ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱՉԳԱՅԻՆ ԱԿԱԴԵՄԻԱ

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հայաստանի քիմիական հանդես 50, №3-4, 1997 Химический журнал Армении

ОБЩАЯ И ФИЗИЧЕСКАЯ ХИМИЯ

УДК 947.979.733+543.422.4

ПРЯМОЙ СИНТЕЗ НИТРОЗИЛЬНОГО КОМПЛЕКСА МЕЗО-ТЕТРАФЕНИЛПОРФИРИНАТОЖЕЛЕЗА (II) И ЕГО ИНФРАКРАСНЫЙ СПЕКТР

Т. С. КУРТИКЯН, А. В. ГАСПАРЯН и М. Е. АКОПЯН

Армянский научно-исследовательский институт прикладной химии "АРИАК", Ереван

Поступило 7 VI 1996

Действием окиси азота на низкотемпературные сублимированные слои мезотетрафенилпорфиринатожелеза (II) (FeTФП) осуществлен прямой синтез его мононитрозильного аксиального комплекса ON FeTФП. Комплекс устойчив в твердой фазе, однако медленно разлагается в растворе с образованием µ-оксодимера (FeTФП)_zO. Частота v(NO) валентных колебаний координированной нитрозильной группы в ИК спектрах проявляет заметную чувствительность к межмолекулярным взаимодействиям, осуществляемым в твердой фазе. Анализ ИК спектров в области структурно-чувствительных полос поглощения, связанных с колебаниями порфиринового макроцикла, говорит в пользу низкоспинового Fe(II) состояния в комплексе.

Рис. 2, библ. ссылок 26.

В последние годы резко возрос интерес исследователей к молекуле окиси азота в связи с выявлением все новых аспектов действия этой высокореакционной свободно-радикальной молекулы в различных физиологических процессах. Установлено, в частности, что NO является регулятором давления крови, действует как нейропередатчик, содействует имунной системе в уничтожении опухолевых клеток и внутриклеточных паразитов [1-4].

Полученный в настоящее время экспериментальный материал дает основание полагать, что во многих случаях физиологическая активность NO связана с ее способностью взаимодействовать с гем-содержащими ферментами. Так, например, NO активирует растворимую гуанилилциклазу, внутриклеточный фермент, катализирующий конверсию гуанозин 5'-трифосфата в цикло 3'-, 5'-гуанозин монофосфат, который в клетке играет регуляторные функции [5]. Молекулярный механизм этого процесса скорее всего связан с вытеснением аксиальных лигандов гема в гуанилилциклазе молекулой NO, ведущим к конформационным изменениям фермента и его активации [6]. Участие металлопорфиринов, способных к образованию относительно стабильных комплексов с NO, в транспортировке и хранении последней также кажется вполне реальным [7]. Следует добавить, что принимающая в самом синтезе окиси азота NO-синтаза содержит две простетические гем-содержащие группы [8].

Гем-содержащие простетические группы, располагаясь обычно в гидрофобной полости фермента, находятся в достаточно плотном окружении белковых аминокислотных остатков и практически не контактируют с окружающей белок средой [9]. С этой точки зрения условия, при которых взаимодействия NO с гем-моделирующими ферропорфиринами осуществляются в твердой фазе, по ряду параметров (диэлектрическая проницаемость слоя, гидрофобное окружение, отсутствие растворителя и т.д.) ближе к реально имеющим место, нежели взаимодействия, реализуемые в растворах с изолированными молекулами.

Недавно было показано [10], что низкотемпературные сублиматы мезо-тетрафенилзамещенных металлопорфиринов обладают микропористой структурой, создающей возможность беспрепятственной диффузии потенциальных реагентов в объем слоя. Пользуясь этим, в настоящей работе исследовалась возможность комплексообразования NO с сублимированными слоями мезо-тетрафенилпорфиринатожелеза (II) (FeTФП), который, благодаря относительно высоким выходам при синтезе, чаще других используется в качестве гем-моделирующего порфирина. ИК спектры ON-FeTФП, за исключением частоты v(NO), в литературе не приводились. В тоже самое время, как показало исследование ИК спектров большого числа аксиальных комплексов ферропорфиринов [11], некоторые колебания порфиринового макроцикла проявляют закономерные изменения по частоте в зависимости от окислительного и спинового состояния железа в экстракомплексе.

Поэтому представлялось интересным провести анализ спектров ОN-FeTФП также в области колебаний самого порфирина.

Экспериментальная часть

Методика получения низкотемпературных сублимированных слоев FeTФП для получения ИК и электронных спектров поглощения детально описана в [12]. В той же работе приведены сведения о синтезе и очистке устойчивого на воздухе комплекса FeTФП (Пиперидин)₂, служившего исходным материалом для получения сублиматов FeTФП. В отличие от [12] в настоящей работе взаимодействие NO с FeTФП велось не в условиях их совместного осаждения на низкотемпературную подложку, а следующим образом. После конденсации на подложку, охлаждаемую жидким азотом, слоя FeTФП подходящей толщины, различной для получения ИК и электронных спектров, доливка азота прекращалась, и в условиях нагрева сублимата на слой порфирина через вентиль тонкой регулировки и инжектор с малой скоростью ~0,6 ммоль/ч запускалась NO. Далее криостат откачивался и производилась съемка спектров. ИК спектры пропускания в области 3800-400 см¹ снимались на спектрофотометрах "Specord M-80" и "Specord IR 75", электронные спектры поглощения в области 300-800 нм - на приборах "Specord M-40" и "Specord UV-Vis".

Обсуждение результатов

Как видно из рис.1, напуск NO на сублимированный слой порфирина приводит к появлению новой, самой интенсивной в спектре полосы поглощения при 1678 *см*⁻¹, что является свидетельством образования пятикоординированного нитрозильного комплекса ON-FeTФП [13]. Об этом говорят также электронные спектры поглощения, которые находятся в согласии с данными, приводимыми в литературе [13,14].

Рис. 1. ИК спектры низкотемпературного сублимированного слоя FeTФП до (а.) и после напуска на слой NO (б.). в. — после отжига в вакууме образца, характеризуемого спектром б.

При более низкой температуре подложки нам удавалось наблюдать менее устойчивый динитрозильный комплекс (ON)₂. FeTФП, характеризуемый дополнительной ИК полосой *v*(NO) при 1870 *см*⁻¹ [14]. При комнатных же температурах основным продуктом взаимодействия NO с FeTФП является мононитрозильный комплекс ON·FeTФП.

Вещество с подложки, растворенное в ССІ₄, проявляет полосу *v*(NO) координированной окиси азота при 1679 *см*⁻¹, которая с течением времени убывает по интенсивности и через ~2 ч исчезает полностью (рис.2а,б). Одновременно в области 870-890 *см*⁻¹ растут по интенсивности две характерные для колебания *v*(Fe-O-Fe) полосы µ-оксодимеров железопорфиринов [11], а спин-чувствительная полоса при 1347 см⁻¹ претерпевает низкочастотный сдвиг примерно на 10 см⁻¹, свидетельствуя о переходе в высокоспиновое состояние [11]. (В спектре кюветы, снятом после удаления из нее раствора, обнаруживается полоса при 1352 см⁻¹, связанная с взаимодействием образуемого в растворе NO₂ с пластинками КВг. В спектре 26 она проявляется в виде плеча полосы при 1338 см⁻¹.) Известно, что нитрозильные комплексы железопорфиринов в растворах легко теряют NO в присутствии азотистых оснований [15] и в условиях лазерного облучения [16]. Полученные в настоящей работе данные показывают, что отщепление NO в растворе происходит и в отсутствие этих факторов.

Рис.2. ИК спектры ON·FeTФП в растворе CCI₄: а. — сразу после растворения, 6. — через 2 ч. Толщина кюветы 0,06 *см*. Область с интенсивными полосами поглощения растворителя пропущена.

Таким образом, в растворе нитрозильный комплекс ON-FeTФП неустойчив, тогда как в твердом состоянии даже многочасовая откачка высоким вакуумом при повышенных температурах подложки (до 70°С) не приводит к заметному снижению интенсивности полосы v(NO). В то же самое время v(NO) претерпевает заметный высокочастотный сдвиг (рис.1в) до 1700 см⁻¹. При этом в спектре наблюдается также относительный

рост интенсивности полос при 1174 и 751 см¹ и небольшой высокочастотный сдвиг некоторых других полос поглощения порфирина: 1347->1349 см¹, 799->801 см¹. С аналогичным смещением полосы v(NO) при отжиге образца мы сталкивались ранее в случае ОN-СоТФП [17] и связали это с уплотнением структуры сублимированного слоя с возможным изменением угла Co-N-O. В случае с комплексом ON-FeTФП причиной такого смещения могло быть наличие в образце, характеризуемом спектром 16, шестого координированного лиганда. Такие комплексы, в отличие от ОN-СоТФП, для нитрозильных комплексов ферропорфиринов известны [18]. Так, v(NO) в комплексе ON-FeTФП-Пип. располагается при 1680 см¹ [14], тогда как, согласно той же работе, в пятикоординированном комплексе ON-FeTФП v(NO) - 1700 см¹. Поскольку в наших экспериментах при получении сублимированных слоев FeTФП мы исходили из FeTФП(Пип)2, нельзя было полностью исключить присутствие пиперидина в слоях комнатной температуры. Тогда было бы естественно связать смещение v(NO) от 1678 до 1700 см¹ с отщеплением пиперидина при откачке нагретого слоя. Тем не менее, по ряду причин мы склонны отказаться от такой интерпретации наблюдаемого смещения. Вопервых, в спектре а. на рис.1 мы не наблюдали каких-либо свидетельств присутствия координированного пиперидина. Вовторых, слои ON-CoTФП после отжига проявляют тот же высокочастотный сдвиг, хотя в этом случае в ходе экспериментов пиперидин не присутствовал. К тому же шестикоординированные нитрозильные комплексы СоТФП с азотистым основанием в транс-положении к нитрозильной группе не удавалось получить [19]. Показательно также, что при температурной обработке как ОN СоТФП, так и ОN FeTФП растут по интенсивности одни и те же полосы в области 1180 и 750 см¹. Их следует отнести к деформационным колебаниям СН-связей фенильных колец [20]. т.е. к колебаниям именно тех связей, которые, находясь на периферии молекулы, должны быть наиболее сильно подвержены влиянию окружения. В-третьих, сделан рентгеноструктурный анализ [13] ОN FeTФП, в котором в наличие шестого лиганда никак нельзя было не заметить. В то же время значение v(NO) указывается равным 1670 см¹.

Следует отметить, что приводимые для частоты v(NO) ОN-FеТФП литературные данные варьируют в широких пределах от 1670 [13] до 1700 см⁻¹ [14]. В нашем случае v(NO) располагается при 1679 см⁻¹ для неотожженных и 1700 см⁻¹ для отожженных образцов. Надо полагать поэтому, что предположение о высокой чувствительности v(NO) к межмолекулярным взаимодействиям, осуществляемым в твердой фазе, близко к истине. Следует добавить, что зависимость от состояния образца проявляет и частота другого координированного двухатомного лиганда — молекулярного кислорода [21].

Механизм действия на частоту ν (NO) ближайшего окружения может заключаться как в изменении угла наклона NO к плоскости порфирина, равного 59° в кристалле ON-FeTФП [13], так и в электронном влиянии соседней молекулы на координированную NO. О том, что взаимодействия такого рода могут быть очень сильны, говорит обнаруженный в [22] факт резонансного усиления в спектрах комбинационного рассеяния света некоторых колебаний молекул растворителя, либо избытка лиганда, находящихся в контакте с координированным кислородом.

Анализ ИК спектров большого числа аксильных комплексов железопорфиринов с N-,O-,S-[11] и C-[23] донорными лигандами дал возможность обнаружить структурно-чувствительные полосы в трех областях спектра. Полосы в области 1350 и 460 cm^{-1} спинчувствительны и попадают в интервалы 1353-1343 и 469-454 cm^{-1} для низкоспиновых и 1341-1333, 435-432 cm^{-1} для высокоспиновых комплексов. В ОN-FeTФП частоты соответствующих полос равны 1347 и 462 cm^{-1} и попадают в интервал частот для низкоспиновых комплексов. Данные ЭПР дают основание полагать, что делокализованный на d 20 орбитали металла неспаренный электрон берет начало с π^{-1} орбитали окиси азота [14]. При этом d_{хулиде} орбитали железа заполняются полностью, что дает основание говорить о формально низкоспиновом состоянии железа в комплексе — в согласии с ИК спектральными данными.

Полоса в области 800 *см*¹, огнесенная на основании ориентационных ИК измерений к неплоским деформационным колебаниям порфиринового макроцикла [24], в основном проявляет зависимость от окислительного состояния железа в комплексе [11]. Однако интервалы частот перекрываются: 790-800 *см*¹ для Fe(II) и 799-806 *см*¹ для Fe(III) комплексов. Отмеченная полоса проявляется в нашем случае при 799 *см*¹ и, располагаясь на границе этих интервалов, не может быть полезной в вопросе выяснения окислительного состояния железа в ON FeTФП.

В нитрозильных комплексах переходных металлов расположение частоты v(NO) в наблюдаемой области обычно связывают с NO [25]. Исходя из этого соединение ON FeTФП (Пип) было описано как комплекс формально трехвалентного железа Fe(III)·NO [26]. Однако, согласно ЭПР данным, неспаренный электрон с π' орбитали окиси азота в комплексе находится на молекулярной орбитали с значительным вкладом d ,2 орбитали железа [13]. Таким образом пустая d 2 орбиталь Fe(II) функционирует как акценторная орбиталь, что должно приводить даже к частичному восстановлению Fe(II). Причиной же относительно низкого значения v(NO) является, по-видимому, изогнутость фрагмента Fe-N-O, снимающая вырождение с заполненных πорбиталей NO и меняющая их энергию. Надо полагать, что корреляция и(NO) с окислительным состоянием в нитрозильных комплексах изогнутого строения не является строгой, и с доста-ΟΝ ΓεΤΦΠ что точной уверенностью можно утверждать, представляет собой комплекс низкоспинового Fe(II).

ՄԵՁՈ-ՏԵՏԲԱՖԵՆԻԼՊՈԲՖԻԲԻՆԱՏՈԵԲԿԱԹԻ (II) ՆԻՏԲՈՁԻԼԱՅԻՆ ԿՈՍՊԼԵՔՍԻ ԱՆՍԻՋԱԿԱՆ ՍԻՆԹԵՁԸ ԵՎ ՆԲԱ ԻՆՖԲԱԿԱՐՄԻԲ ՍՊԵԿՏԲԸ

S. U. ԿՈՒՐՏԻԿՅԱՆ, Ա. Վ. ԳԱՍՊԱՐՅԱՆ և Մ. Ե. ՀԱԿՈԲՅԱՆ

Մնդո-տետրաֆենիլպորֆիրինատոհրկաՅի (11) (FeSՖ 9) ցածը ջերմաստիճանա յին սուբլիմված Թաղանծների վրա ապոտի օքսիդի անմիջական ապղեցությամբ ստացված է առաջինիս մոնոնիարոգիլային աքսիալ կոմպլեքսը՝ ON·FeSՖ 9: Պինդ ֆազայում այն կայուն է, սակայն լուծված վիճակում դանդաղ քայքայվում է առաջացնելով μ-օքսոդիմեր (FeSՖ 9)₂O: ԻԿ սպեկարներում կոորդինացված նիտրոգիլ խմրի v(NO) վալննտական տատանման Հաճախականության արծեքը զգայուն է պինդ ֆազայում իրականացող միջմոլեկուլյար փոխագդեցությունների նկատմամբ: Նախկինում Հայտնաբերված կառուցվածքային զգայնություն ցուցաբերող շերտերի տիրույթներում ԻԿ ապեկտըների անալիգը խոսում է կոմպլեքսում Fe(11) ցածրապինային վիճակի օգտին։

DIRECT SYNTHESIS OF NITROSYL-MESO-TETRAPHENYLPORPHYRINATOIRON (II) AND ITS IR SPECTRA

T. S. KURTIKYAN, A. V. GASPARYAN and M. E. HAKOPYAN

The action of nitric oxide on the low temperature sublimated films of mesotetraphenylporphyrinatoiron (II) (FeTPP) leads to the formation of ON-FeTPP complex. The latter is stable in the solid state, but slowly decomposes in the solution with μ -oxodimer formation. The stretching frequency v(NO) of the coordinated nitrosyl group is very sensitive to the intermolecular forces in the solid state. The analysis of IR spectra in the structure-sensitive bands region favours the low spin Fe(II) state which is in agreement with ESR data.

ЛИТЕРАТУРА

- Feldman P.L., Griffith O.W., Stuehr D.J. Chem. Eng. News, 1993, v.71, №51, p.26.
- Karupian G., Xie Q., Buller M.L., Nathan C., Duarte C., Mac Miching J.D. - Science, 1993, v.261, p.1445.
- 3. Lipton S.L. Nature, 1993, v.364, p.626.
- 4. Edelman G.M., Gally J.A. Proc. Natl. Acad. Sci. USA, 1992, v.89, p.11651.
- 5. Waldman S.A., Murad F. Pharnac. Rev., 1987, v.39, p.163.
- Yu A.E., Hu S., Spiro T.G., Burstyn J.N. J. Am. Chem. Soc., 1994, v.116, №9, p.4117.
- Morlino E.A., Walher L.A., Sension R.J., Rodgers M.A.J. J. Am. Chem. Soc., 1995, v.117, №15, p.4429.
- 8. McMillan K., Masters B.S.S. Biochemistry, 1993, v.32, p.9875.
- 9. Неорганическая биохимия /под ред. Г.Эйхгорна, т.2, М., Мир, 1978, с.256.
- Куртикян Т.С., Гаспарян А.В., Мартиросян Г.Г., Жамкочян Г.А. ЖПС, 1995, т.62, №6, с.62.
- Oshio H., Ama T., Watanabe T., Kincaid J., Nakamoto K. Spectrochim. Acta, 1984, v.40A, №9, p.863.
- 12. Куртикян Т.С., Мартиросян Г.Г., Гаспарян А.В., Акопян М.Е., Жамкочян Г.А. – ЖПС, 1990, т.53, №1, с.67.
- 13. Scheidt W.R., Frisse M.E. J. Am. Chem. Soc., 1975, v.97, №1, p.17.
- 14. Wayland B.B., Olson L.W. J. Am. Chem. Soc., 1974, v.96, p.6037.
- 15. Bohle S.D., Ch.Hung J. Am. Chem. Soc., 1995, v.117, №37, p.9584.
- 16. Hoshino M., Kogure M. J. Phys. Chem., 1989, v.93, №14, p.5478.
- Куртикян Т.С., Мартиросян Г.Г., Гаспарян А.В., Жамкочян Г.А. Хим. ж. Армении, 1995, т.48, №1-3, с.123.
- Piciulo P.L., Rupprecht G., Scheidt W.R. J. Am. Chem. Soc., 1974, v.96, №16, p.5293.
- 19. Kaduk J.A., Scheidt W.R. Inorg. Chem., 1974, v.13, №8, p.1875.
- 20. Hu S., Spiro T.G. J. Am. Chem. Soc., 1993, v.115, №25, p.12029.
- 21. Куртикян Т.С., Мадакян В.Н. Координ. химия, 1992, т.18, №8, с.869.

- Kincaid J.R., Proniewicz L.M., Bajdor K., Bruha A., Nakamoto K. J. Am. Chem. Soc., 1985, v.107, №24, p.6775.
- 23. *Куртикян Т.С., Гаспарян А.В., Акопян М.Е., Жамкочян Г.А.* Хим. ж. Армении, 1995 т.48, №1-3, с.40.
- 24. Куртикян Т.С., Мартиросян Г.Г., Гаспарян А.В., Жамкочян Г.А. ЖПС, 1993, т.59, №5-6, с.452.
- 25. *Накамото К. –* ИК спектры и спектры КР неорганических и координационных соединений. М., Мир, 1991, с.344.
- 26. Stynes D.V., Stynes H.C., James B.R., Ibers J.A. J. Am. Chem. Soc., 1973, v.95, №12, p.4088.