ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հшишипшић рриђиции ћишпћи 56, №3, 2003 Химический журнал Армении

УДК 547.314

СИНТЕЗ ФУНКЦИОНАЛЬНО ЗАМЕЩЕННЫХ ТРИХЛОРМЕТИЛБЕНЗИЛОВЫХ ЭФИРОВ АРИЛСУЛЬФОКИСЛОТ

Л. Х. ГАЛСТЯН, К С. АВЕТИСЯН и А. А. АВЕТИСЯН

Ереванский государственный университет

Поступило 20 XII 2001

Взаимодействием арил(трихлорметил)карбинолов (фенил-, *п*-толил-, *п*-хлорфенил-, *п*-бромфенил-) с хлорангидридами замещенных сульфокислот (*п*-толил-, *п*-карбэтоксисульфанил-, *о*-нитрофенил-) в основной среде (пиридин,триэтиламин) синтезированы функционально замещенные трихлорметилбензиловые эфиры арилсульфокислот. Изучена зависимость выходов целевых продуктов от характера заместителей в исходных соединениях, а также природы основания, температуры и растворителя.

Табл. 1, библ. ссылок 11.

Известно, что производные сульфокислот обладают различной физиологической активностью, в частности, они проявляют высокую фунгицидную и бактерицидную активность [1]. В сельском хозяйстве для защиты растений от клещей применяют ароматические эфиры арилсульфокислот. Кроме того, эти соединения, в особенности галогенсодержащие эфиры (овекс, генит, фенсон), являются стимуляторами роста растений [2]. Эфиры сульфокислот находят также широкое применение в органическом синтезе как переэтерифицирующие и ацилирующие реагенты [3]. Реакционная способность эфиров сульфокислот в зависимости от структуры эфирной группы изменяется в очень широких пределах. Особенно хорошими уходящими группами являются ароматическое кольцо и галогенсодержащие эфирные группы [4].

Продолжая исследования в области изучения химических свойств промышленных α -тригалогенметилкарбинолов [5-9], мы изучили их взаимодействие с хлорангидридами арилсульфокислот, приведшее к трихлорметилбензиловым эфирам арилсульфокислот IIIа-и.

$$R- \begin{picture}(20,10) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,0)$$

где I. R= а H-, б n-CH₃- , в n-Cl- , г n-Br-: II. R`= а n-CH₃-, б n-C₂H₅OCO-NH-, в о-NO₂-:

Изучено влияние характера заместителей в исходных соединениях I и II на выходы продуктов. Установлено, что электроноакцепторные группы (как R, так и R') способствуют повышению выходов соединений IIIа-и (табл.). Изучено также влияние характера основания, температуры и растворителя на выходы целевых продуктов IIIа-и. На примере соединения IIIа установлено, что замена пиридина (выход 20%) на более основный триэтиламин при комнатной температуре в течение 24 ч приводит к повышению выхода соединения IIIа на 10%. Нагревание реакционной смеси при 80°С в течение 1 ч также способствует образованию IIIа (выход 40%). Длительность нагревания до 2 ч не приводит к особым изменениям выхода (около 42,5%).

При проведении реакции в среде ДМФА в присутствии пиридина при комнатной температуре в течение 24 ч соединение IIIа образуется с 42% выходом (сырой продукт), однако вещество кристаллизуется с трудом (выход после перекристаллизации 31%). По-видимому, ДМФА способствует расщеплению сложноэфирной связи под действием основания, и образующиеся смеси препятствуют кристаллизации IIIа.

Таким образом, оптимальные условия для синтеза трихлорметилбензиловых эфиров арилсульфокислот IIIа-и — нагревание смеси арил(трихлорметил)карбинола Ia-г с хлорангидридом замещенной сульфокислоты IIa-в в присутствии триэтиламина при 80° С в течение 1 4.

Структура полученных соединений подтверждена методами ИК и ЯМР 1 Н спектроскопии, чистота — ТСХ. В ИК спектрах соединений IIIа-и обнаружены полосы поглощения, v, cm^{-1} : 3420, 3380 (NH), 1720 (C=0), 1590 (ароматическое кольцо), 1200, 1170, 1090 (SO₃), 990-860 (C=C ароматического кольца), 660 (C-C1).

В спектрах ЯМР 1 Н (ацетон-d₆) присутствуют сигналы, σ , м. д.: IIIa - 7,6-7,1 к.м. (C₆H₄, C₆H₅), 6 с (OCH), 2.35 с (CH₃), IIIд - 9,8 с (NH), 7,6-7,2 к.м. (C₆H₄,C₆H₅), 5,9 с (OCH), 4,2 к (CH₂), 1,35 т (CH₃), IIIи - 7,9-7,1 м (C₆H₄,C₆H₅), 6,1 с (OCH).

Исходные карбинолы Іа-г синтезированы по методике [10], а карбэтоксисульфанилхлорид ІІб — согласно [11]. Выходы, физико-химические данные и данные элементного анализа приведены в таблице.

Трихлорметилбензиловые эфиры арилсульфокислот IIIa-и

Nº	R	R'	Выход,%	Т. пл.,°С	Rf	Найдено, %		Envers honores	Вычислено, %	
IN						C	Н	Брутто-формула	C 70	Н
a.	Н	CH ₃	40	128 —	0,72	47,61	3,25	C ₁₅ H ₁₃ O ₃ Cl ₃ S	47,45	3,45
б.	CH_3	CH_3	38	130	0,77	48,72	3,54	$C_{16}H_{15}O_3Cl_3S$	48,82	3,84
В.	Cl	CH_3	56	126 —	0,78	43,61	2,78	$C_{15}H_{12}O_3Cl_4S$	43,50	2,92
Г.	Br	CH_3	51	128	0,79	39,21	2,43	C ₁₅ H ₁₂ O ₃ Cl ₃ BrS	39,30	2,63
	Н	C ₂ H ₅ OCONH	69	119 -	0,54	45,22	3,62	C ₁₇ H ₁₆ O ₅ Cl ₃ SN	45,10	3,56
д.	CH_3	C ₂ H ₅ OCONH	79	121	0,59	46,47	3,74	C ₁₈ H ₁₈ O ₅ Cl ₃ SN	46,34	3,89
e.	Cl	C ₂ H ₅ OCONH	83	121 — 123	0,57	41,77	3,61	C ₁₇ H ₁₅ O ₅ Cl ₄ SN	41,90	3,50
ж.	Br	C ₂ H ₅ OCONH	82	173 —	0,61	38,54	3,35	C ₁₇ H ₁₅ O ₅ Cl ₃ BrSN	38,42	3,22
3.	Н	$o-NO_2$	70	175	0,61	40,86	2,37	C ₁₄ H ₁₀ O ₅ Cl ₃ SN		2,45
и.				134 —					40,95	
				136						
				148 —						
				150						
				139 —						
				141						
				157 —						
				159						

Экспериментальная часть

ИК спектры сняты на спектрометре "UR-20" в вазелиновом масле, спектры ЯМР 1 Н — на "Мегсигу-300" фирмы Varian. ТСХ проводили на пластинке "Silufol-254", подвижная фаза — хлороформ-ацетон-нонан (1:1:1), проявитель — пары йода.

Трихлорметилбензиловые эфиры арилсульфокислот IIIа-и. Смесь 0,0089 *моля* арил(трихлорметил)карбинола Ia-г и 0,0089 *моля* хлорангидрида сульфокислоты IIa-в в 5 *мл* триэтиламина нагревают на водяной бане при 80°С в течение 1 ч. После охлаждения к реакционной смеси добавляют 50 *мл* воды, подкисляют 0,1 N раствором HCl до рН 3, образуется вязкое маслообразное вещество. Жидкость декантируют, остаток промывают водой (3(50), к остатку добавляют 10 *мл* этилового спирта. Образовавшееся кристаллическое вещество отфильтровывают, промывают 5мл этилового спирта, сушат и переосаждают из смеси ацетон-вода (1:4).

ԱՐԻԼՍՈՒԼՖՈԹԹՈՒՆԵՐԻ ՖՈՒՆԿՑԻՈՆԱԼ ՏԵՂԱԿԱԼՎԱԾ ՏՐԻՔԼՈՐՄԵԹԻԼԲԵՆԶԻԼ ԷՍԹԵՐՆԵՐԻ ՍԻՆԹԵԶԸ

L. Խ. ԳԱԼՍՏՑԱՆ, Կ. Ս. ԱՎԵՏԻՍՑԱՆ և Ա. Ա. ԱՎԵՏԻՍՑԱՆ

Արիլ(տրիքլորմեթիլ)կարբինոլների (ֆենիլ-, պ-տոլիլ-, պ-քլորֆենիլ-, պ-բրոմֆենիլ-) և տեղակալված սուլֆոթթուների քլորանհիդրիդների (պ-տոլիլ-, պ-կարբէթօքսիսուլֆանիլ-, օ-նիտրոֆենիլ-) փոխազդեցությամբ հիմնային միջավայրում (պիրիդին, տրիէթիլամին) սինթեզված են արիլսուլֆոթթուների ֆունկցիոնալ տեղակալված տրիքլորմեթիլբենզիլ էսթերներ։ Ուսումնասիրված է ելանյութերում տեղակալիչի, լուծիչի, հիմքի բնույթի և ջերմաստիձանի ազդեցությունը ռեակցիայի ընթացքի վրա։

SYNTHESIS OF FUNCTIONAL SUBSTITUTED TRICHLOROMETHYLBENZYL ESTERS OF ARILSULFONYL ACIDS

L. Kh. GALSTYAN, K. S. AVETISSYAN and A. A. AVETISSYAN

The functional substituted trichloromethylbenzyl esters of arylsulfonic acids have been obtained by the reaction of aryl(trichloromethyl)carbinols (phenyl-, p-tolyl-, p-chlorophenyl-, p-bromphenyl-) with substituted sulphonylchlorides (p-tolyl-, p-carbethoxyphenyl-, o-nitrophenyl-) in basic medium (pyridine, triethylamine). The influence of substituents, solvent, temperature and nature of the basic on the course of reaction has been studied.

ЛИТЕРАТУРА

- [1] Мельников Н.Н. Химия пестицидов, М., Химия, 1968, с. 295.
- [2] Там же, с. 297.
- [3] Barton D., Ollis W.D. The Synthesis and Reaction of Organic Compounds, Pergamon Press Ltd, v. 5, p. 525.

- [4] Там же, р.525.
- [5] Гукасян А.О. Галстян Л.Х., Аветисян А.А. // Арм. хим. ж., 1986, т. 39, №11, с. 685.
- [6] Гукасян А.О., Галстян Л.Х., Ханамирян А.Х., Аветисян А.А. // ЖОрХ, 1988, т. 24 , вып. 1, с. 220.
- [7] Гукасян А.О., Галстян Л.Х., Аветисян А.А. // Арм.хим. ж., 1988, т. 41, №9, с. 572.
- [8] Галстян Л.Х., Гукасян А.О., Аветисян А.А. // Тезисы докладов Международного симпозиума по химии фурана, Рига, 1988, с. 117.
- [9] Гукасян А.О., Галстян Л.Х. , Гючов М.Г., Аветисян А.А. // ЖОрХ, 1989, т. 25, вып. 8, с. 1716.
- [10] Reeve W., McK J.R., Brown R., Lakshmanan S., McKee // Canad.J.Chem., 1980 , v. 58 , $N^{\circ}5$, p. 485.
- [11] *Gilbert E.E., Jones E.P.* // Ind. Eng. Chem., 1959, v. 51, p. 1151; 1958, v. 50, p. 1410; 1957, v. 49, p. 1553; Franzen H. Ber., 1909, v. 42, p. 2465.