ⁻¹⁵	7,4	24

Как видно из таблицы при значениях констант скоростей $K_1=10^{-17}$, $K_2=10^{-16}$, $K_3=10^{-14}$, $K_4=10^{-15}$ $cm^3 \cdot c^1$ как абсолютное значение максимальной концентрации SO_3 (7,4x10⁻⁹ $monb/cm^3$), так и время ее достижения (24 c) адекватны полученным экспериментальным данным (строка 9 таблицы) [6]. Во всех случаях кривая накопления SO_3 проходит через максимум, если разница между константами скоростей реакций образования и расхода SO_3 (реакции (1)-(4)) составляет 2 порядка. При отличии констант скоростей реакций образования SO_3 и его расхода на один порядок наблюдается наиболее сильное расхождение с экспериментальными данными (строка 3 таблицы). На рисунке для сравнения приводится расчетная кинетическая кривая накопления SO_3 , полученная при определенных значениях констант скоростей элементарных реакций (1)-(4) (строка 9 таблицы), при которых наблюдается наилучшее согласие с экспериментально установленной зависимостью в работе [6].

В отдельных расчетах проводился анализ с учетом другой реакции SO_3 , предполагаемой наряду с реакциями (1)-(4):

$$SO_3 + SO_3 \rightarrow 2 SO_2 + O_2, \tag{7}$$

которая по сути является обратной реакцией окисления SO2 молекулярным кислородом.

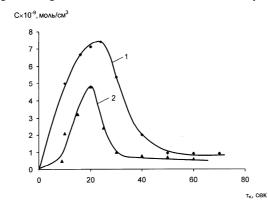


Рис. Кинетика накопления SO₃: 1 – полученная расчетным путем для значений констант скоростей реакций (1)-(4), $c \textit{M}^3 \cdot \textit{C}$: $K_1 = 10^{-17}$, $K_2 = 10^{-16}$, $K_3 = 10^{-14}$, $K_4 = 10^{-15}$ (строка 9 таблицы); 2 – экспериментально установленная зависимость по данным [6].

Как показывают расчетные данные, при $K_7 \approx 10^{-15}~\text{см}^3 \cdot \text{c}^1$ и без учета реакций (3) и (4) кинетическая кривая накопления SO_3 также может проходить через максимум при тех же значениях максимальной концентрации SO_3 и времени ее достижения, что и в эксперименте. С учетом всех предполагаемых реакций SO_3 (реакции (3), (4), (7)) кинетическая кривая его накопления, как и следовало ожидать, также проходит через максимум, однако максимально достигаемая концентрация оказывается в 1,5 раза ниже экспериментально наблюдаемой.

Таким образом, экспериментально наблюдаемое прохождение кинетической кривой накопления SO_3 через максимум может быть результатом рассмотренных выше элементарных реакций при использованных в расчетах значениях констант скоростей. При этом константы скоростей образования SO_3 (реакции (1) и (2)) и расхода его (реакции (3) и (4)) должны отличаться на 2 порядка.

ՄԵԹԱՆԻ ՕՔՍԻԴԱՑՄԱՆ ՇՂԹԱՑԱԿԱՆ ՌԵԱԿՑԻԱՑԻ ՄԻՋԱՎԱՑՐՈՒՄ ԾԾՄԲԻ ՕՔՍԻԴՆԵՐԻ՝ ՏՕՀ ԵՎ ՏՕՀ, ՓՈԽԱՐԿՄԱՆ ԿԻՆԵՏԻԿԱԿԱՆ ՎԵՐԼՈՒԾՈՒԹՅՈՒՆ ՄԱԹԵՄԱՏԻԿԱԿԱՆ ՄՈԴԵԼԱՎՈՐՄԱՆ ԵՂԱՆԱԿՈՎ

Ա. Մ. ԱՎԵՏԻՍՑԱՆ

Մաթեմատիկական մոդելավորման եղանակով իրականացվել է մեթանի օքսիդացման շղթայական ռեակցիայի միջավայրում ծծմբի օքսիդների՝ SO₂ և SO₃, փոխարկման հնարավոր ուղիների կինետիկական վերյուծություն։ Գնահատվել են հետևյալ տարրական ռեակցիաների՝

$$SO_2 + CH_3O_2 (HO_2) \rightarrow SO_3 + CH_3O (OH),$$

 $SO_3 + CH_3O_2 (HO_2) \rightarrow SO_2 + CH_3O (OH) + O_2,$

արագության հաստատունները, որոնց դեպքում SO₃-ի կուտակման կինետիկան համապատասխանում է նախկինում փորձնականորեն դիտարկված կինետիկական օրինաչափություններին։

KINETIC ANALYSIS OF SULPHUR OXIDES- SO_2 AND SO_3 TRANSFORMATION IN THE MEDIUM OF METHANE OXIDATION CHAIN REACTION BY THE MATHEMATICAL SIMULATION METHOD

A. M. AVETISYAN

By the method of mathematical simulation was carried out the kinetic analysis of possible transformations of sulphur oxides (SO_2 and SO_3) in the medium of methane oxidation chain reaction. It were estimated the rate constants of elementary reactions:

$$SO_2 + CH_3O_2 (HO_2) \rightarrow SO_3 + CH_3O (OH),$$

 $SO_3 + CH_3O_2 (HO_2) \rightarrow SO_2 + CH_3O (OH) + O_2,$

which the SO₃ accumulation kinetics corresponds to the previously observed experimental kinetic characteristics at.

ЛИТЕРАТУРА

- [1] Манташян А.А., Макарян Э.М., Аветисян А.М., Элоян А.Э. // Хим. ж. Армении, 2002, т. 55, №4, с. 130.
- [2] Манташян А.А., Аветисян А.М., Макарян Э.М. // Хим. ж. Армении, 2003, т.56, №3, с. 5.
- [3] Kallend S. // Combustion and Flame, 1972, v.19, p.227.
- [4] Alzueta M. U., Bilbao R. // Combustion and Flame, 2001, v.127, No. 4, p.2234.
- [5] Lyon R.K., Cole J.A., Kramlich J.C., Shi L. Chen // Combustion and Flame, 1990, v.81, p.30.
- [6] Аветисян А.М., Манташян А.А. // Хим. ж. Армении, 2005, т. 58, №1-2, с. 26.
- [7] Манташян А.А., Саркисян Л.А. // Химическая физика, 2000, т.19, №2, с.115.
- [8] Mantashyan A.A., Sarkisyan L.A. // Chem. Phys. Reports, 2000, v.19(2), p.419.
- [9] Dagaut Ph., Nicolle A. // Combustion and Flame, 2005, v.140, pp.161.