ՎՊԺԺԺՎՈՑԹՎՈՋՎՔ ԺՍՑԹՎՈՋԺԽՍԴԺԱՆ ՎԺՍՏՍՍՑՍ ԱՎԵՍԻԱՄ ԱՎԵՍԻԱՄ

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ АРМЕНИЯ

Հшյшилшնի քիմիшկшն հшնդես 50, №1-2, 1997 Химический журнал Армении

УДК 548.736:546.443.2

СИНТЕЗ СЛОЖНЫХ ОКСИДОВ СО СТРУКТУРОЙ ШПИНЕЛИ В НИЗКОТЕМПЕРАТУРНОЙ ПЛАЗМЕ 1У. СИНТЕЗ И РЕНТТЕНОГРАФИЧЕСКОЕ ИССЛЕДОВАНИЕ СОЕДИНЕНИЙ СОСТАВОВ Zn_{2-x}Sn_{1-x}Fe_{2x}O₄

Р. А. ГРИГОРЯН, Л. А. ГРИГОРЯН, С. К. ГРИГОРЯН и Г. Г. БАБАЯН

Ереванский государственный университет

Поступило 7 VI 1994

В предыдущих сообщениях [1-3] была показана возможность синтеза тугоплавких сложных оксидов в низкотемпературной плазме. В отличие от обычно применяемый керамической технологии синтез в низкотемпературной плазме не требует многочасовой и сложной термической обработки. Этот метод успешно был применен для синтеза ортотитанатстаннатов, ортотитанатферратов цинка.

Ортостаннат цинка Zn_2SnO_4 , как и другие сложные оксиды со структурой шпинели, представляют практический интерес как диэлектрические и изоляционные материалы (СВЧ-керамика и др.). Твердые растворы с широкой областью гомогенности, получаемые заменой атомов в ортостаннате цинка, представляют собой не только практический, но и теоретический интерес. Было установлено, что замена атомов олова на атомы титана приводит к образованию однофазных твердых растворов без существенного изменения кристаллической решетки [1]. Замена атомов олова на атомы циркония тоже приводит к образованию твердых растворов. Однако в этом случае наблюдается постепенное тетраэдрическое искажение кубической решетки

шпинели и уменьшение диэлектрической постоянной по мере увеличения содержания циркония [2].

Настоящее сообщение посвящено исследованию возможности одновременной замены атомов цинка и олова в ортостаннате цинка на атомы железа (Ш). Подобная замена атомов кажется возможной не только из-за близости ионных раднусов ($Zn^{2-} - 0.072$, $Sn^{4+} - 0.071$. $Fe^{3+} - 0.071$ HM)[4], но и из-за склонности железа на окта- и тетраэдрическую координацию. Аналогичная замена атомов в ортотитанате цинка приводит к непрерывным твердым растворам [3].

Экспериментальная часть и обсуждение результатов

псевдобинарная исследована система Zn₂SnO₄-Была ZnFe₂O₄. С этой целью были синтезированы соединения составов Zn2, Sn1, Fe2, O4. В качестве исходных веществ были использованы ZnO, SnO₂, и Fe₂O₃ ("х.ч."). Навески рассчитанных количеств оксидов тщательно измельчали и перемешивали в агатовой ступке, затем прессовали в виде цилиндрических таблеток образцы составов приготовлены (2-x)ZnO(1-x) $S_nO_n \times F_{e_2}O_3$, $X=0\div 1$, через интервал 0,1. Синтез в низкотемпературной плазме водород-кислородного пламени осуществляли по методике. описанной ранее [5]. Для сравнения были также синтезированы соединения указанных составов по керамической технологии. Предварительный обжиг проводили при 1173 К в течение 6 ч, спекание - при 1473 К в течение 72 ч с двухкратным повторным размельчением и прессованием. С целью нивелирования структуры и свойств соединений, полученных разными методами, все синтезированные образцы подвергали обжигу при 1173 К в течение 12 ч и быстро охлаждали на воздухе [6].

Рентгенографическое исследование образцов проводили методом поропіка на установке "ДРОН-3" с использованием K_n -излучения медного анода. Образцы для измерения электропроводности готовили прессованием порошков в виде цилиндров $(1=2,2\,$ см, $d=1,0\,$ см). Измерения проводили с помощью терраомметров "Ф-507" и "E6-3".

Сравнение порошковых ренттенограмм соединений одинаковых составов, синтезированных в низкотемпературной плазме и по керамической технологии, показало их полную идентичность. В качестве иллюстрации в табл. 1 приведены значения межплоскостных расстоя ий в кристаллах одного из соединений ($Zn_{1.5}$: $Sn_{0.5}$: FeO_4), синтезированного в низкотемпературной плазме и по керамической технологии.

Таблица 1 Межплоскостные расстояния в кристалле соединения состава $Zn_{1,5}Sn_{0,5}FeO_4$, синтезированного в низкотемпературной плазме и керамическим способом

hkl	J	d, A		hkl	j	d, A	
		плазма	керамич.			плазма	керамич.
111	28	4,9854	4,9854	533	47	1,1242	1,1238
311	100	2,6026	2,6014	733	24	1,0548	1,0547
400	80	2,1583	2,1573	662	18	0,99050	0,98993
				844	53	0,88110	0.88069

Сравнение порошковых рентгенограмм всех синтезированных соединений показало, что система $Zn_{2-x}\cdot Sn_{1-x}\cdot Fe_{2x}O_4$ представляет собой непрерывный ряд твердых растворов.

Tаблица 2 Межплоскостное расстояние (d, Λ) в кристаллах соединений составов $Z_{n_2,x}S_{n_1,x}Fe_{2x}O_4$, синтезированных в низкотемпературной плазме

hkl	J	x = 0	x = 0.4	x = 0.8	x = 1.0
111	28	4,9854	4,9404	4,8959	4,8798
311	100	2,6026	2,5785	2,5577	2,5472
400	80	2,1584	2,1378	2,1210	2,1125
553	47	1,1242	1,1138	1,1040	1,1000
733	24	1,0544	1,0452	1,0362	1,0325
662	18	0,99050	0,98580	0,97307	0,96917
844	53	0,88110	6,37314	0,86589	0,86263

Рентгенограммы всех синтезированных соединений были индицированы в кубической системе. В табл. 2 приведены значения межплоскостных расстояний и результаты индицирования рентгенограмм соединений составов x = 0.4; 0.8; 1.0.

Применение закона погасаний [7] позволило установить, что все синтезированные соединения принадлежат к пространственной группе Fd3m. Число формульных единиц в элементарной ячейке равно 8. Значения параметров элементарных ячеек приведены в табл.3.

Таблица З Параметры элементарной ячейки и плотности соединений составов $\mathbf{Zn}_{2\cdot x}\mathbf{Sn}_{1\cdot x}\mathbf{Fe}_{2x}\mathbf{O}_{4}$ синтезированных в низкотемпературной плазме и по керамической технологии

	Низко	гемпературн	ая плазма	Керамическая технология (0,015) плотность, г/см			
x	(0,015) плотнос	ть, <i>г/см</i> ³				
	Å	ренттен.	шикном.	A	ренттен.	пикном.	
0.0	8,634	6,468	6,4	8,630	6,447	6,3	
0,2	8.593	6,244	6, 1	8,593	6,257	6,0	
0,4	8,554	6,036	5,8	8,560	6,023	5,6	
0,6	8,521	-5,796	5,7	8,515	5,808	5,5	
0,8	8,482	5,550	5,3	8,486	5,540	5,2	
1,0	8,450	5,906	5,1	8,460	5.286	5,0	

Из таблицы видно, что замена ионов Zn² и Sn⁴ на ионы Fe³ приводит к небольшому и постепенному уменьшению параметра элементарной ячейки. Одновременно более значительно уменьшается плотность соединений. Тетрагональное искажение кубической системы кристаллической решетки ортостанната цинка, обнаруженное ранее [8], нами не было установлено рентгенографически. Следует отметить, однако, что при исследовании соединений системы ортостаннат-ортоцирконат методом мессбауровской спектроскопии [2], было установлено тетрагональное искажение кислородного окружения атомов олова. Подобное искажение окружения олова в ортостаннате цинка было установлено и ранее [9].

Известно, что ортостаннат цинка кристаллизуется в структуре обращенной шпинели с $\lambda = 0,5$: атомы олова и половина атомов цинка занимают октаэдрические пустоты подрешетки кислорода [10]. Остальные восемь атомов цинка паходятся в тетраэдрических пустотах. Вводимые атомы железа замещают атомы цинка и олова, находящиеся в октаэдрических

пустотах, что приводит к постепенному уменьшению степени обращенности структуры. При x=1 атомы железа занимают все октаэдрические позиции, ранее занятые атомами олова и цинка. Остальные 8 атомов цинка остаются в тетраэдрических пустотах: $ZnFe_2O_4$ имеет структуру нормальной шпинели [10].

Электропроводность образцов измеряли в температурном интервале 273-573 K. Все синтезированные соединения являются диэлектриками с удельным электросопротивлением от 10^{12} до 10^{5} $Om\ cm$ (при 293 K) в зависимости от состава. Увеличение содержания приводит к росту электропроводности до четырех порядков. Графики зависимости логарифма электропроводности от температуры (1/T) синтезированных соединений представляют собой прямые линии с выраженным изломом в области температур 305-340 K, выше которых электропроводность обусловлена проводимостью и описывается уравнением $\sigma = \sigma_0 \exp(-\Delta E/kT)$.

ЛИТЕРАТУРА

- Григорян Р.А., Григорян Л.А., Бабаян Г.Г. Арм. хим. ж., 1989, т.42, №4, с.231.
- 2. Григорян Р.А., Ованесян Н.С., Бабаян Г.Г., Григорян Л.А. Арм. хим. ж., 1990, т.43, №4, с.232.
- 3. Грисорян Л.А., Григорян Р.А., Бабаян Г.Г. Арм. хим. ж., 1991, т.44, №5, с.279.
- 4. *Нараи-Сабо И.* Неорганическая кристаллохимия, Будапешт, 1969, с.56.
- 5. *Григорян Р.А., Бабаян Г.Г., Григорян Л.А.* Химия и технология редких и рассеянных элементов, Ереван, ЕГУ, 1981, вып.2, с.269.
- 6. Visent H., Joubert J.C., Durif A. Bull. Soc. Chim., France, 1966, №1, p.246.
- 7. *Миркин Л.И.* Справочник по ренттенографическому анализу поликристаллов. М., Изд. физ.-мат. лит., 1961, с.220.
- 8. Lotgering E.K. J. Phys. Soc. Japan, 1962, v.17, B-1, p.217.
- 9. Иоффе П.А., Баклачин А.А., Козлова В.А. ЖНХ, 1975, т.20, №6, с.1172.
- 10. Уэмис А. Структурная неорганическая химия, М., Мир, 1987, т.2, с.312.