ՀԱՑԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հայшиտшնի рիմիшկшն հшնդեи 57, №4, 2004 Химический журнал Армении

АНАЛИТИЧЕСКАЯ ХИМИЯ

543.4+547.94+547.972

ЭКСТРАКЦИОННО-ФОТОМЕТРИЧЕСКОЕ ОПРЕДЕЛЕНИЕ АНАЛЬГИНА САФРАНИНОМ Т

Ж. М. АРСТАМЯН

Ереванский государственный университет

Поступило 3 IX 2003

Исследовано взаимодействие анальгина с основным красителем диазинового ряда - сафранином Т. Установлены оптимальные условия образования и экстракции ионного ассоциата: кислотность водной фазы, концентрация красителя, подчиняемость основному закону фотометрии, состав ионного ассоциата и т.д. Разработанная методика применена для определения анальгина в амидопирине, пенталгине, спазмалгоне и баралгине.

Табл. 1, библ. ссылок 6.

Анальгин(1-фенил,2,3-диметил-4-метиламинопиразолон-5-N-метансульфонат натрия) является производным пирозолона. Он обладает противовоспалительным и жаропонижающим свойствами, легко всасывается. Однако при длительном применении анальгина возможно угнетение процессов кроветворения. Описаны также случаи аллергических реакций после приема анальгина. В последние годы в медицине часто обращают внимание на всевозможные побочные эффекты, связанные с применением различных лекарственных препаратов. С этой целью требуется разработка чувствительных методов определения малых количеств этих препаратов.

Описанные в литературе методы определения анальгина ограниченны [1-3]. Так, для определения анальгина применяется иодометрический метод титрования. Однако метод малочувствителен и имеет лишь небольшое практическое применение [3]. Методы определения микрограммовых количеств анальгина практически отсутствуют[4].

В настоящей работе исследованы возможности применения основного красителя диазинового ряда – сафранина Т (СТ) в качестве реагента для экстракционнофотометрического определения анальгина. Высокая чувствительность и избирательность, простота применяемых приборов, быстрота проведения операций и другие достоинства метода делают его особенно ценным для применения лекарственных веществ.

Экспериментальная часть

Раствор анальгина готовили из лекарственного препарата серии 310493 (содержащего 95,8% анальгина) согласно прописи [5]. Рабочие растворы получали разбавлением запасного раствора водой.

Раствор реагента красителя СТ готовили растворением навески препарата марки "для микроскопии" в воде и отфильтровали. Оптическую плотность (ОП) экстрактов измеряли на спектрофотометре "СФ-16", а pH растворов — на потенциометре "ЛПУ-01" со стеклянным электродом.

Предварительно было установлено, что анальгин с катионом красителя CT образует ионный ассоциат розового цвета.

Для установления оптимальных условий образования и извлечения ионного ассоциата экстракцию проводили в зависимости от основных факторов. В качестве растворителя применяли ароматические углеводороды, хлорпроизводные предельных углеводородов, сложные эфиры, а также их бинарные смеси. Максимальное значение ОП ионного ассоциата и минимальное значение ОП "холостого опыта" получается при применении дихлорэтана. Максимум светопоглощения экстрактов ионного ассоциата наблюдается при длинах волн λ =523-530 *нм*. Далее измерения проводили при λ =526 *нм*.

Анальгин практически полностью извлекается из 1-2 М HCl растворов в присутствии $7,15 \times 10^{-4} - 9,85 \times 10^{-4}$ М красителя, однократной экстракцией. Так как ОП холостого опыта равняется нулю, далее измерения ОП экстрактов ионного ассоциата проводили по отношению растворителя. Методом повторной экстракции определен фактор извлечения R=0,98. Экстракционное равновесие создается за 0,5 мин, ОП ионного ассоциата сохраняется в течение 24 ч. Подчиняемость основному закону фотометрии наблюдается при концентрациях анальгина 2,0-21 мкг/мл $(4,98\cdot 10^{-6}-5,98\cdot 10^{-5}$ $\dot{1}$). Методами Асмуса и сдвига равновесия установлено, что мольное отношение анальгина к катиону красителя в ионном ассоциате равно 1:1.

На основании полученных данных разработанная методика применена для определения анальгина в некоторых лекарственных препаратах.

Определение анальгина в амидопирине, спазмалгоне, пенталгине, баралгине

В мерную колбу емкостью $100~m\pi$ помещают точную навеску (0,1~r) порошка растертых таблеток перечисленных выше лекарственных препаратов, растворяют в небольшом количестве воды, энергично встряхивают в течение 10~muh, объем мерной колбы доводят водой до метки и фильтруют через сухой фильтр в другую колбу (раствор A). $1~m\pi$ раствора A переносят в мерную колбу на $25~m\pi$, объем доводят водой до метки (раствор Б).

В делительной воронке к аликвотной части растовра Б (0,5 *мл*) приливают 2.0 *мл* 1,0 М HCl, 0,5 *мл* 0,05% раствора CT, 3 мл дихлорэтана. После минутного встряхивания разделяют и измеряют ОП экстракта на спектрофотометре "СФ-16" при длине волны λ =526 *нм*, b=0,3 *см*.

Так как лекарственные препараты по ГОСТ содержат также другие органические вещества, влияние которых не установлено, правильность результатов анализа проверена методом добавок. Результаты приведены в таблице.

Таблица $\label{eq: Спределение анальгина в лекарственных препаратах }$ $(P=0.95; \ n=5; \ t_{\alpha}=2.78)$

Лекарственный	А (ОП)		$\overline{\Delta}$ A	Sr·10 ⁻²	$\overline{\Delta}A \pm t_{\alpha} \cdot \frac{S}{\sqrt{n}} t_{\alpha}$	Найдено	
препарат, серия						анальгина, <i>г</i> в	
						1 табл.	
	введено	найдено				по	Эф.
						ГОСТ	
Амидопирин	_	0,095			0.005.0000	0,2468	0,2461
220989	0,32	0,42	0,325	2,15	0,325±0,009		
Спазмалгон	_	0,18			0.00.000	0,4734	0,4725
650263	0,32	0,51	0,33	2,03	0,33±0,008		
Пенталгин	_	0,09			0.00 0.014	0,2967	0,2363
100343/01	0,32	0,38	0,29	3,70	0,29±0,014		
Медебаралгин	_	_			0.005.0000	_	_
1238-OSP	0,32	0,325	0,325	1,95	0,325±0,008	_	_

Из таблицы следует, что присутствие в рассматриваемых лекарственных препаратах органических веществ практически не влияет на определение анальгина, за исключением пенталгина, в котором получаются заниженные результаты.

Постоянное значение ОП экстрактов ионных ассоциатов чистого анальгина и в присутствии баралгина доказывает отсутствие анальгина в медебаралгине. Заменяющий анальгетик ацетаминофен не взаимодействует с СТ.

Содержание анальгина в лекарственных препаратах находят по калибровочному графику, построенному по фармакопейному анальгину.

Содержание анальгина в одной таблетке определяют по формуле $x = \frac{a \cdot V \cdot g}{V_1 g_1}$,

где a – количество анальгина, найденного по калибровочному графику; V – общий объем лекарственного препарата, $m\pi$ (с учетом разбавления); V_1 – аликвотная часть раствора; $m\pi$, g – навеска порошка 1 таблетки, r, g_1 – навеска порошка, взятая для анализа, r.

Разработанный нами метод чувствителен, прост и доступен для применения в лабораториях.

ԱՆԱԼԳԻՆԻ ԷՔՍՏՐԱԿՑԻՈՆ-ՖՈՏՈՄԵՏՐԻԿ ՈՐՈՇՈՒՄԸ ՍԱՖՐԱՆԻՆ Տ-ՈՎ Ժ. Մ. ԱՌՍՏԱՄՅԱՆ

Հետազոտված է անալգինի փոխազդեցությունը դիազինային շարքի հիմնային ներկանյութ սաֆրանին Տ-ով։ Հաստատված են իոնական ասոցիատի առաջացման և լուծահանման օպտիմալ պայմանները՝ միջավայրի թթվությունը, ներկանյութի կոնցենտրացիան, լուսակլանման հիմնական օրենքին ենթարկվելու սահմանները, իոնական ասոցիատի բաղադրությունը և այլն։ Մշակված մեթոդիկան կիրառվել է անալգինը ամիդոպիրինում, սպազմալգոնում, պենտալգինում և բառալգինում որոշելու համար։

EXTRACTION-PHOTOMETRIC DETERMINATION OF ANALGINUM BY SAPRANIN T

Zh. M. ARSTAMYAN

In interaction of analginum anion with dye of diasine raw sapranin T has been studied. Formed ionic associate could be extracted once through by dichloretane. Under optimal acidity conditions (1-2 M HCl) analginum is extracted practically quantitatively (R=0.98) during 0.5 *min* shaking. Maximal extinction for dye aqueous solutions and for extracts of compound at the some value of wavelength λ =523-530 *nm*. The range of determined concentration of analginum is 2.0–21 mcg/ml (4.98·10⁻⁶ – 5.98·10⁻⁵ M). The method was used for the determination of small amounts of analginum in amidopyrinum, spasmalgonuim, pentalgin and medebaralgin.

ЛИТЕРАТУРА

- [1] Машковский М.Д. Лекарственные средства. Харьков, Торсинг, 1997, ч. І, с. 144, 159.
- [2] Харкевач Д.П. // Фармакология, 1993, №4, с. 168.
- [3] *Белова А.В.* Руководство к практическим занятиям по токсикологической химии, М., Медицина, 1976, с. 115.
- [4] *Кольтгоф И.М., Белчер Р., Стенгер В.А., Матсуяма Дж.* Объемный анализ, М., 1961, т. 3, с. 489.
- [5] Сираканян М.А., Хуршудян К.Л. // Хим. ж. Армении, 2002, т. 55, №3, с. 79.
- [6] Государственная фармакопея СССР, М., Медицина, 1968, с. 94.