ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ՍՅԱՆԱԴԵՆԱՆԻ ՀՎԵԱԳԵԱ

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հայաստանի քիմիական հանդես 53, №1-2, 2000 Химический журнал Армении

УДК 547.979.733:543.4

ОБРАТИМАЯ КООРДИНАЦИЯ ДИКИСЛОРОДА НИЗКОТЕМПЕРАТУРНЫМИ СУБЛИМАТАМИ *мезо*-ТЕТРА-4-ПИРИДИЛПОРФИРИНАТОЖЕЛЕЗА(II)

Т. С. КУРТИКЯН, Г. Г. МАРТИРОСЯН, Р. К. КАЗАРЯН и В. Н. МАДАКЯН

Армянский институт прикладной химии "АРИАК" Центр исследования строения молекул НАН Республики Армения Ереванский государственный медицинский университет им. М.Гераци

Поступило 28 II 1999

Методом ИК спектроскопии показана способность низкотемпературных сублимированных слоев мезо-тетра-4-пиридилпорфиринатожелеза(II) (FeT4PyP) к обратимой координации дикислорода. Частота валентного колебания координированного O₂ в исследованном случае на 15 с*м*⁻¹ ниже, чем в полученном ранее дикислородном комплексе мезо-тетрафенилпорфиринатожелеза(II) (FeTPP), а образуемый аддукт стабильнее. Отмеченные различия между координационной способностью двух близких по строению порфиринов связываются с реализацией в сублимированных слоях Fe4TPyP сильных межмолекулярных взаимодействий, обусловленных координацией пиридильной группы одной молекулы с ионом металла соседней.

Рис. 2, библ. ссылок 17.

Металлокомплексы *мезо*-тетраарилпорфиринов в связи с относительно высокими выходами при синтезе и легкостью очистки широко используются в научных исследованиях в качестве *гем*моделирующих и родственных им веществ [1]. Микропористая структура этих соединений, давшая основание назвать их "порфириновыми губками" [2], обусловлена, прежде всего, близкой к перпендикулярной ориентацией арильных колец к плоскости порфиринового макроцикла, и присуща не только их объемным образцам, но и сублимированным слоям [3]. Это качество создает большие преимущества при исследовании их координационных свойств спектральными (в особенности, ИК) методами, поскольку маскирующее влияние растворителя исключается [4].

Обратимое присоединение дикислорода - одно из важнейших свойств гем-содержащих и родственных им соелинений, обуславливающее их биологическую и каталитическую активность. Ранее было показано, что способностью обратимого присоединения дикислорода обладают не только изолированные молекулы FeTPP [5]. но и их сублимированные слои [6]. Аналогичные исследования. проведенные, с одной стороны, с сублимированными слоями СоТРР [7], и, с другой — с близкими ему по структуре мезо-тетра-4(3)пиридилпорфиринатами кобальта(II) (СоТ4РуР и СоТ3РуР) [8.9]. выявили существенную разницу в характере их низкотемпературного взаимодействия с дикислородом. Было высказано предположение и приведены спектральные доводы в пользу того, что отмеченная разница обусловлена реализуемой в сублимированном слое координацией пиридильной группы одной молекулы с ионом кобальта соседней. Настоящее исследование посвящено исследованию низкотемпературного взаимодействия дикислорода с FeT4PvP.

Экспериментальная часть

Поскольку порфирины Fe(II) легко окисляются на воздухе с образованием µ-оксодимеров, для работы с ним мы исходили из устойчивого на воздухе шестикоординированного дипиперидинового экстракомплекса Fe(II)T4PyP·Pip₂, который получали согласно приведенной ниже прописи.

500 *мг* (0,809 *ммоля*) Т4РуР растворяли в смеси 5 *мл* пиперидина и 20 *мл* уксусной кислоты. После барботирования азота (2 *мин*) в реакционную смесь добавляли 100 *мл* насыщенного раствора Fe(CH₃COO)₂ в уксусной кислоте (к чистому порошкообразному железу (20 *г*) добавляли 110 *мл* насыщенной азотом ледяной уксусной кислоты и кипятили в течение 1 ч). Реакцию проводили в течение 3 ч (хроматографический контроль). После охлаждения реакционной массы образовавшийся целевой продукт отфильтровывали, промывали ацетоном (3×10 *мл*). Получали 400 *мг* (58,72%) продукта. R₁ 0,53 (Sorbfil/хлороформ-метанол, 6:1).

Около 10 *мг* Fe(II)T4PyP-Pip₂ помещали в ячейку Кнудсена и выдерживали в условиях высокого вакуума (~10⁻⁵ *Topp*) при температурах порядка 250°C в течение нескольких часов. Такая процедура сопровождалась отщеплением аксиальных лигандов, что контролировалось измерениями вакуума на выходе криостата. Далее, не прерывая вакуума, температура ячейки повышалась до 300-350°C и в течение 2-3 ч велась сублимация Fe(II)T4PyP на охлаждаемую жидким азотом CsJ-ую пластинку, расположенную внутри оптического криостата. Тщательно осушенный на P_2O_5 кислород медленно подавался в криостат из объема, снабженного манометром, обеспечивающим измерение равновесного давления в криостате.

ИК спектры измерялись на спектрофотометре "Specord M-80" в режиме оптических плотностей. Спектральная ширина щели в процессе измерений составляла 4 см¹.

Результаты и их обсуждение

Подача дикислорода на низкотемпературный сублимат (Т=77 К) FeT4PyP сопровождается появлением в ИК спектре новой полосы в области 1175 см¹ (рис.1b), выступающей в виде плеча полосы порфирина при 1180 см¹ (рис.1а) и значительно увеличивающей ее интенсивность. Отжиг образца при 120 К и дальнейшее охлаждение до температуры жидкого азота приводит к небольшому сдвигу отмеченной полосы в низкочастотную область и ее более четкому разделению от полосы порфирина (рис.1с). Нет сомнений, что отмеченная полоса при 1172 см¹ представляет собой v(O₂) валентного колебания координированного дикислорода. В случае сублимированного слоя FeTPP она появлялась при 1187 см¹ [6], на 8 см¹ ниже, чем в матрице аргона [5]. Откачка кислорода при повышенных температурах, приводящая к контролируемому измерениями ИК спектров отщеплению координированного О2, и подача новой порции приводит к воспроизведению спектральной картины, наблюдаемой при первом запуске, что является свидетельством обратимого характера процесса.

Образующийся дикислородный комплекс отличается от такового в случае с FeTPP не только значением частоты $v(O_2)$, которая на 15 см¹ ниже, чем в последнем случае, но и устойчивостью образующегося комплекса. В отличие от комплекса FeTPP·O₂, медленно разлагающегося при откачке кислорода уже при 80 К. в случае с FeT4PyP·O₂ комплекс довольно устойчив и при 196 К. Более того, в случае сублимированого слоя FeTPP выдержка его при комнатных температурах в вакууме приводит к потере слоем его кислородкоординирующих свойств, тогда как слои FeT4PyP сохраняют это свойство довольно продолжительное время (интенсивность полосы $v(O_2)$ при новых запусках O_2 постепенно уменьшается и сходит на нет примерно в течение недели).

Отмеченные различия в кислород-связывающих свойствах FeTPP и FeT4PyP, как и в случаях с CoT4(3)PyP [8, 9], мы связываем с наличием в сублимированных слоях пиридил-порфиринов структур, в которых пиридильная группа одной молекулы координирована с атомом металла соседней (рис.2). Действительно, при координации в шестом положении дополнительных электронодонорных

лигандов, какими являются азотистые основания, частота у(О2) по сравнению с пятикоординационными комплексами падает, а частота v(M-O₂) растет. Это связано с дополнительным переносом электронной плотности через d орбитали металла на разрыхляющие $\pi *_{u}$ орбитали кислорода, ведущим к усилению связи М-О2 и ослаблению связи О-О. Так, в пятикоординационном комплексе FeTPP.О. полученном в аргоновой матрице, частота v(O₂) располагается при 1195 см¹ [5]. тогда как в шестикоординационном комплексе Рір-FеТРР-О2 (Рір — пиперидин) — при 1157 см⁻¹ [10]. В литературе мы не обнаружили данных по v(O₂) комплекса Ру-FeTPP·O₂, однако в комплексе Ру-Fe(Cap)-O2, где Fe(Cap) - порфирин в "шапке" [1]. v(O₂) располагается при 1175 см¹ [11], что очень близко к наблюдаемой нами величине. Наблюдаемое влияние электронодонорного лиганда в шестом координационном положении на частоту у(О2) координированного кислорода значительно сильнее проявляется в порфиринах кобальта, чем железа, что связывают с мультиплетным характером связи М-О2 в случае последних [12].

При стоянии в атмосфере O₂, либо на воздухе, в ИК спектрах сублимированного слоя FeT4PyP в области 870 см⁻¹ медленно, в течение нескольких суток, растет новая полоса (рис.1d), которую, несомненно, следует отнести к антисимметричному колебанию v(Fe-O-Fe) µ-оксодимера [13]. Реакция µ-оксодимеризации железопорфиринов протекает предположительно через промежуточное образование структур с мостиковой молекулой кислорода. Такие структуры при низких температурах были зафиксированы в растворах методами ЯМР [14] и резонансного комбинационного рассеяния [15]. Несмотря на тнательные ИК спектральные измерения в предполагаемой для колебания v(O-O) области спектра, наличие таких структур в твердой фазе нам не удалось зафиксировать, что, впрочем, и можно было ожидать, исходя из соображений симметрии [16].

Как указывалось выше, даже выдерживаемые в вакууме слои FeT4PyP постепенно теряют способность к координации молекулярного кислорода. Надо полагать, что это, как и в случае с пиридилпорфиринатами кобальта [8, 9], связано с ростом координационнонасыщенных структур, в которых оба аксиальных положения металла заняты пиридильными группами соседних молекул. Таким образом, комплексы *мезо*-тетрапиридилпорфиринов с металлами, склонными к образованию октаэдрических комплексов, обладают определенной спецификой, находящей отражение в их физикохимических, в частности каталитических [17], свойствах.

ՄՈԼԵԿՈՒԼՅԱԲ ԹԹՎԱԾՆԻ ԴԱԲՁԵԼԻ ՄԻԱՑՈՒՄԸ մեզո-ՏԵՏԲԱ-4-ՊԻԲԻԴԻԼՊՈԲՖԻԲԻՆԱՏՈԵԲԿԱԹԻ(II) ՑԱԾԲՋԵԲՄԱՍՏԻՃԱՆԱՅԻՆ ՍՈՒՔԼԻՄԱՏՆԵԲԻ ԿՈՂՄԻՑ

Տ. Ս. ԿՈՒԲՏԻԿՅԱՆ, Գ. Գ. ՄԱՐՏԻԲՈՍՅԱՆ, Ռ. Կ. ՂԱՋԱԲՅԱՆ և Վ. Ն. ՄԱԴԱԿՅԱՆ

b4 սպեկտրոսկոսկիս և կանակով ցույց է տոված, որ մեկո-տետրա-4-սկիրիդիլսլորֆիրինատոերկաԹի(II) (FeT4PyP) ցածրջերմաստիճանային սուրլիմված Թաղան-Թները ընդունակ են դարձելի կերպով միացնելու մոլեկույյար ԹԹվածինը։ Առաջացված կոմպլեջսները չատ ավելի կայուն են, բան մեկո-տետրափենիլսլորֆիրինատոերկաԹի(II) (FeTPP) դեպրում, իսկ վակուումի սլայմաններում գտնվող FeT4PyP չերտերը, ի տարբերուԹյուն FeTPP-ի, իրենց ԹԺվածին կոորդինացնելու ՀատկուԹյունը պաՀպանում են երկար ժամանակ։ Կոորդինացված ԹԹվածնի $V(O_2)$ ՀաճախականուԹյունը FeT4PyP-ի դեպրում 15 սմ¹ ավելի ցածր է, բան FeTPP-ի չերտերում։ Նչված տարբերուԹյունները տալիս են Հիմքեր ենթադրելու, որ FeT4PyP-ի սուրլիմված չերտերում իրականանում են կառուցվածըներ, որոնցում մեկ մոլեկուլի սլիրիդիլային խմբի ազոտը կոորդինացիայի մեջ է մտնում Հարևան մոլեկուլի երկաԹի իոնի Հետ՝ մինչդեռ վեցերորդ կոորդինացիոն դիրջը չատ ավելի կայուն ԹԺվածնային կոմպլեքս առաջացնելու ՀնարավորուԹյուն է դնձեռում։

REVERSIBLE DIOXYGEN BINDING BY THE LOW-TEMPERATURE SUBLIMATED LAYERS OF meso-TETRA-4-PYRIDYLPORPHYRINATOIRON(II)

T. S. KURTIKYAN, G. G. MARTIROSYAN, R. K. KAZARYAN and V. N. MADAKYAN

It has been shown by IR spectroscopy that the low temperature (77 K) sublimated layers of *meso*-tetra-4-pyridylporphyrinatoiron(II) (FeT4PyP) reversibly bind dioxygen with formation of the complex which is much more stable than the dioxygen complex formed by sublimated layers of *meso*-tetraphenylporphyrinatoiron(II) (FeTPP). In addition, unlike FeTPP, the sublimated layers of FeT4PyP, which are stored in vacuum at ambient temperature, keep their O₂-binding ability for a long time. The stretching frequency $v(O_2)$ of co-ordinated dioxygen in the case of FeT4PyP by 15 cm⁻¹ lower, than for FeTPP. All these differences indicate that in sublimated layers of FeT4PyP O₂ occupies the 6th co-ordination position in Fe(II) co-ordination sphere in which the 5th position is occupied by the pyridyl N of the neighbouring molecule.

ЛИТЕРАТУРА

- Евстигнеева Р.П. Порфирины: структура, свойства, синтез. М., Наука, 1985.
 333 с.
- [2] Byrn M.P., Curtis C.J., Hsiou Y., Khan S.I., Sawin P.A., Tendick S.K., Terzis A., Strouse C. E. // J. Amer. Chem. Soc., 1993, v.115, №21, p.9480.
- [3] Куртикян Т.С., Гаспарян А.В., Мартиросян Г.Г., Жамкочян Г.А. // Ж. прикл. спектр., 1995, т.62, №6, с.62.
- [4] Куртикян Т.С. Автореф. дисс. "Особенности строения и координационная способность сублимированных слоев мезо-тетраарилпорфиринатов металлов первого переходного периода" доктора хим. наук. М., 1998, с.253.
- [5] Nakamoto K., Watanabe T., Ama T., Urban M.W. // J. Amer. Chem. Soc., 1982, v.104, №13, p.3744.
- [6] Куртикян Т.С., Мартиросян Г.Г., Гаспарян А.В., Акопян М.Е., Жамкочян Г.А. // Ж. прикл. спектр., 1990, т.53, №1, с.67.
- [7] Куртикян Т.С., Мартиросян Г.Г., Гаспарян А.В., Жамкочян Г.А. // Ж. прикл. спектр., 1993, т.59, №6, с.452.
- [8] Куртикян Т.С., Мадакян В.Н. // Координ. химия, 1992, т.18, №2, с.139.
- [9] Куртикян Т.С., Мадакян В.Н. // Координ. химия, 1992, т.18, №8, с.869.
- [10] Nakamoto K., Paeng I. R., Kuroi T., Isobe T., Oshio H. // J. Mol. Struct., 1988, v.189, p.293.
- [11] Jones R.D., Budge J.R., Ellis P.E., Linard J.E., Summerville D.A., Basolo F. // J. Organomet. Chem., 1979, v.181, p.151.
- [12] Proniewicz L.M., Kulczycki A., Weselucha-Birczynska A., Majcherczyk R., Nakamoto K. // New J. Chem., 1999, p.71.
- [13] Burke J.M., Kincaid J.R., Spiro T.G. // J. Amer. Chem. Soc., 1978, v.100, №19, p.6077.
- [14] Clin D.-H., Del Gaudio J., La Mar G.N., Balch A.L. // Amer. Chem. Soc., 1977. v.99, №16, p.5486.
- [15] Paeng I.R., Nakamoto K. // J. Amer. Chem. Soc., 1990, v.112, №9, p.3289.
- [16] Hester R.E., Nour E.M. // J. of Raman Spectroscopy, 1981, v.11, №1, p.43.
- [17] Kellet R.M., Spiro T.G. // Inorg. Chem., 1985, v.24, №15, p.2378.