КИНЕТИКА КАТАЛИТИЧЕСКОГО РАСПАДА ГИДРОПЕРОКСИДА ТРЕТ-БУТИЛА ПОД ДЕЙСТВИЕМ ХЕЛАТНОГО КОМПЛЕКСА ГЛИЦИНАТА МЕДИ В ВОДНОЙ СРЕДЕ

С. К. ГРИГОРЯН, Г. Л. ГРИГОРЯН н Е. Я. ВАРТАНЯН

Ереванский государственный университет Постуипило 12 XI 1990

С целью выяснения зависимости скорости распада гидропероксида (ГП) от его строения и состава исследован распад ГП трет-бутила под действием глицината меди в интервале температур 60—80°. Полученные данные сравнены с данными по распаду гидропероксида кумола (ГПК) в тех же условиях. Указанная система является модельной и аналогична биоферментам, в которых составными частями служат аминокислоты, металлы переменной валентности и гидропероксиды, участвующие в процессах, протекающих в живых организмах.

Ранее нами были исследованы кинетика и механизм распада ГПК под действием комплексов различных аминокислот с металлами (II), в частности, комплекса глицината меди Сu(II) [1—3]. Как вэтом, так и в данном случае, компоненты (нон металла и аминокислота) в отдельности и совместно не вызывают распада ГП, и только в присутствии щелочи ионы металлов совместно с аминокислотами вызывают каталитический распад гидропероксидов. Присутствие щелочи способствует образованию цвиттер-нонов, которые с ионом металла способны образовать кинетически активный комплекс, вызывающий каталитический распад гидропероксида [1—3]. Методами спектроскопии (ЯМР) и кинетически установлено [2, 3], что каталитически активным является комплекс (1) состава 1:1.

$$\begin{bmatrix} H & O \\ R - C - C & O \\ \vdots & \vdots & \vdots \\ H_2 N : \dots & C u \end{bmatrix}^+$$
(1)

Экспериментальные данные показывают, что скорость каталитического распада ГП зависит от состава и структуры ГП—скорость распада ГПТБ под влиянием глицината меди (П) в 2,5 раза меньше скорости распада ГПК при тех же условиях (табл. 1).

Каталитический распад ГПТБ, как и в случае ГПК [1—3], протекает по нерадикальному механизму с некоторой долей радикальноцепного механизма. Этот факт подтверждается данными, приведенными в табл. 2—кислород воздуха и стабильный иминоксильный радикал Н_•С СН₂

типа
$$O = C$$

—N—O· не ингибируют полностью процесс.

H₃C CH₃

При каталитическом распаде ГПТБ под влиянием комплекса глицината меди аминокислота (а также ион металла) как реагент не расходуется., Это подтверждено химическим анализом, а также методом. ТСХ.

Таблица I Сравнительные скорости распада от природы гидропероксида при 60° [ГПК] $_0$ =[ГПТБ] $_0$ = =0,05 моль/л. [Га] $_0$ =[КОН] $_0$ =0,2 моль/л. [Си $_0$ 2+] $_0$ =10⁻³ моль/л

[ГПК] ₀ =	0.05 моль/л	[[TTB]0 = 0.05 MOAD/.			
t, мин	х. моль/л	t, мин	х. моль/л		
10	0,0120	20	0.0055		
30	0.0180	40	0,0100		
40	0,0215	60	0,0130		
50	0.0260	90	0.0154		
60	0,0289	120	0,0182		
70	0.0300	160	0,0210		

Таблица 2 Глян не кислорода воздух и RNO: на гаспад Г :ПБ при 60° [ГПГЬ] $_0=0.05$ моло/л, [Гл] $_0=[\text{KOL}]_1=0.2$ моль/л, [Сп $^{2+}$], = 10^{-3} моль/л

В атмосфере гели і		Ha воздухе		На гоздухе [RN], = 3-10 ⁻³ лоль/л		
t, MIH	х, моль/л	t, ман	х, мольја	t, .**uH	х. моль/л	
1 /	0.015	24	0.0 0	29	G 0066	
20	0.0125	40	1.0140	40	0,0170	
41	0,0 92	60	0.6185	60	0,0130	
60	0,0248	90	0,0.45	90	0,0182	
90 120	0.0300 0.0350	120	0.03(0	120	0,0210	

Установлено, что глицинат меди как при распаде ГПК, так и в случае ГПТБ, проявляет свойства модельного ферментативного катализатора типа каталазы, способного многократно разлагать ГП с од-

ной и той же скоростью (табл. 3). При этом образуются конечные продукты реакции — 96% изопропилового спирта и кислорода, которые как и в работах [2.3], не влияют на скорость распада ГП.

Таблица 3 Температурная зависимость реакции каталятического распада ГПТБ поя действием глицината меди [ГП ГП] $_9 \sim 0.05$ моль/л, [Гл] $_0 = (\text{KOH})_9 = 0.2$ моль/л, [Сл] $_0 = 10^{-3}$ моль/л

Νŧ	ı, °C								
	80			75		70		60	
	t, мин	$10 \lg \frac{P}{P-x}$	t, MIN	$10 \lg \frac{P}{P-x}$	t, мин	$101 \ \bar{g} \ \frac{P}{P-x}$	t, мин	$10 \lg \frac{P}{P-1}$	
1	20	1,58	20	0,51	20	0,43	20	0,23	
2	40	2.50	60	1,70	40	0.77	60	0,65	
3	60	3. 9 8	100	2.90	60	1,20	100	0,87	
4	120	6,50	140	4,10	100	1,79	140	1,10	
5	160	9,10	180	5,20	140	2.50	200	1,40	
6	200	10,6	220	7,50	200	3,40	260	1,80	

Выведены кинетический закон распада ГПТБ, зависимость скорости реакции распада ГП от исходных концентраций ГПТБ, Гл, Сu²⁺, а также от температуры. Показано, что порядок реакции по отдельным компонентам равен единице. Скорость каталитического распада гидропероксида трет-бутила выражается кинетическим уравнением:

$$W_{\mathbf{0}} = K_{\text{KeT}}[Cu^{2+}|_{\mathbf{0}}[\Gamma\pi]_{\mathbf{0}}[ROOH]_{\mathbf{0}} = K_{\mathbf{0}\varphi\varphi}[ROOH]_{\mathbf{0}}, \tag{1}$$

rie $K_{9\Phi\Phi} = K_{\kappa ar} \left[Cu^{2+} \right]_0 \left[\Gamma \pi \right]_0$

Температурная зависимость эффективной константы скорости каталитической реакции распада $\Gamma\Pi$ на воздухе удовлетворяет уравнению Аррениуса (энергия активации выражена в \mathcal{L} ж/моль):

$$K_{3\phi\phi} = (1.76 \pm 0.04) \cdot 10^{12} \exp[-(93000 \pm 500/RT], \text{ muh}^{-1}]$$
 (2)

ЛИТЕРАТУРА

2. Григорян С. К., Григорян К. Р. — Уч. зап. ЕГУ, 1990. т. 1, с. 74.

^{1.} Григорян С. К., Чимаритян Дж. Г., Варданян Е. Я. — Арм. хим. ж., 1982, т. 35, № 7, с. 429.

^{3.} Григорян С. К., Варданян Е. Я. — Арм. хим. ж., 1990, т. 43, № 4, с. 217.