# ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱՉԳԱՅԻՆ ԱԿԱԳԵՍԻԱ НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հայաստանի քիմիական հանդես 53, №3-4, 2000 Химический журнал Армении

УДК 547.294.314.07

# АСИММЕТРИЧЕСКИЙ СИНТЕЗ S-АЛКИЛЗАМЕЩЕННЫХ L-ЦИСТЕИНОВ ЧЕРЕЗ ХИРАЛЬНЫЙ КОМПЛЕКС ДЕГИДРОАЛАНИНА С ИОНОМ Ni<sup>2+</sup>

# А. С. САГИЯН, А. В. ГЕОЛЧАНЯН, С. В. ВАРДАПЕТЯН, А. А. АВЕТИСЯН, В. И. ТАРАРОВ, Н. А. КУЗЬМИНА, Ю. Н. БЕЛОКОНЬ и М. НОРТ

#### Ереванский государственный университет

Институт элементоорганических соединений им. А.Н.Несмеянова Российской академии наук, Москва

Университет Северного Уэльса, LL57 2UW, г.Бангор, Великобритания

#### Поступило 4 Х 1999

Разработан эффективный метод асимметрического синтеза s-алкилзамещенных производных L-цистеина нуклеофильным присоединением алкилмеркаптанов (n-BuSH, t-BuSH, t-AmSH) к двойной C=C связи дегидроаланина в хиральном комплексе иона Ni<sup>2+</sup> оснований Шиффа с (S)-2-N-(N'-бензилпролил)аминобензофеноном. После разложения диастереомерно чистых (S,R) или L,L-комплексов были выделены оптически активные L-аминокислоты – s-бутил-, s-t-бутил- и s-t-амил-L-цистеины. Стереоселективность синтеза составляет 90-96%.

Рис. 1, табл. 1, библ. ссылок 12.

Оптически активные s-замещенные производные цистеинов являются важными компонентами многих физиологически активных пептидов, антибиотиков и других лекарственных препаратов[1-3]. S-алкилзамещенные производные цистеина успешно применяются также в микробиологии для селекции высокоактивных штаммпродуцентов белковых аминокислот в качестве их аналогов[4,5]. По аналогии с другой серусодержащей аминокислотой L-метионином, sалкилзамещенные производные цистеина могут быть использованы в качестве исходных предшественников хиральных саленовых катализаторов иона Ti<sup>4+</sup> для асимметрического синтеза энантиомерно чистых циангидринов[6]. Ранее нами был разработан метод асимметрического синтеза sарилзамещенных (фенил- и бензил-) производных цистеина присоединением соответствующих нуклеофилов к комплексу Ni(II) оснований Шиффа дегидроаланина с хиральными реагентами (S)-2-N-(N'-бензилпролил)аминоацетофеноном и (S)-2-N-(N'-бензилпролил)аминобензофеноном [7].

В настоящей работе сообщается об асимметрическом синтезе sалкилзамещенных производных L-цистеина, а именно, s-бутил-, S-tбутил- и s-t-амил-L-цистеинов.

Хиральный плоскоквадратный комплекс иона Ni<sup>2+</sup> с основанием Шиффа дегидроаланина и (S)-2-N-(N'-бензилпролил)аминобензофенона ((S)-BBP) (<u>I</u>) с активной электрофильной двойной C=C связью был синтезирован согласно [8].

Комплекс I вступает в реакцию асимметрического нуклеофильного присоединения с алкилмеркаптанами в среде CH<sub>3</sub>CN в присутствии K<sub>2</sub>CO<sub>3</sub> или ДМФА в присутствии NaOH (схема).

Схема



 $r \not = \operatorname{CH}_{3}(\operatorname{CH}_{2})_{3}, \underline{2}, \underline{3}, \underline{8}; (\operatorname{CH}_{3})_{3}\operatorname{C}_{2}, \underline{4}, \underline{5}, \underline{9}; \operatorname{CH}_{3}\operatorname{CH}_{2}(\operatorname{CH}_{3})_{2}\operatorname{C}_{2}, \underline{6}, \underline{7}, \underline{10}.$ 

38

Присоединение нуклеофилов происходит в условиях общеосновного катализа. При этом в начале реакции (через 10 *мин* после добавления нуклеофилов) избыток основного (S,R) или L,Lдиастереомера, имеющего больший R<sub>f</sub> на силикагели, составляет 70%, что является следствием кинетической энантиоселективности. Затем постепенно количество этого диастереомера увеличивается вследствие установления термодинамического равновесия. Равновесные соотношения диастереомеров представлены в таблице. За ходом реакции присоединения нуклеофилов удобно следить методом TCX на SiO<sub>2</sub> в системе растворителей CHCI<sub>3</sub> -CH<sub>3</sub>COCH<sub>3</sub> (3:1) или ПМР по исчезновению сигналов винильных протонов дегидроаланинового фрагмента исходного комплекса <u>1</u> при 4,1 и 5,8 м.д.

Таблица

|    | 12 12 19 | Растворитель/                                     | Соотношение, % |          | Химический |
|----|----------|---------------------------------------------------|----------------|----------|------------|
| N⁰ | RSH      | Основание                                         | L,L(S,R)       | L,D(S,S) | выход, % * |
| 1  | n-BuSH   | CH <sub>3</sub> CN/K <sub>2</sub> CO <sub>3</sub> | 94             | 6        | 86         |
| 2  | t -BuSH  | CH <sub>3</sub> CN/K <sub>2</sub> CO <sub>3</sub> | 97             | 3        | 94         |
| 3  | t -AmSH  | CH <sub>3</sub> CN/K <sub>2</sub> CO <sub>3</sub> | 98             | 2        | 92         |
| 4  | t -BuSH  | ДМФА/NaOH                                         | 97             | 3        | 76         |
| 5  | t -AmSH  | ДМФА/NaOH                                         | 96             | 4        | 70         |

# Химический выход и соотношение диастереомеров, полученных при присоединении RSH к C=C связи дегидроаланина в комплексе 1

Кимический выход на стадии присоединения RSH к комплексу 1.

Присоединение нуклеофилов и установление термодинамического равновесия между диастереомерами происходит гораздо быстрее (0,5-1 ч) в ДМФА под действием NaOH при 45-50°С. Однако этот процесс сопровождается образованием до 15% побочных комплексов с меньшим значением R<sub>f</sub>. Без образования побочных продуктов происходит присоединение алкилтиолов к комплексу 1 в среде CH<sub>3</sub>CN под действием безводного поташа; термодинамическое равновесие устанавливается в течение 6-8 ч.

Небольшая часть смеси диастереомеров (0,5 *г*) была разделена на SiO<sub>2</sub> в системе растворителей CHCI<sub>3</sub>-CH<sub>3</sub>COCH<sub>3</sub> (3:1) и охарактеризована спектральными методами анализа (ПМР, UV-VIS, элементный анализ). Для определения абсолютной конфигурации диастереомеров снимали их кривые дисперсии оптического вращения (ДОВ) (рис.) и сравнивали с кривыми ДОВ ранее полученных аналогично построенных комплексов s-бензил-Lцистеина[7]. Сравнение показыает, что все основные фракции с большим значением R<sub>f</sub> на SiO<sub>2</sub> имеют L-абсолютную конфигурацию аминокислотного фрагмента (L,L или (S,R)), а менее подвижный диастереомер — D-абсолютную конфигурацию аминокислотного фрагмента (L,D или (S,S)).

После разложения диастереомерно чистых (S,R)-комплексов действием НСІ были выделены оптически активные sалкилзамещенные производные цистеина — s-бутил-, s-t-бутил- и s-tамил-L-цистеины с химическим выходом >80 %. Исходный хиральный реагент (S)-BBP при этом регенерируется с выходом >96% без потери оптической чистоты.

#### Экспериментальная часть

В работе использовались аминокислоты «Reanal»(Будапешт), CH<sub>3</sub>(CH<sub>2</sub>)<sub>3</sub>SH, t-BuSH, t-AmSH, K<sub>2</sub>CO<sub>3</sub>, NaOH, (CH<sub>3</sub>)<sub>2</sub>CO, CHCl<sub>3</sub>, CH<sub>3</sub>CN, ДМФА «Реахим». CH<sub>3</sub>CN и ДМФА перед употреблением очищали по [9] и [10], соответственно. Спектры ПМР снимали на приборе « Mercury 300BB» (300 *МГц*), кривые ДОВ — на приборе «Jasco ORD/UV-5», [α]<sub>D</sub><sup>25</sup> определяли на поляриметре «Perkin-Elmer-241». Исходный комплекс [(S)-BBP-Δ-Ала]Ni(II) (<u>1</u>) синтезировали согласно [8].

Общая методика присоединения алкилмеркаптанов к комплексу 1. 14,6 г (2,86-10<sup>-2</sup> моля) комплекса <u>1</u> растворяли в 50 мл CH<sub>3</sub>CN (или ДМФА) и в токе Ar добавляли 7,87г (5,72.10<sup>-2</sup> моля) К<sub>2</sub>СО<sub>3</sub> (или 2.28 г (5,72·10<sup>-2</sup> моля) NaOH) и 3,4·10<sup>-2</sup> моля RSH. Реакционную смесь перемешивали при 40-45°С. За ходом присоединения можно следить по исчезновению сигналов протонов при связи С=С в спектрах ПМР (5,85 с и 4,1 с), спектрофотометрически (400-430 нм), а также ТСХ на силикателе в системе CHCl<sub>3</sub>-CH<sub>3</sub>COCH<sub>3</sub> (5:1). Через 1 ч после добавления тиолов брали небольшую порцию реакционной смеси (~5 мл), разбавляли 20 мл СНСІз, промывали последовательно 0,2N HCl (3×10 мл), 1M Na<sub>2</sub>CO<sub>3</sub> (3×10 мл) и водой. Хлороформный экстракт упаривали досуха, диастереомеры [(S)-BBP-s-Алкил-L-Цис]Ni(II) (2, 4,6) и [(S)-BBP-s-Алкил-D-Цис]Ni(II) (3, 5, 7) хроматографировали на SiO<sub>2</sub> (3,5×30 см), используя в качестве элюента CHCl<sub>3</sub> -CH<sub>3</sub>COCH<sub>3</sub> (2:1) и охарактеризовали спектральными методами. Выход продуктов и соотношение диастереомеров представлены в таблице. Кривые ДОВ основных диастереомеров синтезированных комплексов представлены на рисунке.

После установления термодинамического равновесия реакционную смесь фильтровали, промывали хлороформом и упаривали досуха. Осадок растворяли в 50 мл CH<sub>3</sub>OH и при перемешивании добавляли к нагретому до 45-50°C раствору 2N HCl. После исчезновения характерной для комплексов окраски смесь упаривали досуха, добавляли 50 мл H<sub>2</sub>O и фильтровали исходный хиральный реагент (S)-BBP. Из водных фильтратов выделяли целевые аминокислоты ионообменными методами [8]. Получали sбутил-, s-t-бутил- и s-t-амил-L-цистеины соответственно с 64, 78 и 70% химическими выходами.



Кривые ДОВ комплексов в CH<sub>3</sub>OH (25°C). 1) [(S)-BBP-s-t-бутил-L-Цис]Ni(II) (**4**); 2) [(S)-BBP-s-t-амил-L-Цис]Ni(II) (**5**); 3) [(S)-BBP-s-бутил-L-Цис]NI(II) (**2**); 4) [(S)-BBP-s-t-амил-D-Цис]Ni(II) (**7**).

[(S)-BBP-s-Бутил-L-Цис]Ni(II) (2): Спектры ПМР (в CDCl<sub>3</sub>,  $\delta$ , м.д.): 0,88 т (3H, CH<sub>3</sub>CH<sub>2</sub>, J=7,24 Гц); 1,3-1,46 м (2H, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>, J=7,24 Гц); 1,46-1,64 м(2H, CH<sub>3</sub>CH<sub>2</sub>CH<sub>2</sub>, J=7,24 Гц); 2,0-2,2 м(2H, Про); 2,42-2,70 м (4H, Про+CHCH<sub>a</sub>S+SCH<sub>2</sub>CH<sub>2</sub>); 2,74-2,96 м (2H, Про+CHCH<sub>b</sub>S); 3,46 д.д (1H, α-H Про, J=6,34 и 10,87 Гц); 3,60 д (1H, CH<sub>a</sub>Ph, J=12,5 Гц); 3,58-3,82 м (2H, Про); 4,22 д.д (1H, α-H, J=2,72 и 4,98 Гц); 4,44 д (1H, CH<sub>b</sub>Ph, J=12,5 Гц); 6,5-8,3 м (14H, ArH). Уф спектры ( $\lambda_{max}$ , *нм* (lgɛ)): 265 (15,0); 334 (3,4); 418 (2,1). [α]<sub>D</sub><sup>25</sup> = +1880,0° (с=0,4; CH<sub>3</sub>OH). Найдено, %: C 64,22; H 6,04; N 6,72. C<sub>32</sub>H<sub>35</sub>N<sub>3</sub>O<sub>3</sub>SNi. Вычислено, %: C 64,01; H 5,87; N 6,99.

[(S)-BBP-s-t-Бутил-L-Цис]Ni(II) (<u>4</u>): Спектры ПМР (в CDCl<sub>3</sub>, δ, м.д.): 1,32 с (9H, CH<sub>3</sub>); 1,96-2,16 м (2H, Про); 2,42-2,60 м (1H, Про); 2,55 д.д (1H, CH<sub>a</sub>S, J=5,77 и 11,82 Гц); 2,77 д.д (1H, CH<sub>b</sub>S, J=2,60 и 11,82 Гц); 2,90-3,05 м (1H, Про); 3,44 д.д (1H, α-H Про, J=6,05 и 9,66 Гц); 3,62 д (1H, CH<sub>a</sub>Ph, J=11,54 Гц); 3,6-3,9 м (2H, Про); 4,29 д.д (1H, α-H, J=2,60 и 5,77 Гд); 4,44 д (1H, CH<sub>b</sub>Ph, J=11,54 Гд); 6,5-8,3 м (14H, ArH). Уф спектры ( $\lambda_{max}$ , нм (lge)): 265 (11,6); 336 (3,6); 418 (2,2). [ $\alpha$ ]<sub>D</sub><sup>25</sup> =-2615,0° (c=0,038; CH<sub>3</sub>OH). Найдено, %: C 64,14; H 5,98; N 6,82. C<sub>32</sub>H<sub>35</sub>N<sub>3</sub>O<sub>3</sub>SNi. Вычислено, %: C 64,01; H 5,87; N 6,99.

[(S)-BBP-s-t-амил-L-Цис]Ni(II) (G): Спектры ПМР (в CDCI<sub>3</sub>,  $\delta$ , м.д.): 0,96 т (3H, CH<sub>3</sub>CH<sub>2</sub>, J=7,16  $\Gamma$ µ); 1,26 с (6H, CCH<sub>3</sub>); 1,50 д, кв (1H, CH<sub>a</sub>CH<sub>3</sub>, J=7,16 и 14,7  $\Gamma$ µ); 1,56 д,кв (1H, CH<sub>b</sub>CH<sub>3</sub>, J=7,16 и 14,7  $\Gamma$ µ); 1,95-2,15 м (2H, Про); 2,46 д,д (1H, CH<sub>a</sub>S, J=5,71 и 11,71  $\Gamma$ µ); 2,4-2,57 м (1H, Про); 2,69 д,д (1H, CH<sub>b</sub>S, J=2,57 и 11,71  $\Gamma$ µ); 2,88-3,04 м (1H, Про); 3,43 д,д (1H, α-H Про, J=6,57 и 10,28  $\Gamma$ µ); 3,61 д (1H, CH<sub>a</sub>Ph, J=12,0  $\Gamma$ µ); 3,6-3,9 м (2H, Про); 4,27 д,д (1H, α-CH, J= 2,57 и 5,71  $\Gamma$ µ); 4,43 и 4,44 д (1H, CH<sub>b</sub>Ph, J=12  $\Gamma$ µ); 6,5-8,3 м (14H, ArH). Уф спектры ( $\lambda_{max}$ , нм (lgε)): 264 (10,9); 334 (3,4); 417 (2,02). [α]<sub>D</sub><sup>25</sup> = +2238,12° (c=0,042; CH<sub>3</sub>OH). Найдено, %: C 64,67; H 6,18; N 6,62. C<sub>33</sub>H<sub>37</sub>N<sub>3</sub>O<sub>3</sub>SNI. Вычислено, %: C 64,49; H 6,02; N 6,84.

[(S)-BBP-s-t-амил-D-Цис]Ni(II) (<u>7</u>): Спектры ПМР (в CDCl<sub>3</sub>, δ, м.д.): 0,93 т (3H, CH<sub>3</sub>CH<sub>2</sub>, J=7,44 *Гц*); 1,23 с (6H, C(CH<sub>3</sub>)<sub>2</sub>); 1,50 кв (2H, CH<sub>2</sub>CH<sub>3</sub>, J=7,44 *Гц*; 1,70-2,27 м (3H, Про); 2,50-2,70 м (2H, Про); 2,67 д (2H, CH<sub>2</sub>S, J=4,80 *Гц*); 3,60 д,д (1H, α-H Про, J=4,80 и 10,80 *Гц*); 3,92 д (1H, CH<sub>a</sub>Ph, J=13,2 *Гц*); 3,98-4,12 м (2H, Про); 4,22 т (1H, -CH, J=4,80 *Гц*); 4,99 д (1H, CH<sub>b</sub>Ph, J=13,2 *Гц*); 6,6-8,8 м (14H, ArH). Уф спектры ( $\lambda_{max}$ , нм (lgɛ)): 265 (9,8); 335 (3,1); 420 (1,90). [α]<sub>D</sub><sup>25</sup> = -450,0° (c=0,04; CH<sub>3</sub>OH). Найдено, %: C 64,72; H 6,21; N 6,56. C<sub>33</sub>H<sub>37</sub>N<sub>3</sub>O<sub>3</sub>SNi. Вычислено, %: C 64,49; H 6,02; N 6,84.

Количества комплексов [(S)-BBP-s-бутил-D-Цис]Ni(II) (<u>3</u>) и [(S)-BBP-s-t-бутил-D-Цис]Ni(II) (<u>5</u>) оказались недостаточными для спектрального анализа

**S-Бутил-L-цистеин** (8).  $T_{\Pi\Lambda} = 218-220^{\circ}$ С. Спектры ПМР (в D<sub>2</sub>O,  $\delta_{i}$  м.д.): 0,81 т (3H, CH<sub>3</sub>-, J=7,50 Гц); 1,31 м (2H, C-CH<sub>2</sub>-C-C-S, J=7,50 Гц); 1,50 м (2H, C-C-CH<sub>2</sub>-C-S, J=7,50 Гц); 2,55 т (2H, C-C-C-CH<sub>2</sub>-S, J=7,50 Гц); 3,04 д<sub>1</sub>д (1H, CH<sub>a</sub>S, J=6,36 и 14,0 Гц); 3,35 д<sub>1</sub>д (1H, CH<sub>b</sub>S, J=3,81 и 14,0 Гц); 4,24 д<sub>1</sub>Д (1H, α-H, J=3,81 и 6,36 Гц).  $[\alpha]_D^{25} =$ +9,52° (c=1; 0,1 N NaOH); (лит. [11],  $[\alpha]_D^{20} =$  +9,7° (c=1; водный NaOH)). Оптическая чистота по данным ГЖХ-энантиомерного анализа составляет 97%. Найдено, %: С 48,94; Н 8,62; N 7,75. C<sub>7</sub>H<sub>15</sub>O<sub>2</sub>NS. Вычислено,%: С 48,83; Н 8,47; N 7,91.

S-t-Бутил-L-цистеин (2).  $T_{\Pi\Lambda} = 214-215^{\circ}$ С. Спектры ПМР (в D<sub>2</sub>O,  $\delta$ , м.д.): 1,2 с (9H, 3·CH<sub>3</sub>); 3,10 д,д (1H, CH<sub>a</sub>S, J=6,44 и 13,6 Гц); 3,24 д,д (1H, CH<sub>b</sub>S, J=3,80 и 13,8 Гц); 4,0 д,д (1H,  $\alpha$ -H, J=3,80 и 6,42 Гц). [ $\alpha$ ]<sub>D</sub><sup>25</sup> = + 8,13°(c=1; 6N HCl); (лит. [12], [ $\alpha$ ]<sub>D</sub><sup>20</sup> = +6,35° (c=2;

42

водный HCl)). Оптическая чистота по данным ГЖХ-энантиомерного анализа составляет 97,7%. Найдено,%: С 48,78; Н 8,52; N 7,87. С<sub>7</sub>H<sub>15</sub>O<sub>2</sub>NS. Вычислено, %: С 48,83; Н 8,47; N 7,91.

S-t-Амил-L-цистеин (10).  $T_{IIA} = 206-207^{\circ}$ С. Спектры ПМР (в D<sub>2</sub>O,  $\delta$ , м.д.): 0,98 т (3H, CH<sub>3</sub>); 1,36 с (6H, C(CH<sub>3</sub>)<sub>2</sub>); 1,62 кв (2H, C-CH<sub>2</sub>-C); 3,02 д.д. (1H, CH<sub>a</sub>S, J=6,4 и 14,0 Гц); 3,18 д.д. (1H, CH<sub>b</sub>S, J=3,82 и 13,8 Гц); 3,88 д.д. (1H,  $\alpha$ -H, J=3,81 и 6,30 Гц).  $[\alpha]_D^{25} = +11,31^{\circ}$ (c=1; 6N HCI); (не описан в литературе). Оптическая чистота по данным ГЖХ-энантиомерного анализа составляет 99,5%. Найдено, %: С 50,44; Н 9,02; N 7,28. С<sub>8</sub>H<sub>17</sub>O<sub>2</sub>NS. Вычислено, %: С 50,26; H 8,90; N 7,33.

Работа выполнена при финансовой поддержке Международного Европейского научного фонда INCO-COPERNICUS (грант No ICIS-СТ96-0722).

## ջ-ԱԼԿԻԼՏԵՂԱԿԱԼՎԱԾ Լ-ՑԻՍՏԵԻՆԻ ԱԾԱՆՑՅԱԼՆԵՐԻ ԱՍԻՄԵՏՐԻԿ ՍԻՆԹԵՉԸ Ni(II) ԻՈՆԻ ՀԵՏ ԴԵՀԻԴՐՈԱԼԱՆԻՆԻ ՔԻՐԱԼ ԿՈՄՊԼԵՔՍԻ ՄԻՋՈՑՈՎ

## Ա. Ս. ՍԱՂՅԱՆ, Ա. Վ. ԳԵՈԼՉԱՆՅԱՆ, Ս. Մ. ՎԱԲԳԱՊԵՏՅԱՆ, Ա. Ա. ԱՎԵՏԻՍՅԱՆ, Վ. Ի. ՏԱԲԱԲՈՎ, Ն. Ա. ԿՈԻՉՄԻՆԱ, Յու. Ն. ԲԵԼՈԿՈՆ և Մ. ՆՈԲԹ

 $U_2$ ակված է L-рացարձակ կոնֆիգուրացիայով s-ալկիլտեղակալված L-ցիստեինների ասիմետրիկ սինԹեղի էֆեկտիվ մեԹոդ NI(II) իոնի հետ դեհիդրոալանինի և L-2-N-(N'рենգիլալրոլիլ)ամինոբենդոֆենոն քիրալային ռեագենտի Շիֆֆի հիմքի առաջացրած կոմալլեջսի դեհիդրոալանինի մնացորդի C=C կապին տարբեր ալկիլ Թիոլների ասիմետրիկ միացմամբ և առաջացած կոմսլլեջսների հետագա քայքայմամբ և նպատակային ամինոԹԹուների անջատմամբ: Որպես նուկլեոֆիլային ռեագենտներ օգտադործվել են ալկիլԹիոլներ ո-BuSH, t-BuSH and t-AmSH: Աչխատանքի արդյունքում սինԹեզվել են բարձր օպտիկական մաքրուԹյամբ (>98%) L-բացարձակ կոնֆիդուրացիայով s-բուտիլցիստեին, s-t-բուտիլցիստեին և s-t-ամիլցիստեին: Ասիմետրիկ միացման ռեակցիայի ստերեոսելեկտիվուԹյունը Հասնում է մինչև 98%-ի, իսկ ելային քիրալային ռեագենտը սինԹեզից հետո վերականդնվում է քանակական քիմիական ելքերով և ելային քիրալուԹյան լրիվ պահպանմամբ:

## ASYMMETRIC SYNTHESIS OF s-ALYLSUBSTITUTED L-CYSTEINE'S VIA A CHIRAL NI(II) COMPLEX OF DEHYDROALANINE

### A. S. SAGHIYAN, A. V. GEOLCHANYAN, S. M. VARDAPETYAN, A. A. AVETISYAN, V. I. TARAROV, N. A. KUZ'MINA, Yu. N. BELOKON' and M. NORTH

An efficient method for asymmetric synthesis of s-alkylsubstituted L-cysteine with L-absolute configuration via asymmetric nucleophilic addition of dehydroalanine by alkylthiol's in Ni<sup>2+</sup> complex of Schiff's bases by a chiral reagent L-2-2-N-(N'-benzylprolyl)aminobenzophenone with following decomposition of the reaction mixtures and isolation of the resulting amino acids has been developed. n-BuSH, *t*-BuSH and *t*-AmSH were used as nucleophiling reagents. Addition results in high

stereoselectivity (up to 98%) and good chemical yields. The obtained diastereoisomeric complexes with L,L- and L,D-absolute configuration were separated on  $SiO_2$  and determined by the usual chemical and physical methods. After the main diastereoisomeric pure complexes had been decomposed in 1N HCl, optically active s-substituted L-amino acids with L-absolute configuration and initial chiral reagent with initial optical purity were isolated.

Thus s-butylcysteine, s-t-butylcysteine and s-t-amylcysteine with L-absolute configuration in high optical purity (>98%) were synthesized.

#### ЛИТЕРАТУРА

- [1] Schmidt U., Oler E. // Angew. Chem. Int. Ed. Engl., 1976. P. 15.
- [2] Bovarnik M.R. // J.Biol.Chem., 1943, v. 148, p. 151.
- [3] Brewster J.H., Ciotti C.J. // J. Amer. Chem, Soc., 1955, v. 7, p. 6214.
- [4] Sano K., Sii O.I. // J. Chem. Appl. Microbiol., 1971, v. 16, p. 94.
- [5] Ikeeda S., Fujita I., Hirose J. // Agr. Biol. Chem., 1976, v. 40. p. 517.
- [6] Белоконь Ю.Н., Яшкина Л.В., Москаленко М.А., Чесноков А.А., Кублицкий В.С., Иконников Н.С., Орлова С.А., Тараров В.И., Норт М. // Изв. РАН, сер. хим., 1997, №11, с. 2040.
- [7] Белоконь Ю.Н., Джамгарян С.М., Сагиян А.С., Иванов А.С., Беликов В.М. // Изв. АН СССР, сер. хим., 1988, №7, с. 1616.
- [8] Belokon' Yu.N., Sagyan A.S., Djamgaryan S.M., Bakhmutov V.I., Belikov V.M. // Tetrahedron, 1988, v. 44, №17, p. 5507.
- [9] Walter M., Ramaley L. // Analyt. Chem., 1973, v. 45, p. 307.
- [10] Гордон А., Форд Р. Спутник химика. М., Мир, 1976.
- [11] Armstrong L. // J. Org. Chem., 1951, v. 16, p. 750.
- [12] Pastuszak J.J., Chimiak A. // J. Org. Chem., 1981, v. 46, p. 1868.