ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈՒԹՅԱՆ ԳԻՏՈՒԹՅՈՒՆՆԵՐԻ ԱԳԱԳԵԱԳԱՄԻԱ

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հայաստանի քիմիական հանդես 50, №1-2, 1997 Химический журнал Армении

УДК 615.31:547.572.3/0121

1,6-БИСАРИЛ-2,5-БИСМОРФОЛИНОМЕТИЛГЕКСАН-1,6-ДИОНЫ. БИОЛОГИЧЕСКАЯ АКТИВНОСТЬ ИХ ДИГИДРОХЛОРИДОВ

Г. А. ГЕВОРГЯН, С. А. ГАБРИЕЛЯН и Г. А. ПАНОСЯН

Институт тонкой органической химии им. А. Л. Мнджояна НАН Республики Армения, Ереван

Поступило 12 VIII 1994

Аминометилированием 1,6-бисарилгексан-1,6-дионов осуществлен синтез 1,6-бисарил-2,5-бисморфолинометилгексан-1,6-дионов. Изучены прогивовоспалительные, местноанестезирующие, противоморфинные свойства дигидрохлоридов полученных бисаминокетонов.

Табл. 1, библ. ссылок 4.

Исходя из того, что на биологическую активность аминокетонов существенное влияние оказывает характер аминного фрагмента, в продолжение наших исследований [1-3] мы сочли целесообразным получить 1,6-бисарил-2,5-бисморфолинометилгексан-1,6-дионы (I-VII) и их дигидрохлориды VIII-XIV.

 $R = H, CH_3O,..., C_5H_{11}O; изо - C_5H_{11}O.$

Аминокетоны I-VII синтезированы аминометилированием 1,6-бисарилгексан-1,6-дионов гидрохлоридом морфолина и параформом в среде диоксана с 46-73% выходом. Соединения I-VII представляют собой белые кристаллические вещества, не растворимые в воде. В ИК спектрах их наблюдается полоса поглощения карбонильной группы в области 1680-1675 см¹. В спектрах ПМР, кроме резонансных сигналов протонов, характерных для основных структурных фрагментов, наблюдаются также резонансные сигналы протонов алкоксизаместителей в бензольном кольце.

Изучены противовоспалительные, анальгетические, противоморфинные, а также местноанестезирующие свойства дигидрохлоридов VIII-XIV. Показано, что соединения X и XII обладают слабой местноанестезирующей активностью (24 и 37%, соответственно). Изученные соединения не обладают противовоспалительным, поверхностноанестезирующим и центральнообезболивающим действием.

Экспериментальная часть

Индивидуальность полученных соединений установлена методом ТСХ, которая выполнена на закрепленном слое силикагель-гипс с подвижной фазой н-бутанол-этанол-уксусная кислота-бензол-вода (8:2:1:1:3); проявитель — пары йода. ИК спектры сняты на спектрофотометре "UR-20" в виде пасты в вазелиновом масле. Спектры ПМР сняты на спектрометре "Varian T-60" с рабочей частотой 60 $M\Gamma \mu$, внутренний стандарт — ТМС, растворитель — СД3ОД.

1,6-Дифенил-2,5-бис(морфолинометил) гексан-1,6-дион (I). К смеси 26,6 r (0,1 моля) 1,6-дифенилгексан-1,6-диона, 24,6 r (0,2 моля) гидрохлорида морфолина, 6 r (0,2 моля) параформа в 150 мл диоксана прибавляют несколько капель концентрированной соляной кислоты (p=1,19). Реакционную смесь кипятят при 93°С в течение 10 π . Смесь разделяется на два слоя. Сливают верхний слой. Нижний растирают с эфиром для удаления исходного гександиона. Остаток растворяют в воде и обрабатывают 40% раствором едкого натра. Отфильтровывают осадок, получают 33 r (73%) соединения I.

1,6-Бисарил-2,5-бис(морфолинометил) гексан-1,6-дионы (I-VII) и их дигидрохлориды (VIII-XIV)

Соединсние	R	Выход.	Т.пл., °С	R ₁	Найдено, %				Брутто-формула	Вычислено, %			
		%		'	С	Н	N	Cl		C	Н	N	Cl
1	Н	73,0	106-08	0,49	72,40	7,95	6,45		C ₂₈ H ₃₆ N ₂ O ₄	72,38	7,81	6,03	
II	CH₃O	70,0	108-111	0,45	68,35	7,32	4,98		C30H40N2O6	68,68	7,68	4,57	
III	C ₂ H ₅ O	52,0	100-101	0,43	69,32	8,20	5,40		C32H44N2O6	69,54	8,02	5,07	
ľV	C ₃ H ₇ O	57,5	95-97	0,40	71,20	8,68	4,37		C31H48N-06	70,32	8,33	4,82	
V	C ₄ H ₉ O	46,0	98-100	0,45	71,26	9,05	5,03		C ₃₆ H ₅₂ N ₂ O ₆	71,04	8,61	4,60	
· VI	C ₅ H ₁₁ O	52,8	94-96	0,53 .	71,73	8,76	4,52		C ₃₈ H ₅₆ N ₂ O ₆	71,68	8,86	4,40	
VII	изо-С ₅ НиО	55,6	118-20	0,63	71,23	8,26	4,22		C ₃₈ H ₅₆ N ₂ O ₆	71,68	8,86	4,40	
VIII	H		184-86	0,46			5,08	12,97	C28H36N2O8 2HC1			5,20	13,19
IX	CH ₃ O		176-78	0,45			4,54	11,95	C ₃₀ H _{.10} N ₂ O ₆ 2HCl			4,68	11,86
X	C ₂ H ₅ O		192-193	0,43			4,42		C ₃₂ H ₄₄ N ₂ O ₆ ·2HCl			4,47	11,33
XI	C ₃ H ₇ O		173-74	0,45			4,81	10,50	C ₃₄ H ₄₈ N ₂ O ₆ ·2HCl			4,28	10,86
XII	C ₄ H ₉ O		152-54	0,50			4,32	10,36	C ₃₆ H ₅₂ N ₂ O ₆ ·2HCl			4,10	10,40
XIII	C _s H _{II} O		189-90	0,49			4,25		C ₃₈ H ₅₆ N ₂ O ₆ ·2HCl			3,94	9,99
XIV	нзо-С₅Н₁1О		162-64	0,48			3,80	10,04	C ₃₈ H ₅₆ N ₂ O ₆ ·2HCI			3,94	9,99

1,6-Бис(4-алкоксифенил)-2,5-бис-(морфолинометил)гексан-1,6-дионы (II-VII) синтезируют аналогично диаминодикетону I из 0,1 моля исходных 1,6-бис(4-алкоксифенил)гексан-1,6-дионов, 0,2 моля гидрохлорида морфолина и 0,2 моля параформа в среде диоксана. Константы приведены в таблице.

Дигидрохлориды 1,6-бисарил-2,5-бис(морфолинометил) гексан-1,6-дионов (VIII-XIV) получены прибавлением по каплям насыщенного раствора хлористого водорода в абсолютном эфире к эфирному раствору соответствующего диаминодикетона. Выпавший в осадок дигидрохлорид отфильтровывают, промывают абсолютным эфиром, перекристаллизовывают из ацетона. Константы приведены в таблице.

Спектры ПМР, ö, м.д. (СД₃ОД):

X: 1,38 τ (CH₃, 7,0 Γ μ); 4,05 κ B (OCH₂); 6,85-7,80 M (8H, аром.).

XI: 1,00 τ (CH₃, 7,0 Γ μ), 1,75 M (CH₂); 3,95 τ (OCH₂, 6.5 Γ μ); 6,86-7,82 (8H, apom.).

XII: 0.95 M (CH₃), 1.6-1.8 M (4H, CH₂-CH₂); 4.03 τ (OCH₂, 6.0 ΓR); 6.87-7.82 (8H, apom.).

Исходные 1,6-бисарилгексан-1,6-дионы получены по методике [4].

1.6-ՔԻՍԱՐԵԼ-2,5-ՔԻՍՄՈՐՖՈԼԻՆԱՄԵԹԻԼՀԵՔՍԱՆ-1,6-ԴԻՈՆՆԵՐ։ ጌՐԱՆՑ ԴԻՀԻՂՐԸ ԱՐՈՐԵՅՈՒՆԸ

Գ. Ա. ԳԵՎՈՐԳՅԱՆ, Ս. Հ. ԳԱԲՐԻԵԼՅԱՆ և Հ. Հ. ՓԱՆՈՍՅԱՆ

1,6-ԲիսարիլՀեքսան-1.6-դիոնների ամինամեխիլացմամբ իրականացված է 1,6-րիսարիլ-2,5-րիսմորֆոլինամեխիլ-1,6-դիոնների սինխեզը։ Ուսումնասիրված են ստացված բիսամինակետոնների դիՀիդրոքլորիդների հակարորբոքային, տեղային անզգայացնող և ցավագրկող Հատկությունները։

1,6-BISARYL-2,5-BISMORPHOLINOMETHYLHEXANE-2,5-DIONES. BIOLOGICAL ACTIVITY OF THEIR DIHYDROCHLORIDES

G. A. GEVORGIAN, S. H. GABRIELIAN and H. A. PANOSIAN

1,6-Bisaryl-2,5-bismorpholinomethylhexane-2,5-diones have been synthesized by aminomethylation reaction of 1,6-bisarylhexane-1,6-diones. Antiinflammatory, local anesthetic and analgesic properties of dihydrochlorides of the obtained compounds were studied.

ЛИТЕРАТУРА

- Петросян Л.М., Геворіян Г.А., Погосян А.В., Маркарян К.Ж., Чачоян А.А., Авакян О.М., Миджоян О.Л. — Хим.-фарм. ж., 1983, т.17, №10, с.1208.
- Геворгян Г.А., Петросян Л.М., Исаханян А.У., Енгоян А.П., Апоян Н.А., Мелконян Ж.С., Дургарян Л.К., Акопян А.З., Миджоян О.Л. — Арм. хим. ж., 1993, т.46, №3-4, с.209.
- 3. Геворгян Г.А., Габриелян С.А., Акопян Н.А., Дургарян А.К., Акопян А.З., Мелконян Ж.С. Арм. хим. ж., 1995, т.48, №1-3, с.150.
- 4. Петросян Л.М., Геворгян Г.А., Самвелян К.Г., Чачоян А.А., Казарян Э.А., Гарибджанян Б.Т., Миджоян О.Л. Хим.-фарм. ж.. 1986, т.20, №6, с.664.