УДК 647.872.3/874/875

ПРОИЗВОДНЫЕ ГЕКСАГИДРО-симм-ТРИАЗИНА ПРИ ПОЛИУРЕТАНООБРАЗОВАНИИ И ОТВЕРЖДЕНИИ ЭПОКСИОЛИГОМЕРОВ.

Д. Н. ОГАНЕСЯН, А. А. АБРААМЯН, М. В. ШАКАРЯНЦ п Г. М. ПОГОСЯН Институт органической химии НАН Республики Армения, Ереван Поступило 9 XII 1989

Panee [1—2] нами на основе триазинов I и II и алифатических и ароматических диизэшнанатов получены полиуретановые пленки и покрытия с хорошими физико-механическими свойствами.

В настоящей работе с целью определения реакционных активностей I и II при получении полиуретанов (ПУ), а также при использовании их в качестве отвердителей эпоксидных смол на примере гексаметилендиизоцианата (ГМДИ) и указанных триазинов изучены кинетика полиуретанобразования методом [3] конверсии NCO-групп и процесс отверждения ЭД-20 с помощью тех же триазинов по изменению предела прочности при сдвиге клесвых соединений от продолжительности отверждения при различных соотношениях исходных веществ.

Таблаца 1
Зависимость снажения концентрации NCO групп от продолжительности реакции
в системах 1:ГМДИ и П : ГМД при разлечных мольных соотнашениях
(концентрация ДЭ \ 0.12 моля)

Спстема	Снижение [NCO], 0/0								
		1:15мди		П:ГЛДИ					
	1:1,1	1:1,2	1:1,3	1:1,1	1:1,2	1:1,3			
Время сни цени (
1	68	73.5	81	67	73	76			
3	72	80	89	70,5	77.5	84,5			
5	79	30	95	73	83	90			
10	88	94	97	72,5	90	96,5			
15	93	96,5	98	72	93	98,5			
20	96,5	97,5	99	71.5	92.5	99,5			

Из табл. 1 видно, что при выбранных мольных соотношениях исходных веществ и постоянной концентрации диэтаноламина (ДЭА) в качестве катализатора триазин 1 обладает более высокой реакционной способностью при полиуретанобразовании по сравнению с II.

В табл. 2 даны сравнительные прочностные характеристики полученных клеевых соединений.

Изучение зависимости предела прочности эпоксидных клеев от продолжительности отверждения при 80 и 100° при различных соотношениях веществ показало (табл. 3), что постепенное понижение содержания отвердителей (до 0,015 моля) І обеспечивает высокие значения по сравнению с ТЭА.

Tаблица 2 Сравнительные прочностные характеристики клеевых соединений (ЭД-20—100 масс. ч., отвердитель—15 масс. ч.)

Клеевтя компо-						
зиция на основе Э1-20 и 1Э ч. I, II	80° (3 ч)	80° (7 4)	100~ (3 4)			
194*	0	196	178			
I	70	194	175			
11	53,3	160				

^{*} Известный отвердитель - триэтаноламин

При дальнейшем уменьшении количества отвердителей (до 0,05 моля) известный отвердитель не способен отверждать ЭД-20, в то время как 1 после 14-часового нагрева обеспечивает прочность при сдвиге 130 $M\Pi a$.

Таблита 3 Зависимость предела прочности при сдвиге (осл.) на образцах из стали-3 от продолжительности отверждения клеев на основе ЭД-20 (100 масс ч) и отвердителей

Отверди- тель, моль	осл., АПТа при режиме отверждения									
	п, и 80°, ч					при 100°, ч				
	2	4	6	8	10	2	5	7	10	11
19A										
0.015	_		_	_	-	0,5	0.7	0,9	1.0	1,8
0.1	0,4	0,8	8,0	19,0	19,5	_	_	_	-	_
1										
0.015	_		-		_	2,3	3,8	6.1	7.7	8.5
0.005	-	_	-		_	1,8	3,7	6,1	9,5	13
0,1	4,0	11,8	17	19.8	20	_	_		_	_
П						,				
0,1	3,0	8,2	14	16	16			_	-	ansi

При изучении зависимости предела прочности при сдвиге (табл. 3) при 80° установлено преимущество I в качестве отвердителя по сравнению с II и ТЭА.

Известно, что эпоксидные клеи обладают жесткостью, что при эксплуатации приводит к усадке клеевого шва. Во избежание этого эпоксилный клей ЭД-20 модифицировали различными низкомолекулярными смолами. Наибольший эффект через 3 ч при 80° достигается введением смолы ОДИ-8Ц, способствующей повышению прочности клея до 17 МПа, а введение остальных добавок не дает ощутимого эффекта, хотя качество клеевого шва улучшается. При повышении температуры отверждения до 100° уже через 6 ч обеспечивается прочность при сдвиге на образцах до 15,0 МПа.

ЛИТЕРАТУРА

1. Оганесян Ц. И., Абраамян А. А., Авачесян Э. С., Миртчин А. Т., Погосян Г. М.— Арм. хим. ж., 1989, т. 42, № 10, с. 607.

2. Оганесян Ц. И., Аб, а мян А. А., Киноян Ф. С., Погосян Г. М.—Арм. хим. ж.,

1994, т. 47, № 1—2, с. 74. 3. Григория А. П., Фесотеви О. Я.—Лабератерный практику и по технология пластических масс. M., Высшая школа, т. 1, 1977, с. 230.

Армянский химический журнал, т. 47, № 1-3, стр. 61-84 (1954 г.)

УДК 647 872 3/574 675

ИЗУЧЕНИЯ ГЕКСАГИДРО-СИММтлиазаносодтржащих полиуретановых пленок.

Д. И. ОГАНЕСЯН, А. А. АБРААМЯН, М. А. ХАЧАТРЯН, Ф. С. КИНОЯН п Г. М. ПОГОСЯН

Енститут органической химин НАН Республики Армения, Ереван Поступило 9 XII 1959

Известно, что при старении полимерных пленок и покрытий происходят химические превращения и вследствие этого изменяются их физико-механические свойства [1]. Следует отметить также, что высокая химическая, термическая и радиационная стойкость обеспечивают применение полиуретанозых пленок (ПП) и покрытий в условиях эксплуатации [2].

В настоящем сообщении нами изучено влияние различных факторов при старении полученных ранее ПП на основе 1-карбэтокси-3,5-ди (в-оксиэтил) гексагидро-симм-триазина и гексаметилендиизоцианата (ГМДИ) [3].

Процесс старения ПП изучали методом ИК спектроскопии (спектрометр «UR-20»), динамического термогравиметрического анализа (ДТА) на дериватографе системы Паулик, Паулик и Эрдей, а также электрическими методами.

НК спектры исходных ПП (толщина 70 мкм) содержат полосы поглощения 1540, 1640, 1690—1700, 1710, 3340, 3070 см⁻¹, характерные для уретановых связей, и 1070, 1120, 1250 см-1, характерные для С-О —С и С—О—Н свизей. Поглощение карбонильных групп определяется