аммиака). Найдено, %: С 60,48; Н 8,18; N 6.75. С₂₀Н₃₂N₂O₈. Вычислено, %: С 60,06; Н 8,11; N 7,06. ИК спектр осн, v, $c.u^{-1}$: 3250—3400 (NH. NH₂); 1605, 1595 (C=C apom.).

ԱՐԻԼԱԼԿԻԼԱՄԻՆՆԵՐԻ ԱԾԱՆՑՅԱԼՆԵՐ

ՄԻ ՔԱՆԻ ԱՐԻԼՑԻԿԼՈՊԵՆՏԱՆ ՏԵՂԱԿԱԼՎԱԾ ԷԹԻԼԵՆԴԻԱՄԻՆՆԵՐԻ ԵՎ ԱՄԻՆԱՔԱՑԱԽԱԹՊԻՆԵՐԻ ՍԻՆԹԵԼԶԸ

Ա. Ա. ԱՂԵԿՅԱՆ, Լ. Պ. ՍՈԼՈՄԻՆԱ, Լ. Շ. ՊԻՐՋԱՆՈՎ և Է. Ա. ՄԱՐԳԱՐՅԱՆ

3,4-Դիմեթթորդ ֆենիլցիկլոպենտիլ մեթիլամինի հիման վրա ստացվել են ամինոնիտրիլներ, որոնք փոխարկվել են համապատասխան ֆունկցիոնալ տեղակալված ածանցյալների։

ARYLALKYLAMINE DERIVATIVES

SYNTHESIS OF SOME ARYLCYCLOPENTANE SATURATED ETHYLENDIAMINES
AND AMINOACETIC ACIDS

A. A. AGHEKIAN, L. P. SOLOMINA, L. Sh. PIRJANOV and E. A. MARKARIAN

On the basis of 3,4-dimethoxyphenylcyclopentylamine aminonitriles have been obtained. The latter have been transformed into the corresponding functional saturated derivatives.

ЛИТЕРАТУРА

- 1. Агскян А. А., Пирджанов Л. Ш., Маркарян Э. А. Арм. хим. ж., 1989, т. 42, № 11, с. 705.
- 2. Миджоян А. Л., Маркарян Э. А., Арустамян Ж. С. ХГС, 1971, № 5, с. 637.

Химический журнал Армении, т. 48, № 1-3, стр. 92-97 (1995 с.)

УДК 547.814.1

ХЛОРМЕТИЛИРОВАНИЕ НИТРИЛА АРИЛЦИКЛОПЕНТАН-КАРБОНОВОП КИСЛОТЫ И НЕКОТОРЫЕ РЕАКЦИИ ВЫДЕЛЕННОГО ИЗОХРОМАНОНА

А. А. АГЕКЯН, Л. Ш. ПИРДЖАНОВ в Э. А. МАРКАРЯН

Институт тонкой органической химин им. А. Л. Миджояна НАН Республики Армения, Ереван

Поступило 9 Х 1992

Исследована реакция хлорметилирования интрила 3,4-диметоксифенилциклопентанкарбоновой кислоты и на основе выделенного изохроманона проведены реакции гидролиза, восстановления, бромирования.

Библ. ссылок 3.

Из литературных сообщений известно, что реакция арилацетоннгрилов с параформом в присутствии кислотных катализаторов приволит к циклическим продуктам—1,4-дигидро-3-изохинолонам [1].

Нами изучено хлорметилирование нитрилов 3,4-диметоксифенилуксусной и 3,4-диметоксифенилциклопентанкарбоновой кислот и показано, что в качестве циклических продуктов вместо 3-изохинолонов образуются 3-изохроманоны.

При этом из питрила I а в основном получается смолистый полимер и лишь с 16% выходом 3-изохроманон II [2, 3], а хлорметилирование питрила I б приводит к разделяемой смеси двух соединений: хлорметильного продукта III и 3-изохроманона IV. Последний образуется также при щелочном гидролизе соединения III. Осуществлены некоторые реакции выделенных изохроманонов. Изохроманон IV восстановлен как боргидридом натрия, так и алюмогидридом лития (АГЛ).

В первом случае образуется 3-изохроманол V, во втором происходит раскрытие кольца с образованием диола VI, который в присутствии хлористого цинка легко циклизуется в изохроман VII. Проведено бромирование 3-изохроманова IV и изохромана VII. При этом установлено, что съединение IV бромируется в бензольное кольцо с образованием 8-бромпроизводного VIII, что доказано наличием в ПМР спектре одного ароматического протоиа (положение 8 предполагается, т. к. последующее бромирование соединения VIII не происходит, очевидно, изза стерического фактора). Бромирование же изохромана VII независимо ст условий проведения реакции и бромирующих агентов (бром, бромсукцинимид) приводит к продукту окисления—1-изохроманону IX. Положение оксогруппы доказано отсутствием в ПМР спектре двух

протонов метиленовой группы, связанной с ароматическим ядром. Ценствием на 3-изохроманоны II, IV едким натром и гидразиигидратом выделены натриевая соль X б и гидразиды X а, с, которые очень легко диклизуются в исходные изохроманоны в кислой среде.

Чистота синтезированных соединений подтверждена хроматогра-

фически, строение-данными НК, ПМР и масс спектров.

Экспериментальная часть

TCX проводили на пластинках «Siluiol UV-254», проявитель—пары йода. ИК спектры снимались в вазелиновом масле на спектрометре «UR 20», ПМР спектры—на «Varian T-60» (внутренний стандарт ТМС), масс-спектр сиимали на приборе «МХ-1303».

Хлорметилирование нитрила 3,4-диметоксифенилциклопентанкар-боновой ишлоты. В смесь 28 г (0,12 моля) натрила 1, 20 г нарафолую и 20 г хлористого цинка в 100 мл бензола пропускают ток хлористого водорода в течение 6 ч при 25—35°. Декантируют растворитель и обрабатывают по отдельности бензольный раствор и остаток. Раствор промывают водой, сущат сульфатом натрия, отгоняют растворитель и остаток перегоняют. Получают 8,5 г (25%) нитрила 1-[1-(3,4-диметокси-6-хлорметиленфенил)] инклопентанкарбоновой кислоты (111), т. кип. 185—190°/1 мм; т. пл. 75—76° (эфир). R_1 0,62 (бензол-эфир. 11). Найдено, %: С 64,40; Н 6,20; N 5,04; С1 13,04. $C_{15}H_{18}NO_2CI$. Вычислено, %: С 64,33; Н 6,48; N 5,00; С1 12,68. ПК спектр, у, см. 1, 2245 ($C \equiv N$); 1605, 1590 (C = C аром.).

К остатку после декантирования бензола добавляют теплую воду и экстрагируют хлороформом. Экстракт промывают водой, сущат хлористым кальнием, отгоняют растворитель и перегоняют. Получают 13 г (41%) 6,7-диметокси-4-спироциклопентан-3-изохроманона (IV). т. кип. 210—215°/1 мм, т. пл. 76—77° (эфир). R_1 0,40 (бензол эфир, 1:1). Найнено, %: С 69,18; H 7,33; $C_{15}H_{18}O_4$. Вычислено. %: С 68,68; H 6,91; Π MP счектр (CCI₄), δ , м. д.: 6,85 и 6,65 с с (2H. Ar): 4,7 с (2H, CH₂O Ar); 3,75 и 3,5 с (6H, 2CH₃O): 2,6—1,7 м [8H, (CH₂)₄I, M⁺ 262 (масс-спектрометрически). HK спектр, у. см⁻¹; 1710 (C=O лакт.).

6.7-Диметокси-4-спироциклопентан-3-изохроманон (IV). Смесь 6 г (0.021 моля) хлорметила III и 100 мл 10% едкого натра книятят 2 ч, по охлаждении подкисляют соляной кнелотой, экстрагируют бензолом, экстракт промывают водой, сущат сернокислым натрием, отгоняют растворитель. Получают 5 г (90%) соединения IV, т пл. 76—77° (эфир), константы совнадают с константами соединения IV, описанного выше.

6.7-Диметокси-4-спироциклопентан-3-изохроманол (V). К раствору 5 г (0.018 моля) 3-изохроманона IV в 50 мл метанола прибавляют небольшими порциями 2.2 г (0.054 моля) боргидрида натрия при $10-15^{\circ}$ и перемешивают при комнатной температуре 6 ч. Отгоняют растворитель, к остатку добавляют воду, экстрагируют хлороформом, сущат сернокислым натрием, отгоняют растворитель. Получают 4 г (80%)

гоединения V, т. пл. 133° (из бепзола)., R 0,41 (бензол-ацетон, 2:1). Найдено, %: С 77,02; Н 8,17 С₁₅Н₂₀О₄. Вычислено, %: С 77,54; Н 8,67. ИК спектр, v, с.и⁻¹: 3480 (ОН): 1605, 1590 (С=С аром.). ПМР спектр (СDСl₃), δ , м. д.: 6,9 с и 6,5 с (2H, аром.); 5,2—4,4 м (4H, ArCH₂O, СП—ОН): 2;2—1,6 м [8H, (СН₂)₄].

I-[-(3,4 Диметогси-6-оксиметиленфенил)]-циклопентанкиро́инол (VI). К 1 г (0,03 моля) АГЛ в абс. эфире прибавляют по каплям 2,6 г (0,01 моля) 3-изохроманона IV в 50 мл бензола и кипятят 20 ч. Разлагают водой, отфильтровывают осадок, отгоняют растворитель и остаток перекристаллизовывают из бензола Получают 2,5 г (96%) соединения VI, т. пл. 115—117°. R. 0,58 (бензол-ацетоп), 1:1). Найдено, %: С 67,64; Н 8,32. $C_{15}H_{22}O_4$. Вычислено, %: С 68,04; Н 8,62. ИК спектр, v, c м 1, 3480—3340 (ОН); 1605, 1580 (С=С аром.). ПМР спектр, (CDCl₃): δ , м, д.: 6,82 с п 6,78 с (2H, Ar); 4,55 с (2H, ArCH₂); 3;8 с и 3,78 с (6H, 2CH₃O); 3,38 с (2H, C—CH₂); 2,2—1,5 м [8H, (CH₂)₄].

6,7-Диметокси-4-спироциклопентан изохроман (VII). Смесь 2,7 г (0,01 моля) днола VI и 1 г хлористого цинка в 30 мл хлороформа кинятя: 2 ч. Декантируют хлороформ, остаток обрабатывают водой и экстрагируют хлороформом. Объединенные хлороформные растворы промывают водой, сушат хлористым кальцием и отгоняют растворитель. Получают 2 г (80%) соединення VII, т. пл. 88—89° (эфир-петролейный эфир). R_1 0,54 (бензол-эфир, 2:1). Найдено, %: С 72,03; R_1 8,00; R_2 6,54 (бензол-эфир, 2:1). Найдено, %: С 72,03; R_3 6,00; R_4 6,50 (С=С аром.). ПМР спектр (СDCI₃) R_4 6,8 с и 6,5 с (2H, R_4); 4,7 с (2H, R_4); 3,9 с и 3,85 с (6H, 2CH₃O); 3,6 с (2H, OCH₂); 2 8 с [8H, (CH₂)₄].

8-Бром-6,7-диметокси-4-спироциклопентан-3-изохроманон (VIII). К раствору 1 г (0,004 моля) 3-изохроманона IV в 20 мл хлороформа по канлям прибавляют 0,6 г (0,004 моля) брома в 5 мл хлороформа и кинятят 4 ч. Раствор промывают водой, сущат хлористым кальшием, отгоняют растворитель и остаток перекристаллизовывают из эфира- Получают 0,7 г (53,8%) соединения VIII, т. пл. 127—128°. $R_{\rm I}$ 0,41 (бензол-ацетон, 1:1). Найдено, %: C 53,08; H 5,42; Br 23,71. $C_{15}H_{17}O_4Br$. Вычислено, %: C 52,80; H 5,02; Br 23,42. ИК спектр, v, cm^{-1} : 1725 (C=O лакт.); 1590, 1560 (C=C аром.). ПМР спектр (CDCl₃), δ , м. д.: 6,85 с (1H, Ar); 5,40 с (2H, OCH₂Ar); 3,95 с и 3;85 с (6H, 2CH₃O); 2,6—1,7 м [8H, (CH₂)₄].

6,7-Диметокси-4-спироциклопентин-1-изохроминон (1X). К раствору 2,5 г (0,01 моля) изохромана VII в 20 мл четыреххлористого углерода при облучении ртутной лампой прибавляют по каплям 1,6 г (0,01 моля) брома и перемешивают при комнатной температуре 1 ч. Декантируют растворитель, к остатку добавляют эфир и отфильтровывают образовавшиеся красталы, Получнот 1,6 г (21.3%) соединене 1X, т. пл. 136 изопропиловый спирт). $R_{\rm f}$ 0,5 (бензол-ацетон, 1:1). Найдено: %: С 68.59; Н 6,80; $C_{\rm f}$ 1,804. Вычислено, %: С 68,68; Н 6,91. ИК

спектр, $v_1 \in \mathbb{N}^{-1}$ 1705 (C=O лакт). 1605, 1585 (C=C аром.) ПМР спектр (CDCl₃), δ , м. д.: 7,6 с и 6,8 с (2H, Ar); 4,2 с (2H, C—CH₂); 4,0

с и 4,9 с 16H, 2CH₃O); 1.9 с [8H, (CH₂)₄].

Нитриевая соль 1-[1-(3,4диметокси-6-оксиметиленфения)] цик попентанкарбоновой кислоты (X 6). Смесь 2,6 г (0,01 моля) 3-изохроманона (X 6) и 0,4 г (0,01 моля) едкого натра в 25 мл метанола перемешивают при комнатной температуре 1,5 ч. Образовавшиеся кристаллы отфильтровывают. Получают 2,5 г (83%) соединения (X 6), т. пл. 220°. (X 6) вода). Найдено, (X 6) С 59,14, (X 6) Н 6,81; (X 6) С 59,59; (X 6) Н 6,33. ИК спектр, (X 6) и 3300—3160 (ОН); 1600, 1580 (С = —С аром.)

Гидразиды 3,4-диметоксифенил-6-оксиметил-фенилуксусной и 1- [1-(3,4-диметокси-6-оксиметиленфенил)] циклопентанкарбоновой кислот (Ха, с). Смесь 0,01 моля 3-изохроманона IV (или II) и 10 мл гидразингидрата кипятят 3 ч. По охлаждении отфильтровывают образовавшиеся кристаллы, промывают водой и перекристаллизовывают. Получают соединение X а, выход 77%, т. пл. 158—160° (спирт). R (0,6 (метанол). 0,69 (нола) Найдено. %: С 59,14; Н 6,81; С₁₅Н₁₉О₅Nа. Вычислено, %: 58,91; Н 7,19; N 12,49. ИК спектр. v, см-1: 3305, 3270—3200 (ОН, NH, NH₂); 1685 (NC=O); 1610—1590 (С=С аром.). Получают соединение X с, выход 66,6%, т. пл. 144—146° (спирт-бензол). R 0,44 (бензол-ацетон, 1:1). Найдено, %: С 61,54; Н 7,63; N 9,85. С₁₅Н₂₀N₂O₃. Вычислено, %: 61,20; Н 7,56, N 9,51. НК спектр, v, см-1: 3420—3200 (ОН, NH, NH₂); 1650 (NC=O); 1610, 1580 (С=С аром.).

ԱՐԻԼՑԻԿլՈՊԵՆՏԱՆԿԱՐՔՈՆԱԹԹՎԻ ՆԻՏՐԻԼԻ ՔԼՈՐՄԵԹԻԼԱՑՄԱՆ ՈՒՍՈՒՄՆԱՍԻՐՈՒՄԸ ԵՎ ԱՆՋԱՏՎԱԾ ԻԶՈՔՐՈՄԱՆՈՆԻ ՄԻ ՔԱՆԻ ՌԵԱԿՑԻԱՆԵՐԸ

Ա. Ա. ԱՂԵԿՅԱՆ, Լ. Շ. ՊԵՐՋԱՆՈՎ Ե Է. Ա. ՄԱՐԳԱՐՅԱՆ

Ուսումնասիրվել է 3,4-դիմեթօքսիֆենիլցիկլոպենաանկարբոնաթթվի նիտբիլի քլորմեթիլացման ռեակցիան և անջատված իզոքրոմանոնի հիդրոլիդը, վերականգնումը և բրոմացումը։

THE STUDIES OF THE CHLORMETHYLATION OF ARYLCYCLOPENTANCARBONITRILE AND SOME REACTION OF THE SELECTED ISOCHROMANE

A. A. AGHEKIAN, L. Sh. PIRJANOV and E. A. MARKARIAN

The reaction of chlormethylation of 4,4-dimethexyphenylcyclopen-tancarbonitrile have been investigated. On the basis of selected isochromane the reactions of hydrolysis, reduction and bromination have been carried on.

- 1. Kamochi Y., Watanabe Y. Heterocycles, 1987, v. 29, p. 2385.
- 2. McCorcindale N. J., McCulloch A. W. Tetrah., 1971, v. 27, p. 4653.
- 3. Stephen T. J. Chem. Soc., 1927, p. 178.

Химический журнал Армении, т. 48, № 1-3, стр. 97-102 (1995 г.)

УДК 547.952.9

СИНТЕЗ ПРОИЗВОДНЫХ ТИАЗОЛОПИРИДАЗИНОВ НА ОСНОВЕ 4-ГАЛОГЕНГЕКСАГИДРОПИРИДАЗИН-5-ОНОВ

Ж. В. КАЗАРЯН, М. А. ШЕЙРАНЯН, Р. С. ВАРТАНЯН и Ш. П. МАМБРЕЯН

Институт тонкой органической химии им. А. Л. Миджояна НАН Республики Армения. Ереван Поступило 14 111 1994

Осуществлен сингез 4-галоген (бром, хлор) гексатидру примазии-5-оиов. Полученные галогениегоны использованы для синтеза 4-тисцианогексатилдопиридатии 5-она, гведенного далее в реакции гетероциклизации.

Библ. ссылок 3.

В продолжение систематических исследований по синтезу и превращениям гексагидропиридазинов [1] в настоящей работе предлагаются способы синтеза новых функциональных производных гексагидропиридазина и, в частности, 4-галоген (бром, хлор) гексагидропиридазин 5-онов, которые могут явиться удобными многофункциональными исходными соединениями.

Для получения указанных галогенкетонов была использована реакция 4+2 циклоприсоединения метилового эфира азодикарбоновой кислоты с 2-метокси-3-хлорбутадиеном, диеном, по всей вероятности, впервые используемым в реакции Дильса-Альдера. Полученный при этом 1,2-бисалкоксикарбонил-4-метокси-5-хлор-1,2,3,6-тетрагидропиридазии (1) далее был подвергнут кислотному гидролизу в ожидаемый 4-хлоргексагидропиридазин-5-он (11).