

Հшјшишшնի рիմիшկшն ћшնդես 52, №4, 1999 Химический журнал Армении

УДК 547.853.3 + 722.1

БРОМИРОВАНИЕ 5-АЛЛИЛ-6-ГИДРОКСИ-2-МЕТИЛ-4-ХЛОР-И 5-АЛЛИЛ-6-АНИЛИНО-2-МЕТИЛ-4-ХЛОРПИРИМИЛИНОВ

В. Э. ХАЧАТРЯН, А. С. ГАПОЯН и Р. Г. МЕЛИК-ОГАНДЖАНЯН

Институт тонкой органической химии им. А.Л.Мнджояна НАН Республики Армения, Ереван

Поступило 30 Х 1997

Бромированием 5-аллил-6-гидрокси-2-метил-4-хлорпиримидина получен 6-бромметил-2-метил-4-хлор-5,6-дигидрофуро(2,3-d)пиримидин, который под действием метилата натрия превращен в 2,6-диметил-4-метоксифуро(2,3-d)пиримидин. При бромировании же 6-анилино-2-метил-4-хлорпиримидина образуется лишь продукт присоединения брома по аллильной связи — 6-анилино-5-(2',3'-дибром) пропил-2-метил-4-хлорпиримидин.

Табл. 1, библ. ссылок 4.

Ранее нами была показана возможность синтеза фуро- и пирроло(2,3-d)пиримидинов бромированием соответствующих 2-замещенных 5-аллил-4-метил-6-гидрокси- или 6-аминопиримидинов. Механизм образования этих соединений обсужден в работах [1-3]. В продолжение этих исследований на основе 5-аллил-4,6-дихлор-2-метилпиримидина [4] получены 5-аллил-6-гидрокси-2-метил-4-хлор-(I) и 5-аллил-6-анилино-2-метил-4-хлорпиримидины II, исследовано их бромирование. В результате из соединения I получен 6-бромметил-2-метил-4-хлор-5,6-дигидрофуро(2,3-d)пиримидин (III), что подтверждено данными ПМР спектроскопии, а также превращением в 2,6-диметил-4-метоксифуро(2,3-d)пиримидин (IV). Соединение же II под действием метилата натрия образует лишь продукт присоединения брома по аллильной связи V, который, как и в случае 6-алкиламинопроизводных [4], не удалось зациклизовать в соответствующий пирроло(2,3-d)пиримидин.

Таблица

Соединения І-V

Соеди-	Выход,	Т.пл.,	Найдено, %				Брутто-	Вычислено, %				R
нение	%	°C	С	Н	N	Cl(Br)	формула	С	Н	N	Cl(Br)	
I	87	170-2	52,21	5,08	15,33	19,00	C ₃ H ₉ ClN ₂ O	52,04	4,91	15,17	19,20	0,6
II	45	75-6	64,35	5,62	16,29	13,88	C ₁₄ H ₁₄ ClN ₃	64,74	5,43	16,18	13,65	0,44
III	76	180-2	34,21	3,32	10,42	(30,00)	C ₈ H ₈ ClBrN ₂ O	34,21	3,06	10,63	(30,36)	0,54
IV	72	62-4	60,28	5,79	15,47		C ₉ H ₁₀ N ₂ O ₂	60,66	5,66	15,72		0,53
V	71	101-3	40,22	3,51	10,25	(36,20)	C ₁₄ H ₁₄ ClBr ₂ N ₃	40,08	3,36	10,01	(36,40)	0,42

Экспериментальная часть

Спектры ПМР сняты в виде 7% растворов в дейтеро-ДМСО или дейтерохлороформе на спектрометре "Varian T-60" с рабочей частотой 60 $M\Gamma u$, внутренний эталон — ТМС. Масс-спектры сняты на приборе "МХ-1303" с прямым вводом образца в ионный источник при температуре напуска на 25-30°С ниже температуры плавления исследуемых образцов и энергии ионизации 30 ${\it эВ.}$ ТСХ проведена на пластинах "Силуфол-УФ-254" в системах растворителей бензолацетон, 1:1 (соединения I, III) и эфир-гексан, 1:1 (соединения II, IV, V), проявление в УФ свете.

5-Аллил-6-гидрокси-2-метил-4-хлорпиримицин (I). Смесь 2,02 r (0,01 mons) 5-аллил-4,6-дихлор-2-метилпиримидина [4] и 2,4 r (0,06 mons) гидроксида натрия в 50 m1 воды кипятят 3-5 q до получения прозрачного раствора. Охлаждают, подкисляют конц. соляной кислотой до рН 4-5, выпавший осадок фильтруют, промывают водой и сушат. Перекристаллизация из ацетона (табл.). Спектр ПМР, СДС l_3 , м.д.: 2,48 c (3H, CH₃), 3,38 m (2H, CH₂), 5,10 m (2H, =CH₂), 5,92 m (1H, CH), 8,8 c (1H, OH).

5-Аллил-6-анилино-2-метил-4-хлорпиримидин (II). Смесь 2,02 г (0,01 моля) 5-аллил-4,6-дихлор-2-метилпиримидина [4] и 0,93 г (0,01 моля) анилина в 25 мл этанола кипятят 7-8 ч. Выпавшие кристаллы гидробромида II фильтруют, растворяют в 50 мл горячей воды и подщелачивают водным аммиаком. Кристаллы соединения II фильтруют и перекристаллизовывают из гексана (табл.). Мол. вес 258/260 (масс-спектр).

6-Бромметил-5,6-дигидро-2-метил-4-хлорфуро(2,3-d)пиримидин (III). К раствору 1,84 r (0,01 моля) I в 20 мл хлороформа прикапывают в течение 15 мин 1,6 r (0,01 моля) брома, растворенного в 10 мл хлороформа. Отгоняют хлороформ, добавляют 25 мл ацетона и кипятят 3-4 ч. Выпавшие кристаллы гидробромида III фильтруют, растворяют в 20 мл этанола, добавляют 5 мл 25% водного аммиака и разбавляют

50 мл воды. Выпавшие кристаллы фильтруют, сушат и перекристаллизовывают из гексана (табл.). Спектр ПМР, Δ_6 - Δ MCO, м.д.: 2,32 с іЗН. СН₃). 3.19 м (2H, CH₂), 4,00 м (2H, CH₂Br), 4,75 м (1H, CH). Мол. вес 262/264/266 (масс-спектр).

2,6-Димстил-4-метоксифуро(2,3-d)пиримидин (IV). Смесь 2,64 r 10.01 моля) III и 0.6 r (0,025 моля) натрия, растворенного в 30 мл сухого метанола, кипятят 2-3 ч. Отгоняют метанол, добавляют 50 мл воды и экстрагируют хлороформом (2×20 мл). Хлороформный слой сушат сульфатом натрия и после отгонки растворителя остаток кристаллизуют гексаном (табл.). Спектр ПМР, СДС l_3 , м.д.: 2,30 с (3H, C^2 -CH $_3$), 2,52 с (3H, C^6 -CH $_3$), 3,93 с (3H, OCH $_3$), 6,20 с (1H, CH).

6-Анилипо-5-(2',3'-дибром)пропил-2-метил-4-хлорпиримидин (V). К раствору 2,6 г (0.01 моля) II в 20 мл клороформа прикапывают 1,6 г (0.01 моля) брома растворенного в 10 мл клороформа. Отгоняют клороформ, добавляют 25 мл этанола или ацетона и кипятят 7-8 ч. Охлаждают, кристаллы фильтруют, сущат и перекристаллизовывают из гексана (табл.). Мол. вес 417/419 (масс-спектр).

5-ԱՐԻՐ-3-ՈՐՔԵՐԻ ՀԵՐՈՐ ՀԵՐԻՐ ԱՌՈՐ ԱՐԵՐԻ ԵՐԻՐ ԱՐԵՐԻ ԵՐԻ ԵՐԻՐ ԱՐԵՐԻՐ ԱՐԵՐԻՐԻՐ ԱՐԵՐԻՐ ԱՐԵՐԻՐ ԱՐԵՐԻՐԻՐ ԱՐԵՐԻՐ ԱՐԵՐԻՐԻՐ ԱՐԵՐԻՐԻՐ ԱՐԵՐԻՐԻՐԻՐ ԱՐԵՐԻՐԻՐԻՐԻՐԻՐԻՐԻՐԻՐԻ

Վ. Է. ԽԱՉԱՏՐՅԱՆ, Հ. Ս. ԳԱՊՈՅԱՆ եւ Ռ. Գ. ՄԵԼԻՔ-ՕՀԱՆՋԱՆՅԱՆ

5-Ալիլ-4,6-դիբլոր-3-մենիկալիրիմիդինից ստացված են Համապատասիան 4-քլոր-6անիյինպիրիմիդիններ: Այս նյուների բրոմացման ռեակցիայի ուսումնասիրունյունը ցույց տվեց, որ 4-քյոր-6-Հիդրոչքսիպիրիմիդինի դեպչում առաջանում է 6-բրոմմենիլ-5,6դիՀիդրոմիուրո(2,3-մ)պիրիմիդին, իսկ անիյինպիրիմիդինի դեպչում՝ 5-(2',3'-դիբրոմ) արոսլիլածանցյալը:

BROMINATION OF 5-ALLYL-4-CHLORO-6-HYDROXY-2-METHYL-AND 5-ALLYL-6-CHLORO-2-METHYLPYRYMIDINES

V. E. KHACHATRYAN, H. S. GAPOYAN and R. G. MELIK-OHANJANYAN

Corresponding 5-allyl-4-chloro-6-hydroxy-2-methyl- and 5-allyl-6-chloro-2-methylpyrimidines have been obtained from 5-allyl-4,6-dichloro-2-methylpyrimidine. Investigation of bromination reaction of these compounds has shiwed, that 4-chloro-2-methyl-6-bromomethyl-5,6-dihydrofuro(2,3-d)pyrimidine has been formed in the case of 5-allyl-4-chloro-6-hydroxy-2-methylpyrimidine, while 5-allyl-6-anilino-4-chloro-2-methylpyrimidines gave only the 5-(2',3'-dibromo)propylderivative.

Reaction of 4-chloro-2-methyl-6-bromomethyl-5,6-dihydrofuro(2,3-d)pyrimidine

with sodium methylate gave 2,6-dimethyl-4-methoxy-furo(2,3-d)pyrimidine.

ЛИТЕРАТУРА

- [1] *Мелик-Оганджанян Р.Г., Гапоян А.С., Хачатрян В.Э., Мирзоян В.С., Па-* поян С.А. // Арм. хим. ж., 1980, т.33, №12, с.1020.
- [2] *Мелик-Оганджанян Р.Г., Гапоян А.С. Хачатрян В.Э., Мирзоян В.С. //* ХГС, 1982, №12, с.1686.
- [3] *Гапоян А.С., Мирзоян В.С., Хачатрян В.Э., Мелик-Оганджанян Р.Г.* // Арм. хим. ж.,1988, т.41, №6, с.339.
- [4] Мелик-Оганджанян Р.Г., Данагулян Г.Г., Фаградян С.А., Мирзоян В.С., Охикян В.М., Алавердова Л.Г., Агабабян Р.В., Акопян Л.Г., Папоян С.А. // Хим.фарм. ж., 1983, т.17,№3, с.299.