УДК 547.852.772.2

ЦИКЛИЧЕСКИЕ ГИДРАЗИДЫ.

I. ВЗАИМОДЕЙСТВИЕ АНГИДРИДОВ ДИКАРБОНОВЫХ КИСЛОТ С ГИДРАЗИНОМ И ЕГО ПРОИЗВОДНЫМИ

Н. С. БУЮКЯН, С. А. АВЕТИСЯН н. Л. В. АЗАРЯН

Институт тонкой органической химин им. А. Л. Миджояна НАН Республики Армения, Ереван

Поступило 2 VIII 1993

Получены три циклических гидразида: 4-(n-изопропоксифенил) пиперидазин-3,6-дион, 4-(n-изопропоксифенил) пиразолидин-3,5-дион и 2,3-дигидро-6-изопропоксифталазин-1,4-дион. Показано, что в зависимости от соотношения исходных реагентов, растворителя и природы заместителя в гидразине образуются продукты различного строения.

Библ. ссылок 15.

Получены циклические гидразиды замещенных янтарной (I), малоновой (II) и фталевой (III) кислот.

В литературе имеются многочисленные данные о подобчых соединениях как о потенциальных анальгетиках [1—5] и противовоспалительных препаратах [2, 6—8].

На примере производных янтарной кислоты показано, что направление реакции меняется в зависимости от соотношения реагентов, растворителя и природы заместителя в гидразине,

Так, при конденсации ангидрида 4-n-изопропоксифенилянтарной кислоты (I) с гидразином при соотношении 1:0,5 в среде этилацетата образуется N,N'-бис-4-n-изопропоксифенилсукцинамовая кислота V [9], а при эквимолярном соотношении реагентов—изомерные гидразидокислоты IIa, б.

Предполагается [10], что и замещенные изомеры Па количестренно преобладают над р замещенными ГС что объясняется позышенной электрофильностью атома углерода при заместителе в ангидриде I.

Внутримолекулярной циклизацией V и II (a, б) получены соответственью: N,N'-бис-n-изопропоксифенилсукцинимид (VI) [9] и 4-(nизопропоксифенил) пиперидазин-3,6-дионы (IIIa. б). В случае использования в качестве растворителя ледяной уксусной кислоты IIIa получен в одну стадию, без выделения промежуточных кислот. Исключечие составил III6—его не удалось получить непосредственно, в одну стадию.

II, IIIa, R - Н 11, IIIб. R = фенил.

Гольшое влияние на ход реакции оказывает природа заместителя в гидразине. Если при конденсации I с незамещенным и дифенилгидразином образуются циклические шестичленные гидразиды IIIа, б, то в случае с фенилгидразином получен N-анилино-n-изопропоксифенилсукцинимид (IV), строение которого было доказано методом рентгеноструктурного анализа [11]. Образование подобных N-ариламиноимидов объясняется полярными факторами—спижением пуклеофильности α-атома азота в гидразине под действнем фенильного кольца.

and a substitute when

Взаимодействием п-изопропоксифенилмалонового эфира (VII) с гидразином получен пятичленный циклический гидразид—4-(n-изопропоксифенил) пиразолидии-3,5-дион (VIII).

$$\begin{array}{c|c} \text{I-PrO-} & & \text{COOEt} \\ \hline \\ \text{COOEt} & & \text{H_1N-NH_2} \\ \hline \\ \text{VII} & & \text{VIII} \\ \end{array}$$

С целью получения конденсированных шестичленных гидразидов по аналогии с [14] синтезирован 4-изопропоксифталевый ангидрид (XII).

Конденсацией XII с гидразином и дифенилгидразином получены соответственно 2,3-дигидро-6-изопропоксифталазин-1,4-дион (XIIIa) и 2,3-дифенил-6-изопропоксифталазин-1,4-дион (XIIIб).

XIIIa. R=H

XIII6. R - фенил

Экспериментальная часть

Спектры ПМР сняты на приборе «Varian T-60» с внутренним стандартом ТМС; масс-спектры—на приборах «МХ-1320» и «МХ-1321-А». Контроль ТСХ осуществлялся на пластинках «Silufol-254» в подвижных фазах: а) бензол-ацетон-гексан, 1:1:1, проявитель—ФМК, 5% спиртовый раствор; б) бутанол, насыщенный аммиаком, проявитель—бромкрезоловый пурпуровый. Данные элементного анализа соединений !Ia, б, IIIa, б, VIII, X—XII, XIIIa, б на С,Н,N соответствуют вычисленным. ИК спектры сняты на спектрометре «UR-20» в вазелиновом масле.

Соединения I и II получены по методике [13], изопропиловый эфир и-толуолсульфокислоты—по [15].

Моногидразиды n-изопропоксифенилянтарной кислоты (11a). К раствору 4,3 z (0,018 моля) 1 в 5 мл этилацетата приливают 1z (0,02 моля) 100% гидразингидрата. Наблюдается сильная экзотермия. Растворитель удаляют, затвердевший осадок перекристаллизовывают из этанола. Выход 3,2 z (68%). Т. пл. 130° , R_f 0,32(a). Спектр ПМР (ДМСО- d_6), δ , м. д.: 1,20 д/6H, (CH_3) $_2$ CH/; 2.20—2,82 м (2H, CH); 3,76g×g, (1H CH—C=O); 4,66м (1H, CH(CH $_3$) $_2$; 5,0—6,0 уш. с. (3H, NH—NH $_2$); 6,78—7,39 м (4H, аром протоны). Масс-спектр (M+18) 248. ИК—спектр, v, c-M-1: 1660 (C=O амидн.), 1710 (C=Oкарбокс.), 3290 (OH): 3250 (NH).

Аналогично получают II6. Выход 98%, т. пл. 192°, R_1 0,4 (а). Спектр ПМР (ДМСО—d₆), δ , м. д.; 1,23g/6H, (СH₃)₂CH/; 2,76—3,66 м (2H, CH₂); 3,83—4,2 м (1H, CH); 4,50 м /1H, CH (CH₃)₂/; 6,50—7,62 м

(14H, 2C₆H₅, C₆H₄); 9,00 c (1H, NH)

4-(n-изопропоксифенил) пиперидазин-3,6-дион (111а). а) 0, 5 г (0,002 моля) Па нагревают на сплаве Вуда при 140° в течение 20 мин. После охлаждения образовавшиеся кристаллы отфильтровывают и перекристаллизовывают из этанола. Выход 0,4 г (98%); б) Смесь 2 г (0,008 моля) 1 и 0,4 г (0,008 моля) гидразингидрата в 2 мл безводной уксусной кислоты кипятят 4 ч. К охлажденной реакционной смеси добавляют эфир и образовавшиеся кристаллы отфильтровывают. Выход 1,6 г (81%). Т. пл. 148°, R_f 0,55 (а). Спектр ПМР (ацетон— d_6), б, м. д.: 1,4 д /611 (С H_3) 2СH/, 2,8 и 3,2 м (по 1H, J гем. 18 Γ 4, J 1 о и 6 Γ 4, С H_2); 4,1 (1H, J 210 и 6 Γ 4, С H_2 0); 4,66 м (1H, С H_3 1 (С H_3 2) 6,72—7,41 м (4 H_3 4, аром. протоны); 8,00—8,45 с (2 H_3 4, N H_3 5 (2 H_3 6). N H_3 6 сестр. 3320 (N H_3 6).

1.2(Дифенил-4-n-изопропоксифенил) пиридазин-3,6-диоч (1116) Смесь 4 г (0,01 моля) Пб и 10 мл уксусного ангидрида нагревают на воляной бане 4 ч. После охлаждения приливают воду и нейтрализуют кислоту раствором щелочи. Образовавшиеся кристаллы перекристаллизовывают из этанола. Выход 3 г (75%). т. пл. 188°, R_f 0,62 (а). Спектр ПМР (ДМСО— d_6), δ , м. д.: 1,20 д/6H, $(CH_3)_2CH/$; 3,12—3,80 м (2H, CH_2); 4,22—4,80 м (2H, CH_2); 6,84—7,65 м (14H2C $_6H_5$, C_6H_1).

I-(n-изопропоксифенил) пиразолидин-3,5-дион (VIII). Смесь 12,05 ε (0,05 моля) VII и 25 ε (0,5 моля) гидразингидрата кипятят 10 ε , экстрагируют эфиром, отделяют водный слой и подкисляют до pH 4—5. Образовавшиеся кристаллы отфильтровывают. Выход 8 ε (86%). Т.пл. 220° (этанол), R. 0,5(6). Спектр ПМР (ДМСО— d_8), δ , м. д.: 1,23 /6H, (С H_3) $_2$ СН/; 4,15 м /1H, СH (С H_3) $_2$ /; 6,55—7,90 м (4H, аром. протоны); 10,00 с (3H, NH, =—OH), M+ 234.

Диметиловый эфир 4-изопропоксифталевой кислоты (X). Растворяют 4.6 г (0,2 г. ат) металлического натрия в 100 мл абс. метанола, добавляют 42,4 г (0,2 моля) IX в 200 мл метанола. Через полчаса отголяют метанол и к остатку добавляют 150 мл ДМФ и 43 г (0,2 моля) изопропилового эфира n-толуолсульфокислоты. Смесь кипятят 2 ч. Затем отгоняют растворитель, остаток экстрагируют эфиром и промыва-

we will have been a discharge of her wife

ют эфирные слои раствором аммиака для удаления следов IX. Сушат сульфатом магния, отгоняют растворитель и перегоняют остаток в вакууме. Выход 34 г (66%). Т. кип $153^\circ/2$ мм. R_f 0,7 (б). Спектр ПМР (CCl₄), δ , м. д.: 1,18 д/6H, (CH₃)₂CH/; 3,63 д (6H, 2 COOCH₃); 4,40 с /1H, CH(CH₃)₂/; 6,63—7,62 м (3H. аром. протоны).

I-Изопропоксифталевая кислота (XI). Смесь из 6,2 г 0,24 моля) X в 50 мл этанола и раствора 2,7 г (0,048 моля) КОН в 30 мл воды кипятят в течение 6 ч. Удаляют спирт, остаток экстрагируют эфиром, водный слой пропускают через фильтр и подкисляют соляной кислотой до жислого рН. Полученное масло экстрагируют эфиром и удаляют растворитель. Продукт кристаллизуется при растирании в гексане. Выход 3,2 г (60%). Т. пл. 108° (вода), R_1 0,29. Спектр ПМР (CD₃OD), δ , м. д.: 1,20; д/6H, (CH₃)₂CH/; 4,60 м /1H, CH(CH₃)₂/; 6,80—7,95 м (3H, аром. протоны).

Ангидрид 4-изопропоксифталевой кислоты (XII). Смесь 8 г (0,04 моля) XI и 30 мл уксусного ангидрида кипятят 3—4 ч. Растворитель отгоняют, остаток высушивают в эксикаторе Выход 7,8 г (98%). Т. пл. 94°.

2,3-Дигидро-6-изопропоксифталазин-1,4-дион (XIIIa). К 1 г (0,0048 моля) XII приливают 0,25 г (0.005 моля) гидразингидрата и 3 мл безволной уксусной кислоты. Кипятят 4 ч, отгоняют растворитель, тверлый остаток перекристаллизовывают из метанола. Выход 0,8 г (73%). Т. пл. 250°, R, 0,49 (6). Спектр ПМР (DMCO— d_6), δ , м. д.: 1,20 д/6H, (CH_3) $_2$ CH/; 4,82 м /IH, $CH(CH_3)_2$ /; 7,00—8,28 м (3H, аром протоны); 10,0 $_6$. (2H, 2NH). Масс-спектр, m/z: M^+ 220 (42,69), 178 (100), 120 (37,99%).

2,3-Дигидро-6-изопропоксифталазин-1,4-дион (XIIIб). Получают апалогично XIIIа, выход 85%. Т. пл. 310°. Масс-спектр, m/z: M+ 372 (57,8), 288 (100), 229 (78%).

ՑԻԿԼԻԿ ՀԻԴՐԱԶԻԴՆԵՐ

1. ԴԻԿԱՐԲՈՆԱԹԹՈՒՆԵՐԻ ԱՆՀԻԳՐԻԴՆԵՐԻ ՓՈԽԱԶԴԵՑՈՒԹՅՈՒՆԸ ՀԻԴՐԱԶԻՆԻ ԵՎ ՆՐԱ ԱԾԱՆՑՅԱԼՆԵՐԻ ՀԵՏ։

Ն. Ս. ՔՈՒՅՈՒԿՅԱՆ, Ս. Ա. ԱՎԵՏԻՍՅԱՆ և Լ. Վ. ԱԶԱՐՅԱՆ

Ստացվել են 3 կարգի ցիկլիկ հիդրազիդներ՝ 4-(պ-իզոպրոպօքսիֆենիլ) պիպերիդազին-3,6-դիոն, 4-(պ-իզոպրոպօքսիֆենիլ) պիրազոլիդին-3,5-դիոն և 2,3-դիհիդրո-6-իզոպրոպոքսի, ֆտալազին-1,4-դիոն։ Ցույց է տրվել, որ կախված ելանյութերի հարաբերությունից, լուծիչի և հիդրազինի տեղակալիչի բնույթից գոյանում են տարբեր կառուցվածքի նյութեր։

57

CYCLIC HYDRAZIDES

I. INTERACTION OF DICARBONIC ACIDS ANHYDRIDES WITH HYDRAZINE AND ITS DERIVATIVES

N. S. BUYUKYAN, S. A. AVETISYAN and L. V. AZARYAN

3 Types of cyclic hydrazides are obtained; 4-p-iso-propoxyphenyl-piperidazin-1,4-dion, 4-(p-iso-propoxyphenyl)pyrazolidin-3.5-dion and 2,3-dihydro-6-isopropoxyphthalazine-1,4-dion. It has been demonstrated, that the products structures are depending from the stechiometry of the reaction, the nature of substituent in hydrazine and nature of solvent.

ЛИТЕРАТУРА

- 1. Torizo T., Maki J. -- Iakngaku Zasshi. 1966, v. 86 (12). p. 1168.
- 2. Jaunia R. Chim. Ther. 1967, v. 2 (15), p. 317.
- 3, Wermuth K., Camille G., Leclerc Chim. Ther., 1970, v. 5 (2), p. 141.
- 4. Mc. Elvain S. M., Clemens D. H. J. Am. Chem. Soc., 1958, v. 80, p. 3915.
- 5. Hiroshi Kugita Toyonazi Qine, Hizozumi Joon J. Med. Chem., 1985, v. 8, p. 313.
- 6. Kamiga Z., Nakamure A. Jakugaku Zassi, 1966, v. 86 (11), p. 1099.
- 7. Codin J., Le Berre D. Bull. Soc. Chim. Fr., 1968, v, 10. p. 4210.
- 8. Baddar F. G., El-Nawaiky M. F., Salem M. R. J. Chem. Soc., c. 1971, p. 716,
- 9. Аветисян С. А., Несунц Н. С., Буюкян Н. С., Миджоян О. Л., Джагацпанян И. А., Назарян И. М., Акопян Н. Е. Хим.-фарм. ж. 1988, № 4, с. 433
- 10. Kornet M. J., Henry S. J. J. Pharm. Sci., 1972, v. 61 (II), p. 1781.
- Карапетян А. А., Ецюкий И. С. Аветисян С. А., Стручков Ю. Т. Арм хим, ж., 1986, п. 38, № 11, с. 698.
- 12. Feur H., Bachnan G. B., White E. H. J. Am. Chem. Soc., 1951, v. 73, p. 4716.
- 13. Аветисян С. А., Миджоян О. Л. Арм. хим. ж., 1970, т. 23, № 4, с. 354.
- 14. Каневская С. И., Бросюнас В. Б. ЖОХ, 1959, т. 29, с. 1930.
- 15. Edgelle W. F., Parts L.- J. Am. Chem. Soc., 1955, v. 77, p. 4899.

Химический журнал Армении, т. 48, № 1—3, стр. 58—65 (1995 г.)

УДК 547.818.1+547.728+547.859+547.792.9+547.796.1

СИНТЕЗ КОНДЕНСИРОВАННЫХ ПРОИЗВОДНЫХ ФУРО/2,3—d/ПИРИМИДИНОВ

Г. К. НАЛБАНДЯН, А. П. МКРТЧЯН, А. С. НОРАВЯН в Р. А. АКОПЯН

Институт тонкой органической химии им. А. "П. Миджояна НАН Республики Армения, Ереван

Поступило 10 IV 1991

На основе 2-амино-5,5-диметил-3-циано-4,5-дигилро-7H-фуро-/2,3-с/тнопирана осуществлен синтез 2,4-дитиофуро/2,3-d/пиримидина, который является исходным соединением для получения триазоло- и тетразолофуро/2,3-d/пиримидинов, конденсированных с тиопирановым кольцом

Библ. ссылок 1.