2U3UUSUUF 2UUCUMESOF@3UU GFSOF@3OFUUECF U2GU3FU U4UGEUFU НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հայшиտանի рիմիական հանդես 57, №3, 2004 Химический журнал Армении

УДК 546.655

ФИЗИКО-ХИМИЧЕСКОЕ ИССЛЕДОВАНИЕ КРИСТАЛЛОГИДРАТА МОЛИБДАТА ЦЕРИЯ

Л. Г. НЕРСИСЯН

Ереванский государственный университет

Поступило 10 XII 2003

На основании электронно-микроскопического, ИК спектроскопического, термогравиметрического и рентгенографического исследований установлено образование и строение синтезированного кристаллогидрата молибдата церия.

Рис. 5, табл. 1, библ. ссылок 10.

Ранее нами было дано объяснение методов и условий синтеза простых молибдатов РЗЭ ($Ln_2(MoO_4)_3(xH_2O)$ из водных растворов солей исходных компонентов и были исследованы их физико-химические свойства [1-5].

В данной работе проведено физико-химическое исследование полученного нами молибдата церия состава $Ce_2O_3 \cdot 3MoO_3 \cdot xH_2O$ ($Ce_2(MoO_4)_3 \cdot xH_2O$).

Экспериментальная часть и обсуждение результатов

С целью установления строения полученного соединения был проведен электронно-микроскопический анализ кристаллогидрата молибдата церия $Ce_2O_3\cdot 3MoO_3\cdot xH_2O$. Во избежание нарушения морфологии синтезированного соединения была использована методика препарирования. До нанесения суспензии на подложки образцы подвергались ультразвуковой диспергензии. Исследование было проведено в трансмиссионном режиме с помощью микроскопа "Tesla BS-500".

На основании данных электронной микроскопии установлено, что синтезированный кристаллогидрат молибдата церия – кристаллическое соединение (рис. 1a,b)

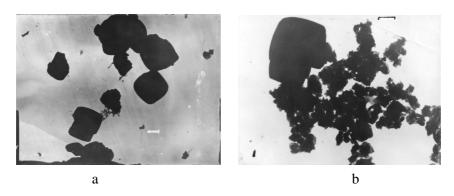


Рис. 1. Электронная микроскопия Се2О3(3МоО3(хН2О

На электронных микрофотографиях синтезированные зерна кристаллогидрата молибдата церия представлены довольно крупными (от 1 до 3 мкм) зернами пирамидального габитуса. На другом участке зерна такого же габитуса представлены как зеркала, размеры которых доходят до 0,1-0,2 mkm.

ИК спектры кристаллогидрата молибдата церия состава $Ce_2O_3\cdot 3MoO_3\cdot xH_2O$ (рис. 2) содержат ряд полос поглощения в области 3580-680 cm^1 .

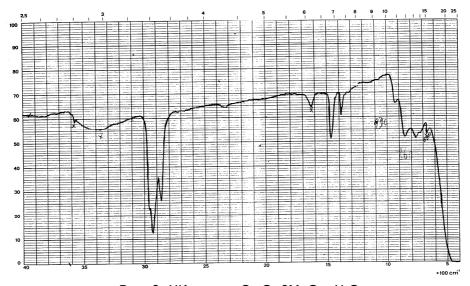


Рис. 2. ИК спектр $Ce_2O_3 \cdot 3MoO_3 \cdot xH_2O$.

Широкая полоса поглощения в интервале 3500-3050 cm^1 при максимуме 3350 cm^1 отвечает внутренним валентным колебаниям НОН; 1695 cm^1 — деформационное колебание молекул воды H₂O [5]; 2940, 2870, 1485, 1390 cm^1 — вазелиновое масло. 936-860 cm^1 — высокочастотное валентное колебание тетраэдра [MoO₄]²⁻; 936 cm^1 — искаженного и 860 cm^1 — неискаженного тетраэдра [MoO₄]²⁻ [6,7].

Полосы поглощения с максимумами 770, 720, 680 cm^1 согласуются с выводами авторов [8]; они приписываются колебаниям биядерных анионов $[{\rm Mo_2O_8}]^{4-}$ в соединениях ${\rm Ln_2(MoO_4)_3}$.

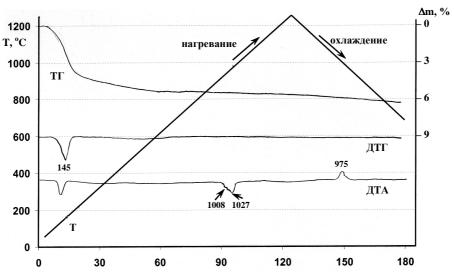


Рис. 3. Дериватограмма Се2О3(3МоО3(хН2О.

На рис. З приводятся данные термического анализа соединения $Ce_2O_3\cdot 3MoO_3\cdot xH_2O$ при нагревании в интервале температур 25-1380°C со скоростью нагрева 10-15°C/мин (внутренний стандарт Al_2O_3 , навеска $(0,15-0,30\ r)$.

По данным термического анализа (ТГА-ДТА), процесс потери H_2O протекает в одну стадию, с достаточной продолжительностью во времени и температуры. $Ce_2O_3\cdot 3MoO_3\cdot xH_2O$ теряет воду ((m(3,7 масс.%)) в интервале температур $80\text{-}220^\circ\text{C}$ (сопровождается одним эндо-эффектом на кривой ДТГ с максимумом при $T=145^\circ\text{C}$), что соответствует расчетной формуле кристаллогидрата $Ce_2(MoO_4)_3\cdot 1,7H_2O$. По данным ДТА, проведенного при повышенных температурах (900-1300°C), соединение $Ce_2O_3\cdot 3MoO_3(xH_2O)$ плавится. Установлено, что температура плавления кристаллогидрата молибдата церия равна $T_{max}=1017,5\cdot 10^\circ\text{C}$. В режиме охлаждения на кривой ДТА дериватограмм соединений $Ce_2(MoO_4)_3\cdot xH_2O$ отмечены экзо-эффекты, отвечающие процессу кристаллизации расплавов в интервале температур 990-940°C. Предполагается, что идет процесс сублимации.

Для уточнения изменений, происходящих в структуре кристаллогидрата молибдата церия, высушенного при 300° С (после обезвоживания), отвечающего, по всей видимости, составу $Ce_2O_3\cdot 3MoO_3$, образцы подвергались ИК спектроскопическому исследованию (рис. 4).

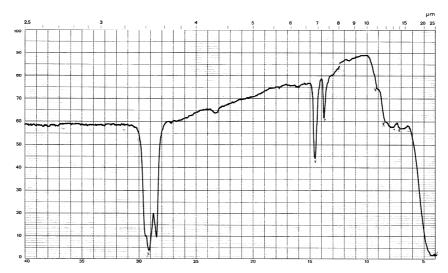


Рис. 4. ИК спектр $Ce_2O_3 \cdot 3MoO_3$.

На ИК спектре кристаллогидрата молибдата церия после сушки при 300°С не обнаруживаются полосы поглощения, отвечающие колебаниям молекул H_2O ; $915\ cm^{1}$ – максимальная частота валентного колебания искаженного тетраэдра [MoO₄]²-; $840\ cm^{1}$ – валентное колебание неискаженного тетраэдра [MoO₄]²-. Полосы поглощения с максимумами 780, 720, $630\ cm^{1}$ приписываются колебаниям с участием атомов кислорода биядерной системы с решеткой биядерного аниона [Mo₂Oଃ]⁴- [8].

рентгенографическое исследование Далее проведено кристаллогидрата молибдата церия после сушки при 300°C. Идентификацию фаз в образце кристаллогидрата молибдата церия проводили на основе анализа дифракционной картины, получаемой при исследовании образца методом порошка. Съемка проводилась в кварцевой кювете на модернизированной установке "URD-6", на Cu-К(-излучении (никелевый фильтр) в режиме интегрального счета с определением межплоскостных расстояний. Проведено индицирование специальной компьютерной программе (рис. 5, табл.). Рентгенографическое исследование показало, что обезвоженный кристаллогидрат молибдата церия имеет моноклинную решетку с параметрами элементарной ячейки: a = 11,915 (5) Å, b = 3,539 (3) Å, c =9,151 (3) Å, β = 92,55 (4), ν = 385,5 (2) Å.

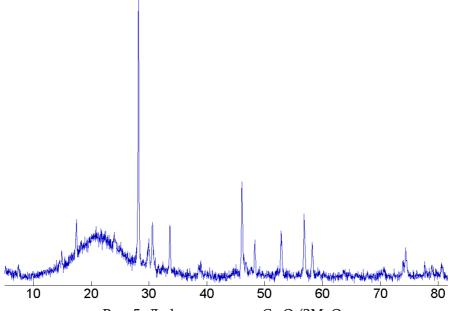


Рис. 5. Дифрактограмма Се2О3(3МоО3.

Таблица

Рентгенографические данные

2([obs]	h	k	1	2([calc]	obs-calc	Int.
7,403	1	0	0	7,421	-0.0174	3,8
14,889	2	0	0	14,872	0,0169	5,2
17,402	-2	0	1	17,400	0,0027	12,1
23,992	-2	0	2	23,994	-0,0020	3,8
	-3	0	1	24,029	-0.0370	
28,156	1	1	1	28,151	0,0056	100,0
29,911	-1	0	3	29,918	-0.0071	7,5
30,584	1	0	3	30,580	0,0040	16,5
33,612	2	0	3	33,604	0,0079	18,2
46,072	3	1	3	46,104	-0,0323	34,3
48,287	1	1	4	48,256	0,0315	12,5
52,865	6	1	0	52,861	0,0037	17,0
56,844	-1	1	5	56,856	_	22,0
	- 7	0	2	56,878	0,0115	
58,236	2	2	2	58,208	-0.0344	12,1
	-2	1	5	58,232	0,0280	
					0,0035	

Рентгенографические данные кристаллогидрата молибдата церия $Ce_2O_3(3MoO_3$ хорошо согласуются с данными банка [9], однако они не соответствуют данным банка [10]. Следует отметить, что исходные компоненты практически отсутствуют.

Таким образом, в результате исследования получен кристаллогидрат молибдата церия в виде кристаллического соединения, не растворимого в воде. Рентгенографическое исследование показало, что соединение, синтезированное нами ($Ce_2MoO_4\cdot 1,7H_2O$) после сушки при $300^{\circ}C$, соответствует соединению состава $Ce_2(MoO_4)_3$ [9].

Проведенные исследования дают основание полагать, что нами синтезировано новое соединение – кристаллогидрат молибдата церия.

ՑԵՐԻՈՒՄԻ ՄՈԼԻԲԴԱՏԻ ԲՅՈՒՐԵՂԱՀԻԴՐԱՏԻ ՖԻԶԻԿԱ-ՔԻՄԻԱԿԱՆ ՀԵՏԱԶՈՏՈՒՄ

Լ. Գ. ՆԵՐՄԻՍՑԱՆ

Մինթեզացված ցերիումի մոլիբդատի բյուրեղահիդրատի իսկությունը պարզելու նպատակով անց են կացվել էլեկտրոնո-միկրոսկոպիկ, ԻԿ սպեկտրոսկոպիկ և ռենտգենոֆրաֆիկ հետազոտություններ։

PHISIC-CHEMICAL RESEARCH OF CRYSTALOHYDRATE MOLIBDATES OF CERIUM

L. G. NERSISYAN

In order to determine truthfulness of synthesised crystalohydrate molibdate of cerium had been carried out electron-microscope, IK spectroscopic and rentgenoscope researches.

ЛИТЕРАТУРА

- [1] *Нерсисян Л.Г., Бабаян Г.Г., Григорян С.К.* // Информационные технологии и управление, 2001, №2, с. 109.
- [2] Нерсисян Л.Г., Бабаян Г.Г., Григорян С.К. // Хим. ж. Армении, 2002, т. 55, №3, с. 67.
- [3] Нерсисян Л.Г., Власов В.К. // Хим. ж. Армении, 2002, т. 55, №4, с. 133.
- [4] Нерсисян Л.Г. // Хим. ж. Армении, 2003, т. 56, №1-2, с. 36.
- [5] Нерсисян Л.Г., Бурдина К.П., Жижин М.Г. // Хим. ж. Армении, 2003, т. 56, №3, с. 120.
- [6] Накамото К. ИК спектры и спектры КР неорганических и координационных соединений. М., Мир, 1966.
- [7] *Царюк В.И., Золин Б.Д., Джуринский В.Ф.* // Журнал неорганической химии, 1996, т. 41, №3, с. 489.
- [8] *Царюк В.И., Золин Б.Д., Джуринский В.Ф.* // Журнал неорганической химии, 1996, т. 41, №1, с. 156.
- [9] 30-0303 31-0333, 28-0453, 1997 JCPDS International Centre Data. All rights reserved PCPDFWIN, v. 1, 30.
- [10] 76-1040, 1998 JCPDS International Centre for Diffraction Data. All rights reserved PCPDFWIN, v. 2, 01.