ՀԱՅԱՍՏԱՆԻ ՀԱՆՐԱՊԵՏՈԻԹՅԱՆ ԳԻՏՈԻԹՅՈԻՆՆԵՐԻ ԱԶԳԱՅԻՆ ԱԿԱԴԵՄԻԱ

НАЦИОНАЛЬНАЯ АКАДЕМИЯ НАУК РЕСПУБЛИКИ Армения

Հայաստանի քիմիական հանդես 49, №4, 1996 Химический журнал Армении

УДК 541.124:541.127:541.128.13:541.183:546.284

РАДИКАЛЬНЫЙ РАСПАД ПЕРОКСИДА ВОДОРОДА

НА ГРАНИЦЕ РАЗДЕЛА ФАЗ

Г.Л.ГРИГОРЯН

Ереванский государственный университет

Поступило 3.VI.1996

Изучен распад паров H_2O_2 на оксидах-изоляторах $(SiO_2, \gamma - AI_2O_3, MgO)$, оксидах-полупроводниках (ZnO, CuO) и платине. С помощью ЭПР показано образование радикалов OH и HO_2 на изоляторах и анион-радикалов O_2^- на полупроводниках. С помощью кинетического метода вымораживания радикалов (КМВР) показано, что во всех случаях в объем газа переходят радикалы HO_2 .

Рассчитаны кинетические и термодинамические характеристики разложения H_2O_2 , гетерогенной генерации и гибели радикалов HO_2 . Рассмотрен радикальный механизм распада H_2O_2 на оксидах-изоляторах.

Рис.3, табл.3, библ.ссылок 32.

В цепной теории Н.Н.Семенова [1] рассматривается возможность гетерогенного обрыва гомогенных цепей. Дальнейшие исследования показали, что на поверхности происходит не только гибель радикалов, но и другие превращения с участием радикалов. Это обстоятельство привело к пересмотру существующих представлений о химизме гетерогенных процессов. Начатые в семидесятых годах в Институте химической физики АН Армении исследования под руководством А.Б.Налбандяна по изучению механизмов гетерогенного превращения пероксидных соединений [2] (в том числе и пероксида водорода [3]) в этом аспекте занимают ведущее положение.

Если механизм гомогенного распада H_2O_2 можно считать хорошо изученным, то относительно гетерогенного распада существующие в литературе данные противоречивы. Одни авторы считают [4,5], что на поверхности твердого контакта разложение H_2O_2 протекает по механизму, где ведущее место занимают реакции радикалов OH и HO_2 , другие [6,7] представляют процесс с участием ионов OH^- , HO_2^- , O^- и O_2^- . Эти выводы авторов основаны на косвенных измерениях и нуждаются в доказательствах. Знание механизма гетерогенного распада пероксида водорода приобретает особую актуальность еще и в связи с тем, что с помощью H_2O_2 можно индуцировать и исследовать другие гетерогенно-гомогенные радикальные реакции при весьма низких температурах, некоторые из которых проявляют уникальные свойства [8].

В данной статье приводятся результаты комплексного исследования механизма гетерогенного распада паров H_2O_2 на уровне молекулярных продуктов и промежуточных активных частиц.

1. Закономерности разложения Н₂O₂

Эксперименты по гетерогенному распаду паров пероксида водорода осуществлялись в стеклянных реакторах на вакуумно-проточных установках [9-11]. Использовались различные по природе и активности твердые контакты, включая сравнительно пассивные стекла, оксидыизоляторы (SiO_2 , $\gamma - Al_2O_3$, MgO), оксиды-полупроводники (ZnO, CuO) и платина. Стекла (молибденовое, пирексовое и кварцевое) использовались в виде трубок (d = 0,6 см), платина - в виде сетки и пластинки толщиной 0,01 см, а оксиды - в виде таблеток, спрессованных из порошков. Твердые вещества были марки "х.ч.", а источником паров H_2O_2 служил концентрированный до 98% жидкий водород марки "ос.ч.".

В экспериментах были реализованы малые времена коңтакта $(10^{-6} - 10^{-2} \text{ с})$ и низкие давления паров H_2O_2 (P < 0,1 кПа). Температура процесса варьировалась в пределах от комнатной до 723K. Процесс в этих условиях протекает в кинетической области [9].

Активность использованных контактов в отношении распада H_2O_2 увеличивается в ряду: стекла $< SiO_2 < \gamma - Al_2O_3 < MgO < ZnO < CuO << платина. Распад пероксида на всех изученных образцах протекает по первому порядку [9,10]. Продуктами разложения являются вода и кислород. Исключение составляют те гетерогенные контакты, вещество которых вступает в непосредственную химическую реакцию с <math>H_2O_2$ [8].

В ходе разложения пероксида наблюдается изменение состояния поверхности [10,11], которое ярче проявляется для оксидов SiO₂ и <u> γ-Al₂O₃ при низких температурах. Кинетическая кривая разложения</u> пероксида в этих условиях имеет автокаталитический характер (рис. 1), т.е. на начальных стадиях наблюдается увеличение скорости разложения. Показано, что такое изменение связано с действием продукта реакции - воды. Малые количества воды активируют поверхность, а большие, наоборот, пассивируют ее [11]. При малых степенях заполнения молекулы воды связываются с центрами адсорбции координационной связью, а с увеличением степени заполнения - водородной связью [12]. Адсорбированная вода не покрывает поверхность равномерно и послойно, а образует кластеры толщиной 2 - 3 молекулярных диаметра [13,14]. Ядро кластеров составляют координационно-связанные молекулы воды, которые сильно протонизированы и являются активными центрами адсорбции. При больших заполнениях происходит смыкание кластеров и образуется полимолекулярная пленка воды. Судя по результатам отрицательного действия воды в области глубоких превращений H_2O_2 и уменьшению максимальной скорости при предварительной обработке образцов парами воды [10,11] можно полагать, что такая пленка в отношении разложения пероксида менее активна, чем изолированные кластеры. Откачка системы при температурах 350-450K приводит к удалению слабосвязанной с поверхностью воды, в результате чего разрушаются кластеры и поверхность переходит в первоначальное состояние, что и определяет обратимое изменение ее активности [11].

Рис. 1. Кинетические кривые расходования H_2O_2 на SiO_2(1) и $\gamma - Al_2O_3(2)$ в расчете на единицу поверхности. T = 423K.

Изменение COCTORния поверхности под влиянием различных факторов непосредственно отражается на значении энергии активации разложения пероксида (табл.1). Например, для $\gamma - Al_2O_3$ в области самоускорения процесса $(t < 1 \cdot 10^{-3} c)$ E = 23.3 кДж моль⁻¹, а при максимальных скоростях, когда активирующее действие воды наибольшее, значение

Е примерно в два раза меньше и составляет 11,0 кДж·моль⁻¹. Аналогичная картина наблюдается и для других оксидов.

Таблица 1.

Значения скорости разложения пероксида $(W_{\text{pas},n})$ и энергии активации (E) на различных поверхностях при коротких и больших временах контакта (t)

T,K	$W_{\text{pasn}} \cdot 10^{-17}$, $\text{vact} \cdot \text{cm}^{-3} \cdot \text{c}^{-1}$										
	при	<i>t</i> < 1 · 10	⁻³ c		при <i>t</i> > 1·10 ⁻³ с						
	стекло	SiO ₂	$\gamma - Al_2O_3$	MgO	стекло	SiO ₂	$\gamma - Al_2O_3$	MgO			
423	0,4	1,9	5,7	2,7	0,4	11,4	20,3	11,5			
473	0,6	2,6	11,1	6,9	0,6	15,8	28,8	20,3			
523	0,8	3,5	18,2	17,3	0,8	19,2	39,1	34,4			
573	1,0	4,3	31,6	38,4	1,0	23,0	45,4	53,2			
623	1,3	5,7	46,0	57,5	1,3	28,8	53,2	76,8			
Е кдж.	12,0	11,7	23,3	34,6	12,0	10,2	11,0	21,0			
моль.1											

* - точность измерения E здесь и дальше составляет $\pm 0,2$ кДж моль.⁻¹. Для стекол и оксидов значения энергий активации разло-

120

жения H_2O_2 с учетом всех факторов представлены в публикациях [10,15-17].

2. Изучение процесса на радикальном уровне

Для решения поставленных задач относительно химизма, кинетики и механизма гетерогенного распада H_2O_2 , наряду с другими физикохимическими методами анализа, широко использовали метод электронного парамагнитного резонанса (ЭПР). Закономерности образования парамагнитных частиц на поверхности твердого тела в ходе распада на ней H_2O_2 методом ЭПР изучили при комнатной температуре и при 77K. С помощью кинетического метода вымораживания радикалов (КМВР) процесс изучен также в газовой фазе.

Суть метода вымораживания радикалов подробно описана в публикациях [18-20]. Специфика изучения механизма гетерогенного распада паров пероксида водорода, однако требовала осуществления ряда усовершенствований метода КМВР, среди которых наиболее важными являются:

a). разработка съемного варианта узла вымораживания радикалов, позволяющая повысить эффективность и качество проводимых исследований [10,21];

6). определение условия количественного изучения гетерогенного процесса с помощью КМВР в тех реакционных системах, где в качестве твердых контактов используются пористые и порошкообразные вещества [22];

в). выяснение возможных изменений спектральных характеристик вымороженных из газа гидропероксидных радикалов при различных условиях их стабилизации в твердой матрице (матричная среда, температура, давление в накопителе и т.д.) [23].

2.1. Кинетические закономерности генерации и

гибели радикалов НО2

Благодаря указанным выше усовершенствованиям с помощью КМВР в сочетании с прибором ЭПР удалось впервые экспериментально показать, что при соприкосновении паров H_2O_2 с твердыми телами в широком интервале температур (начиная от комнатной и выше) с поверхности в объем газа переходят парамагнитные частицы, которые идентифицировались как радикалы HO_2 [3,10,15,22-24].

Независимо от природы твердого контакта концентрация радикалов HO_2 в газе растет во времени, достигая некоторого равновесного значения, которое определяется конкуренцией процессов гетерогенной генерации и их расходования (рис.2). Показано [22], что радикалы в этих условиях расходуются в основном благодаря их гетерогенной гибели. Следовательно, изменение концентрации радикалов HO_2 описывается выражением:

$$\frac{d[HO_2]}{dt} = W_{rem} - W_{rw6} = K_{rem} [H_2O_2] - K_{rw6} [HO_2]$$

где $W_{\text{ген}}W_{\text{гиб}}$ и $K_{\text{ген}}K_{\text{гиб}}$ - скорости и константы скоростей гетерогенной генерации и гибели радикалов, соответственно.

Рис.2. Кинетические кривые накопления радикалов HO_2 в газовой фазе при распаде H_2O_2 на SiO_2 в расчете на единицу поверхности. T, K = 473(1), 523(2), 573(3).

Используя экспериментально измеренные значения И раз л и НО, при различных временах контактемпературах та, И концентрациях $H_{2}O_{2}$ и сопоставляя их с результатами решевышепредставния ленного дифференциального уравнения в условиях переменного значения концентра-H,O,[26] (об ции этом подробно описа-HO B публикациях [10,15,24,25]), определены кинетические характеристики гетерогенного распада водорода пероксида различных тверна дых контактах, некоторые ИЗ которых

представлены в табл.2.

Таблица 2.

Значения констант скоростей разложения пероксида водорода $(K_{\text{раз n}})$, генерации $(K_{\text{ген}})$ и гибели $(K_{\text{гиб}})$ гидропероксидных радикалов на различных поверхностях.

<i>T, K</i>	<i>К</i> _{раэл} , см/с				K	с _{ген} -10	⁴, см/	c	<i>К</i> _{гиб} ·10 ⁴ , см/с			
	CT.	SiO2	Y- AlzOz	MgO	CT.	SiO₂	γ- Al ₂ O3	MgO	CT.	\$102	γ- Al ₂ O3	MgO
473 523 573 623	0,3 0,5 0,6 0,8	13,6 16,5 19,8 24,7	24,7 33,5 39,0 45,7	17,4 29,5 45,7 65,9	0,5 1,5 6,0 12,6	2,7 13,3 29,0 43,4	1,6 10,7 27,7 82,0	2,1 10,3 41,4 11,3	30,3 44,9 52,3 54,8	18,3 19,8 20,4 27,5	42,3 51,7 57,6 68,6	20,9 32,8 47,9 78,3
Е КДж моль"	12,0	10,2	11,0	21,0	52,9	51,9	70,0	74,4	7,7	8,2	6,4	20,9

122

$$\mu = \frac{W_{reh}}{W_{pa3n}} = \frac{K_{reh}}{K_{pa3n}}$$

Безразмерный параметр μ - радикальный выход реакции распада H_2O_2 . Его значение значительно меньше единицы. Так, при разложении H_2O_2 на SiO_2 при 473K μ равняется $1.9 \cdot 10^{-4}$, т.е. примерно из 5000 распавшихся молекул пероксида только один радикал HO_2 переходит с поверхности в объем. Повышение температуры приводит к увеличению значения μ .

Другой, не менее важной, характеристикой процесса является вероятность гибели радикалов HO_2 на поверхности (γ). Зная величину $K_{r\,\mu\delta}$, по известной формуле $\gamma = 4 \cdot K_{r\,\mu\delta}/U$, где U - средняя скорость движения радикалов HO_2 , можно вычислить значение γ . Значения μ и γ для исследованных поверхностей представлены в табл.3.

Таблица 3.

Значения скорости генерации радикалов $HO_2(W_{red})$, радикального выхода (μ) и вероятности гибели (γ) радикалов HO_2 на различных поверхностях.

T,K	$W_{\rm ген} = 10^{-14}$, част-см $^{-3}$ -с $^{-1}$			$\mu \cdot 10^4$				$\gamma \cdot 10^3$				
	ст.	SiO2	γ- Al ₂ O3	MgO	ст.	SiO ₂	γ- Al ₂ O3	MgO	ст.	SIO2	γ - Al_2O_3	MgO
473	0,1	0,3	0,2	0,2	0,4	1,9	0,3	0,4	2,1	1,3	3,0	1,5
523	0,3	1,6	1,3	1,2	1,3	5,4	1,1	0,9	3,0	1,3	3,5	2,2
573	1,0	3,4	3,2	4,8	4,0	9,5	1,7	1,6	3,3	1,3	3,7	3,1
623	2,1	5,1	9,6	13,2	5,3	13,2	2,7	2,9	3,4	1,7	4,2	4,8

Представленные в табл.3 данные относительно гетерогенной гибели HO_2 хорошо согласуются с результатами работ других авторов [27,28], несмотря на существенную разницу в методах получения и изучения радикалов HO_2 , а также в обработке экспериментальных данных.

Таким образом, применение КМВР привело к установлению количественной взаимосвязи между закономерностями накопления радикалов в объеме газа и процессами, протекающими на поверхности твердого тела.

2.2. Радикалы на поверхности оксидов

Факт перехода с поверхности в объем радикалов HO_2 указывает на то, что разложение H_2O_2 на поверхности протекает через образование радикалов. Для получения непосредственной информации об этих частицах методом ЭПР изучено состояние поверхности в ходе распада на ней паров пероксида водорода [29]. Использовались отличающиеся по свойствам оксид-изолятор ($SiO_2, \gamma - Al_2O_3$) и оксид-полупроводник (ZnO). Исследуемые порошки тренировались под откачкой (P < 0.1Па) в течение 1 ч. при температурах выше 473K. Опыты велись в проточных условиях. После определенного времени выдержки твердого образца в среде паров HO_2 под давлением 67Па реакторампула снималась из печи, помещалась в резонатор прибора ЭПР и производилось измерение при комнатной температуре или при 77K.

Соприкосновение паров пероксида с SiO_2 при комнатной температуре приводило к образованию на поверхности парамагнитных частиц, которые идентифицировались как радикалы HO_2 [29]. Кинетика расходования этих радикалов в отсутствие пероксида при различных температурах представлена на рис.3. Величина энергии активации расходования радикалов HO_2 , рассчитанная из данных рис.3, составляет при-

Рис.3. Кинетические кривые расходования радикалов HO_2 , адсорбированных на SiO_2 . T, K = 333(1), 353(2), 373(3), 393(4).

ными по рекомбинации слабосвязанных с поверхностью радикальных форм [30,31].

В аналогичных условиях разложения H_2O_2 на поверхности $\gamma - Al_2O_3$ регистрируется более сложный спектр. Анализ показал, что наряду с радикалами HO_2 в данном случае фиксируются также радикалы OH, эффективность гибели которых значительно выше, чем у радикалов HO_2 .

С помощью тяжелый

воды осуществляли дейтерообмен HO_2 на DO_2 , сигналы ЭПР которых по своим спектральным характеристикам отличаются друг от друга. Это еще раз доказывает образование на поверхности оксидов-изоляторов радикалов HO_2 .

Распад паров H_2O_2 на поверхности ZnO приводит к образованию частиц, сигнал ЭПР которых аналогичен спектру анион-радикала O_2^- [32]. Так как распад пероксида на этой поверхности так же, как и в случае оксидов SiO_2 и $\gamma - Al_2O_3$, сопровождается переходом в объем гидропероксидных радикалов, то в дополнение к выводам работ [6,7] нами сделано заключение о том, что на поверхности ZnO наряду с ионами образуются также радикалы HO_2 [29]. Поэтому правильнее сказать, что распад пероксида на поверхности оксидов переходных металлов протекает по смешанному ионно-радикальному механизму, а не чисто ионному, как принято считать в литературе.

3. Вопросы механизма

Совокупность полученных данных показывает, что распад H_2O_2 на различных по природе поверхностях имеет общие и отличительные особенности. Общим является то, что во всех случаях с поверхности в объем газа переходят одни и те же радикалы HO_2 . Исходя из этого факта можно полагать, что независимо от природы твердого контакта хемосорбция молекул H_2O_2 приводит к образованию на поверхности той или иной формы активных частиц, которые затем превращаются в радикалы HO_2 .

Не вдаваясь в подробности механизма образования радикалов HO_2 в каждом конкретном случае, отметим лишь, что ни для каждого твердого контакта можно допустить наличие радикала HO_2 на поверхности с частичным переходом в объем. Если для пассивных оксидов SiO_2 и $\gamma - Al_2O_3$ это не вызывает сомнения, то то же самое утверждать для более активных оксидов-полупроводников и для платины трудно, тем более, что в литературе отсутствуют такие данные.

Факт наличия гетерогенной генерации радикалов для всех этих контактов с учетом вышеизложенного заставляет полагать, что образование радикалов HO_2 происходит по ударному механизму, а их переход в объем осуществляется в момент образования, минуя стадию адсорбции. Подавляющая часть радикалов, конечно, и в этом случае адсорбируется на поверхности, вступая в дальнейшие реакции с другими частицами. В общем случае для всех твердых контактов процесс гетерогенной генерации радикалов HO_2 можно представить по следующей схеме:

$$ZA + H_2O_2 < ZHO_2 + AH$$
$$ZAH + HO_2$$

где A - адсорбированная на поверхности активная частица, образовавшаяся в результате разложения пероксида.

Распад H_2O_2 на оксидах-изоляторах изучен достаточно подробно и получен богатый экспериментальный материал, что позволяет для этого случая обсудить механизм процесса более подробно. Итак, согласно измерениям ЭПР, хемосорбция молекул H_2O_2 на изоляторах приводит к образованию радикалов OH и HO_2 [29]. На поверхности, по-видимому, протекают различные элементарные акты с их участием, однако среди них лишь некоторые являются определяющими. Анализ показывает, что как таковыми можно рассматривать следующие:

1.
$$2Z + H_2O_2 \xrightarrow{k_1} 2ZOH$$

2. $ZOH + H_2O_2 \xrightarrow{k_2^a} ZHO_2 + H_2O$ $k_2^6 ZH_2O + HO_2$

3.
$$ZOH + ZHO_2 \xrightarrow{k_3} ZH_2O + ZO_2$$

Расчет этой схемы в стационарном режиме приводит к кинетическим уравнениям, устанавливающим связь между отдельными параметрами реакции. Так, для скоростей разложения пероксида и генерации гидропероксидных радикалов получаются выражения:

$$W_{\text{pagn}} = 2K_I [H_2 O_2], \quad W_{\text{res}} = \frac{K_2^a K_I}{K_2^6} [H_2 O_2]$$

Сопоставление полученных выражений с выведенными эмпирическими формулами показывает, что коэффициенты пропорциональности в этих выражениях связаны друг с другом следующими соотношениями:

$$K_{\text{pain}} = 2K_I; \quad K_{\text{rest}} = K_I \frac{K_2^a}{K_2^6}; \qquad \mu = \frac{K_2^a}{2K_2^6}$$

Как следует из полученных выражений, энергия активации разложения пероксида равна E_1 , а генерации гидропероксидных радикалов - $E_{\rm ren} = E_I + E_2^{\rm a} - E_2^{\rm 6}$. Как следует из представленных в табл.2 данных, $E_{\rm ren}$ значительно превышает E_I (примерно от 40 до 60 кДж-моль⁻¹).

Параметр μ , как следует из последнего выражения, характеризуется соотношением констант скоростей актов 2а и 26. Образовавшиеся по акту 2 радикалы HO_2 либо прилипают к поверхности, либо выходят в объем. Вероятность выхода обозначим через V. Соответственно вероятность прилипания будет 1-v. Константы скоростей актов 2а и 26 зависят от K_2 следующим образом:

$$K_2^a = v K_2, \quad K_2^b = (1-v) K_2$$

Следовательно, для µ получим:

$$\mu = \frac{1}{2} \cdot \frac{\nu}{1 - \nu}$$

т.е. выход радикалов HO_2 определяется только отношением вероятностей отрыва и прилипания. Процессы отрыва и прилипания радикалов, в свою очередь, зависят от природы и состояния поверхности. Следовательно, выход радикалов непосредственно связан с состоянием поверхности. Сделанное заключение полностью соответствует экспериментально обнаруженным закономерностям генерации радикалов HO_2 при распаде пероксида водорода на различных твердых контактах.

Не останавливаясь на других аспектах процесса, отметим, что все

наблюдаемые закономерности гетерогенного распада паров H_2O_2 в рамках рассмотренного механизма получают удовлетворительное объяснение. Нет сомнений в том, что на поверхности твердого контакта, кроме указанных в схеме элементарных актов, протекают и другие, однако они не отражают основные свойства процесса.

Ջրածնի պերօքսիդի քայքայումը ֆազերի բաժանման սահմանի վրա

Գ.Լ.Գ-թիգորյան

Ուսումնասիրվել է H_2O_2 գոլորշիների քայքայումը օքսիդ-մեկուսիչների ($SiO_2, \gamma - AI_2O_3, MgO$), օքսիդ-կիսահաղորդիչների (ZnO, Cuo) եւ պրտրինի վրա։ ԻԴՈմեթոդով ցույց է գրվել OH եւ HO_2 ռադիկալների առաջացում մեկուսիչների եւ անիռնռադիկալ O_2 առաջացում կիսահաղորդիչների վրա։ Ուադիկալների սստեցմուն կինեգրիկական եղանակով ցույց է գրվել, որ բոլոր դեպքերում գազային ծավալ են անցնում HO_2 ռադիկալներ։ Ուսումնասիրվել են մեկուսիչների մակերեսի վրա OH եւ HO_2 ուսդիկալների առաջացման եւ վախճանի, ինչպես նաեւ գազի ծավալ անցած HO_2 ռադիկալների կուզուսկման կինեգրիկական օրինաչափությունները։ Հաշվարկված են H_2O_2 -ի քայքայման, HO_2 ռադիկալների հեղուրոգն առաջացման եւ վախճանի կինեգրիկական եւ թերմոդինամիկական բնութագրերը։ Քննարկված է մեկուսիչների վրա H_2O_2 քայքայման ռադիկալային մեխանիզմը։

Radical Decomposition of Hydrogen Peroxide on the Interface

G.L.Grigorian

Decomposition of H_2O_2 vapours has been studied on the oxide isolators $(SiO_2, \gamma - Al_2O_3, MgO)$, oxide-semiconductors (ZnO, Cuo), and platin. In conjunction with ESR method it has been shown the generation of OH and HO_2 radicals on the isolators and O_2^- anion-radicals on the semiconductors. With the kinetic method of radical freezing it has been shown that, in all cases, HO_2 radicals escape to the gas phase.

Kinetic regulations of generation and termination of the OH and HO_2 radicals, formed in the isolator surface, and also accumulation of gas phase escaped HO_2 radicals have been studied. Kinetic and thermodynamic characteristics of H_2O_2 decomposition and heterogen generation and termination of HO_2 radicals have been calculated.

The radical mechanism of $H_2 O_2$ decomposition on the isolators' surface has been discussed.

ЛИТЕРАТУРА

- 1. Семенов Н.Н. Цепные реакции. Л., ОНТИ, Госхимиздат, 1934, 555с.
- 2. Налбандян А.Б., Варданян И.А. Современное состояние проблемы газофазного окисления органических соединений. Ереван, АН АрмССР, 1986, 277с.
- 3. Григорян Г.Л., Налбандян А.Б. ДАН СССР, 1977, т.235, №2, с.381.
- 4. Satterfield C.N., Stein T.W. Ind.Eng.Chem., 1957, v.49, №7, p.1173.
- 5. Саввин Н.Н., Мясников И.А., Гутман Э.Е., Базов В.П. Кин. и кат., 1978, т.19, №3, с.802.

- 6. Hort A.B., Mcfadyen J., Ross R.A. Trans.Far.Soc., 1963, v.59, №486, p.1458.
- 7. Murphy B.J., Ross R.A. J.Chem.Soc. (A), 1968, p.2044.
- 8. Григорян Г.Л. Гетерогенно-гомогенные радикальные реакции, индуцированные пероксидом водорода. Автореферат дисс. на соис. уч. ст. д.х.н., Киев, 1989, 44с.
- 9. *Минасян В.Т., Григорян Г.Л., Налбандян А.Б.* Хим.физика, 1984, т.3, №7, с.993.
- 10. Арутюнян А.Ж., Григорян Г.Л., Налбандян А.Б. Кин. и кат., 1986, т.27, №6, с.1352.
- 11. Арутюнян А.Ж., Григорян Г.Л., Налбандян А.Б. Кин. и кат., 1987, т.28, №5, с.1121.
- 12. Кисилев В.Ф., Крылов О.В. Адсорбционные процессы на поверхности полупроводников и диэлектриков. М., Наука, 1987, с. 185.
- 13. Голованова Г.Ф., Квливидзе В.И., Кисилев В.Ф. Связанная вода в дисперсных системах. М., МГУ, 1976, 14, с.178.
- 14. Курбатов Л.Н. Поверхностные химические соединения и их роль в явлениях адсорбции. М., МГУ, 1957, с.223.
- 15. Vartikyan L.A., Grigoryan G.L., Nalbandyan A.B. Oxid.Commun., 1986, v.9, № 1-2, p.69.
- 16. Вартикян Л.А., Григорян Г.Л., Налбандян А.Б. ДАН СССР, 1981, т.257, №3, с.664.
- Шамб У., Сеттерфильд Ч., Вентворс Р. Перекись водорода. М., ИЛ, 1958, 578 с.
- 18. Образование и стабилизация свободных радикалов (под ред. Басса А., Бройда Г.М., ИЛ, 1962, 622 с.
- 19. Панфилов В.Н. Кин. и кат., 1964, т.5, № 1, с.60.
- 20. Налбандян А.Б., Манташян А.А. Элементарные процессы в медленных газофазных реакциях. Ереван, АН АрмССР, 1975, 259 с.
- 21. Grigoryan G.L. React.Kinet.Catal.Lett., 1984, v.24, №3-4, p.301.
- 22. Арутюнян А.Ж., Григорян Г.Л., Налбандян А.Б. Кин. и кат., 1985, т.26, №4, с.785.
- 23. Вартикян Л.А., Саркисян Э.Г., Григорян Г.Л. Кин. и кат., 1980, т.21, №6, с.1385.
- 24. Арутюнян А.Ж., Григорян Г.Л., Налбандян А.Б. Хим.физика, 1986, т.5, №8, с.1118.
- 25. Вартикян Л.А., Григорян Г.Л., Налбандян А.Б. Арм.хим.ж., 1981, т.34, № 12, с.985.
- 26. Выгодский М.Я. Справочник по высшей математике. М., Наука, 1975, с.717.
- 27. Чобанян С.А., Саркисян Э.Н. Хим.физика, 1983, №11, с. 1533.
- 28. Анцупов Е.В., Ксандопуло Г.И., Гершензон Ю.М. Хим.физика, 1987, т.6, №9, с.1268.
- 29. Арутюнян А.Ж., Газарян К.Г., Гарибян Т.А., Григорян Г.Л., Налбандян А.Б. - Кин. и кат., 1988, т.29, №4, с.880.
- 30. *Казанский В.Б.* Проблемы кинетики и катализа. М., Наука, 1968, т. 12, с. 36.
- 31. Тавадян Л.А. Кин. и кат., 1983, т.24, №2, с.396.
- 32. Lunsford J.U., Jayne J.P. J.Chem. Phys., 1966, v.44, p. 1487.