ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հայաստանի քիմիական հանդես 57, №3, 2004 Химический журнал Армении

УДК 547.841.07+615.31

СИНТЕЗ НЕКОТОРЫХ ГИДРАЗИДОГИДРАЗОНОВ И N, N'-ДИАЦИЛГИДРАЗИНОВ 1,4-БЕНЗОДИОКСАНОВОГО РЯДА

А. С. АВАКЯН, С. О. ВАРТАНЯН и Э. А. МАРКАРЯН

Институт тонкой органической химии им. А.Л. Мнджояна НАН Республики Армения, Ереван

Поступило 15 XII 2003

Взаимодействием 2-ацетил-1,4-бензодиоксана с гидразидами различных кислот, а также гидразида 1,4-бензодиоксан-2-карбоновой кислоты с замещенными бензальдегидами синтезированы соответствующие гидразидогидразоны. N, N'-Диацилгидразины получены взаимодействием указанного гидразида с хлорангидридами некоторых карбоновых кислот.

Табл. 2, библ. ссылок 5.

Среди производных гидразидов и гидразинов известны соединения, обладающие высокой биологической активностью в отношении сердечно-сосудистой и нервной систем [1-3]. Этот факт и предопределил наш выбор. Нами исследованы пути синтеза разнообразных гидразидогидразонов — производных 1,4-бензодиоксана, которые в дальнейшем могут быть использованы для создания новых биологически активных тригетероциклов. Первая группа соединений I получена в результате конденсации 2-ацетил-1,4-бензодиоксана с гидразидами различных кислот в абс. бензоле в аппарате Дина-Старка.

$$\begin{array}{c} C-CH_{3} \\ O \\ +H_{2}NNHCR \\ O \\ \end{array} \\ \begin{array}{c} Ia \neq A \\ A \\ \end{array} \\ \begin{array}{c} C=NNHCR \\ CH_{3} \\ \end{array} \\ \begin{array}{c} C=NNHCNH_{2} \\ A \\ \end{array} \\ \begin{array}{c} C=NNHCNH_{2} \\ CH_{3} \\ \end{array} \\ \begin{array}{c} C=NNHCNH_{2} \\ A \\ \end{array} \\ \begin{array}{c} C=NNHCNH_{2} \\ CH_{3} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{3} \\ CH_{3} \\ \end{array} \\ \begin{array}{c} CH_{3} \\ CH_{4} \\ CH_{5} \\ CH_{5}$$

Взаимодействием 2-ацетил-1,4-бензодиоксана с семикарбазидом и тиосемикарбазидом в спирте получены соответствующий семикарбазон IIa и тиосемикарбазон IIб.

Следующая группа соединений синтезирована на основе гидразида -1,4-бензодиоксан-2-карбоновой кислоты (III). В качестве карбонильной компоненты использованы замещенные бензальдегиды. В результате получены гидразидогидразоны строения IV.

a. X=H, Y=n-Cl; 6. X=H, Y=n-N(CH₃)₂; B. X=H, Y=o-NO₂; r. X=H, Y=n-NO₂; д. X=Y=3,4-OCH₃.

N,N'-Диацилгидразины V синтезированы взаимодействием гидразида III с хлорангидридами бензойной, 3,4-диметоксибензойной и 1,4-бензодиоксан-2-карбоновой кислот. Реакцию проводили в диоксане, исключая щелочную обработку, т. к. целевые продукты растворимы в щелочах. Соединения VI получены взаимодействием гидразида III с бензол- и толуолсульфохлоридами в толуоле в присутствии едкого кали.

N, N'- Диацилгидразин, содержащий 1,4-бензодиоксановый радикал с обеих сторон Vв, был также получен взаимодействием хлорангидрида 1,4-бензодиоксан-2-карбоновой кислоты с гидратом гидразина. Полученные соединения в дальнейшем могут стать основой для синтеза новых тригетероциклов. Строение и чистота полученных соединений подтверждены ИК, ЯМР спектроскопией и тонкослойной хроматографией.

Экспериментальная часть

ИК спектры сняты на спектрометре "UR-20", спектры ЯМР 1 H – на приборе "Varian Меркурий 300" с частотой 300 $M\Gamma \mu$ в ДМСО-d6. ТСХ проведена на пластинках марки "Silufol-

UV-254", проявитель – пары йода. Температуры плавления определены на микронагревательном столике Боэциус.

2-Ацетил-1,4-бензодиоксан получен по [4] с 60% выходом.

Гидразидогидразоны І. Смесь 2,1 r (0,012 моля) 2-ацетил-1,4-бензодиоксана в 30 мл абс. бензола и 0,01 моля гидразида соответствующей кислоты кипятят в аппарате Дина-Старка до полного прекращения выделения воды (8-10 ч). Отгоняют бензол, остаток кристаллизуют из абс. эфира и перекристаллизовывают из смеси эфир-бензол (3:1) (табл. 1) ИК спектр Ів, v, cM 1 : 3310 (NH), 1680 (C=N), 1640 (—C—N), 1600, 1500 (С-H-аром). Спектр ЯМР 1 Н Іб, (, м.д.: 2,1 с.

(3H, CH₃), 4,2-4,6 м. (3H, O-CH-CH₂-O), 6,8 с.(4H, аром), 7,55 д. (2H, пиридин), 8,6 д. (2H-пиридин).

Семикарбазон-1,4-бензодиоксан-2-ил-метилкетона IIа. К 1,8 r (0,01 моля) 2-ацетил-1,4-бензодиоксана в 50 мл спирта прибавляют 1-2 капли концентрированной серной кислоты, медленно добавляют 0,75 r (0,01 моля) семикарбазида и оставляют на ночь. Выпавшие кристаллы фильтруют и перекристаллизовывают из абс. спирта. Получено 1,7 r (72,3%) целевого продукта с т.пл. 270-271°. Найдено, %: С 56,37; Н 5,80; N 17,54. СпН 13 N3O3 Вычислено, %: С 56,17, H 5,53, N 17,87.

Тиосемикарбазон 1,4-бензодиоксан-2-илметилкетона II6 синтезирован аналогично из 1,8 r (0,01 моля) 2-ацетил-1,4-бензодиоксана и 0,9 r (0,01 моля) тиосемикарбазида. Получено 1,9 r (76,0%) II6, т. пл. 181-183°. Найдено, %: С 52,37; Н 4,92; N 16,44; S 12,41; СпНізNзO2S. Вычислено, % С 52,59; Н 5,18; N 16,73; S 12,75. Спектр ЯМР 1 Н, δ , δ м.д.: 2,06 c (3H, CH3), 4,45, 4,2 д. (2H, O-CH2-), 4,7 т. (1H, O-CH), 6,8 c (4H, apom), 8,05, 7,42 c (2H, NH2), 10,15 c (1H, NH).

Гидразидогидразоны IV. Смесь 1,94 r (0,01 моля) гидразида 1,4- бензодиоксан-2-карбоновой кислоты [5] и 0,01 моля соответствующего замещенного бензальдегида в 70 мл абс. бензола кипятят в аппарате Дина-Старка до полного прекращения выделения воды (8-10 q). По охлаждении выпадают кристаллы, которые фильтруют и перекристаллизовывают из бензола (табл.1). ИК спектр III a, v, $\textit{cm}^{\, 1}$: 3300 (NH), 1680 (N=CH), 1640 (-C-N), 1600, 1500 (С-

Н аром). Спектр ЯМР 1 Н III в, (, м.д.: 4,4 м.(2H, O-CH₂), 5,48 д. (1H, O-CH), 6,8 с. (4H аром), 7,3 с (1H, -CH=), 7,9-8,2 м. (4H, -C₆H₄-NO₂), 11,9 д. (1H, NH).

N, N'- Диацилгидразины V. Смесь 1,94 r (0,01 моля) гидразида 1,4-бензодиоксан-2-карбоновой кислоты, 0,01 моля хлорангидрида соответствующей кислоты и 1 мл пиридина в 30 мл диоксана нагревают 8 ч при 40-50°. Раствор диоксана выливают в 100 мл воды. Выпавшие кристаллы фильтруют, промывают водой и перекристаллизовывают из спирта. (табл. 2). Спектр ЯМР 1 H Va, δ , м.д.: 4,3 м. (2H, O-CH₂-), 4,9 т. (1H, O-CH-), 6,8 д. (4H, аром.), 7,9 д., 7,45 м. (5H, C₆H₅), 10,12с., 10,2с. (2H-CNH-NHC-).

 60° . Добавляют 50 *мл* 1N раствор едкого натра, отделяют водный слой и подкисляют разбавленной (1:1) соляной кислотой до кислой реакции. Выпавшие кристаллы фильтруют и перекристаллизовывают из спирта (табл. 2). [M] $^{1-3}$ 34.

N-Толуолсульфонилгидразид 1,4-бензодиоксан-2-карбоновой кислоты VI6 получен аналогично из III и *п*-толуолсульфохлорида (табл. 2). Спектр ЯМР 1 H VI б., (, м.д.: 2,4c. (3H, CH₃), 4,1м (O-CH₂-), 4,6 т. (1H, OCH-), 6,8c (4H, аром.), 7,3д., 7,65д. (4H, S-C₆H₄), 9,6c. (1H, NH-C-), 10,4c (1H, NH), [M] $^+$ = 348.

Таблица 1

Гидразидогидразоны I

Соедин	Вы-	Т.пл., °С	Найдено, %			Брутто- формула	Вычислено, %			
	%		С	Н	N	формула	С	Н	N	
I a	58,4	156-157	59,89	4,91	15,87	$C_{13}H_{13}N_3O_3$	60,23	5,02	16,21	
Ιб	54,2	114-116	64,45	5,22	14,57	$C_{16}H_{15}N_3O_3$	64,65	5,05	14,14	
Iв	72,5	178-179	64,61	4,82	7,63	$C_{19}H_{18}N_2O_5$	64,40	5,08	7,91	
IΓ	49,1	153-154	64,23	5,02	11,62	$C_{19}H_{19}N_3O_4$	64,59	5,38	11,89	
Ιд	50,7	127-128	60,41	4,95	16,78	$C_7H_{16}N_4O_4$	60,00	4,71	16,47	
III a	57,9	180-181	60,80	4,20	8,71	$C_{16}H_{13}N_2O_3Cl$	60,60	4,10	8,84	
Шб	61,5	167-168	67,28	5,80	13,24	$C_{18}H_{19}N_3O_3$	67,08	5,50	13,04	
III B	70,5	158-159	58,57	3,57	12,57	$C_{16}H_{13}N_3O_5$	58,71	3,97	12,87	
Шг	72,8	140-141	58,51	3,81	12,64	$C_{16}H_{13}N_3O_5$	58,71	3,97	12,87	
III д	52,5	152-153	60,25	5,31	7,64	$C_{18}H_{18}N_2O_6$	60,33	5,02	7,81	

Таблица 2

N,N'-Диацилгидразины IV и V

Соеди-	Выход,		Найдено, %			Брутто-	Вычислено, %			${\mathsf R_{\mathsf f}}^*$
нение	%	°C				формула				
			C	Н	N		C	Н	N	
IV a	72,5	170-171	64,50	4,79	9,7	$C_{16}H_{14}N_2O_4$	64,40	4,70	9,39	0,51
IV б	67,8	190-191	60,01	5,32	0	$C_{18}H_{18}N_2O_6$	60,33	5,02	7,81	0,55
IVв	70,5	167-168	60,45	4,61	7,6	$C_{18}H_{16}N_2O_6$	60,67	4,49	7,85	0,60
VI a	60,0	225-226	53,45	3,78	2	$C_{15}H_{14}N_2SO_5$	53,89	4,19	8,38	0,41
VIб	63,5	210-211	55,62	5,00	7,8	$C_{16}H_{16}N_2 SO_5$	55,17	4,59	8,05	0,36
					0					
					8,0					
					4					
					7,8					
					1					

 $^{^{\}star}$ подвижная фаза — бензол-ацетон, 4:1

1,4- ԲԵՆԶՈԴԻՕՔՍԱՆԻ ՇԱՐՔԻ ՈՐՈՇ ՀԻԴՐԱԶԻԴԱՀԻԴՐԱԶՈՆՆԵՐԻ ԵՎ N, N'- ԴԻԱՑԻԼՀԻԴՐԱԶԻՆՆԵՐԻ ՍԻՆԹԵԶ

Ա. Ս. ԱՎԱԳՅԱՆ, Ս. Օ. ՎԱՐԴԱՆՅԱՆ և Է. Ա. ՄԱՐԳԱՐՅԱՆ

2-Ացետիլ-1,4-բենզոդիօքսանի և տարբեր թթուների հիդրազիդների փոխազդեցությամբ, նաև 1,4-բենզոդիօքսան-2-կարբոնաթթվի հիդրազիդի տեղակալված փոխազդեցությամբ սինթեզված են համապատասխան բենզալդեհիդների հիդրագիդահիդրագոններ։ Նշված հիդրազիդի lı թթուների քլորանհիդրիդների փոխագրեցությամբ ստաված են N, N'-դիացիլիիդրացիններ։

SYNTHESIS OF SOME HYDRAZIDOHYDRAZONES AND N, N'-DIACYLHYDRAZINES OF-1,4-BENZODIOXAN SERIES

A. S. AVAKYAN, S. O. VARTANYAN and E. A. MARKARYAN

By the interaction of 2-acetyl -1,4-benzodioxan with various acid hydrazides as well as that of 1,4-benzodioxan-2-carboxylic hydrazide with substituted benzaldehydes the corresponding hydrazidohydrazones have been synthesized. N, N'- Diacylhydrazines have been obtained by the interaction of mentioned hydrazide with some carboxylic chloranhydrides.

ЛИТЕРАТУРА

- [1] Кост А.Н., Сагитуллин Р.С., Юй-шань Сунь // ЖОХ, 1960, т. 30, вып. 10, с. 3280.
- [2] Biel J.H et al // J. Amer.chem. Soc., 1958, v. 80, p. 1519.
- [3] Лапин И.П. Самсонова М.Л. //Фармакология и токсикология, 1969, №5, с. 526.
- [4] Kline S. Бельг.пат. 634853, 1964 [С.А. <u>63</u> 9958 (1951)].
- [5] Koo J., Avakian S., Martin G.J. // J. Amer. Chem. Soc., 1955, v. 77 p. 5373.