SYNTHESIS AND TRANSFORMATIONS 3-(3',3'-DICLOROALLYL)--2-HYDROXY (MERCAPTO)QUINOLINES

L, V. GYULBUDAGKIAN, I. L. ALEKSANIAN and A. A. AVETISSIAN

o(n)-Toluidides and o(n)-anizidides of α -I3',3'-dichloroallyl)aceto-acetic acid have been synthesized and by cyclization of the formers in sulfuric acid the β -(2-hydroxi-4-methyl-3-quinolyl)proplonic acid have been obtained. The later were also obtained by heating 2-chloro or 2-hydroxi-3-(3',3'-dichloroallyl)-4-methyl quinolines (which were obtained by PPA cyclization of substituted toluidides and anizidides) in sulfuric acid. It is shown that by alkaline hydrolysis of S-[3',3'-dichloroallyl)-4-methyl-2-quinollyl]thiuronium salts instead of 2-mercapto-3-(3',3'-dichloroallyl)-4-methylqninolines, the results of their cyclization, respectively 2-dichloromethyl-4-methyl-2,3-dihydrotieno/2,3-b/quinolines have been obtained.

ЛИТЕРАТУРА

- 1. Алексанян И. Л., Гюльбудагян Л. В. —Арм. хим. ж., 1980. т. 33, № 3, с. 258.
- 2. Гюльбудагян Л. В., Алексанян И. Л.-Арм. хим. ж., 1989, т. 42, № 7. с. 470
- 3. Fierz-David, Ziegler Helv. Chim. Acta, 1928, 11, c. 779, 78).
- 4: Шахназарян Г. М., Саакян Л. А., Дангян М. Т.—ЖОрХ, 1968, т. 4, № 9, с. 1588.
- 5. Гюльбудагян Л. В., Ван Нгок Хыонг, Дургарян В. Г., Квочко Т. В.—Арм. хим. ж., 1976, т: 29, № 4, с: 365.
- 6. Гюльбудагян Л. В., Ван Нгок Хыонг, Дургарян В. Г.—Арм. хим. ж., 1978, т. 31. № 4, с. 254.
- Shanmugam P., Kanakarajan K., Soundarajan N.—Synt esis, 1976. № 9, p. 595.
- 8. Gnarasekaram A., Soundarajan N., Shanmugam P. Synthesis, 1977, № 9. c. 612.
- 9. Grundon M. F., James H. J. Tetrah. Letters, 1971, No 49, p. 4727.
- 10. Makisumi Y. Teirah, Letters, 1966, № 51, p. 6399.

Армянский химический журнал, т. 47, № 1-3, стр. 46-54 (1994 г.)

УДК 547,831,781,785

ГЕТЕРОТРИЦИКЛИЧЕСКИЕ СОЕДИНЕНИЯ ИЗ АРИЛАМИДОВ α-(3'-ХЛОРБУТЕН-2-ИЛ) АЦЕТОУКСУСНОЙ КИСЛОТЫ

Л. В. ГЮЛЬБУДАГЯН, И. Л. АЛЕКСАНЯН и А. А. АВЕТИСЯН Ереванский государственный университет

Поступило 5 XI 1993

Разработан метод синтеза замещенных 2,3-дигидро-4Н-пирано(тиопирано)/2,3-в/хинолинов гетероциклизацией ариламидов α -(3'-хлорбутен-2-ил)ацетоуксусной кислоты.

Табл. 6, библ. ссылок 4.

В продолжение исследований по синтезу гетероциклических соединений хинолинового ряда [1—3] в данной работе из о(п) толуидидов и

о п)-анизидидов [4] алкенилированием получены соответствующие ариламиды α-(3'-хлорбутен-2-ил) ацетоуксусной кислоты (I а-г), которые далее при нагревании при 80—85° в присутствии ПФК подвергнуты гетероциклизации с образованием соответствующих замещенных 2-гидрокси-3-(3'-оксобутил)-4-метилхинолинов (II а-г). При этом одновременно с гетероциклизацией происходит кислотный гидролиз хлоркротильной группы в карбонильную.

Осуществлен синтез 2-хлорхинолилбутанонов (III a-г) взаимодействием II (a-г) с хлорокисью фосфора, которые далее под действием тиомочевины превращены в соответствующие 2-меркапто-3-(3'оксобутил)-4-метилхинолины (IV a-г) по схеме:

 $R = 6 (8) - CH_3; 6 (8) - OCH_3$

Синтезированы 2-гидрокси (меркапто) -3- (3'-гидроксибутил) хинолины (V а-з) взаимодействием 2-гидрокси (меркапто) -3- (3'-оксобутил) -4-метилхинолинов (П а-г, IV а-г) с алюмогидридом лития,, которые далее гетероциклизацией под действием ПФК превращены в соответствующие целевые 2,5-диметил-2,3-дигидро-4H-пирано (тиопирано) /2,3-в/хинолины (VI а-з) по схеме:

R=7(9)-CH₃; 7(9)-OCH₃

Строение полученных соединений доказано физико-химическими методами.

Экспериментальная часть

ПМР спектры сняты на спектрометре "Hitachi— Perkin— Elmer R 23", в качестве внутрентего стандарта использован ГМДС. Спектры сняты на спектрометре «UR-20» в вазелиновом масле. Чистота полученных соединений установлена методом ТСХ на окиси алюминия П ст. активности, проявитель—пары йода.

Толуидиды и анизидиды а-(3'-хлор-2'-бутенил)ацетоуксусной кислоты (1а-г). К алкоголяту, полученному из 100 мл абс. этилового спирта и 2,3 г (0,1 моля) металлического натрия, прибавляют 0,1 моля толуидидов пли анизидидов [4] ацетоуксусной кислоты, через 30 мин, перемешивая, добавляют 12,5 г (0,1 моля) 1,3-дихлор-2-бутена и жипятит на водяной бане 5—6 и до слабоосновной реакции. Спирт отгоняют, к остатку прибавляют 200 мл воды, отфильтровывают и перекристаллизовывают из 50% спирта или декана (табл. 1).

Таблица 1
Толундады и винзадиды 2-(3'-хло; бутен- и п) вистоуксуснай кислогы (la-r)

					- /			
Со дине-	D	0,0	Т пл.,	R,	Найд	Найдено 00		елено, о
	Выхо	°C		N	CI	N	C.I	
la	n-CH ₃	89	98 – 99	0,43*	4.87	12,52	5,00	12,70
16	o-CH ₃	87	88 - 89	0.46*	5.11	12,90	5,00	12,70
IB	n-OCH _a	79	104-105	0,53**	4,68	12,38	4,74	12,01
1r	o-OCH ₃	18	72-73	0,57**	4,61	12,27	4,74	12,01

ТСХ в системах: хлороф орм—гексан, 1:1. ** этилацетат—хлороформ, 2:1.

2-Гидрокси-3-(3'-оксобутил)-4-метилхинолины (Па-г). Смесь 0,05 моля 1 а-г и 40 г ПФК нагревают на водяной бане при 80—85° до прекращения выделения хлористого водорода (20—25 ч). Реакционную смесь выливают на лед и оставляют на ночь. После нейтрализации полученный продукт отфильтровывают и перекристаллизовывают из воды или тетрагидрофурана. Наличие ацетильной группы в боковой цепя доказано галоформной реакцией. Получены 2,4-дипитрофенилгидразоны (табл. 2). ИК спектр, у, см-1:1715 (С=0 кетон.), 1640 (С=О амидн.).

2-Хлор-3-(З'-оксобутил)-4-метилхинолины (III а-г). Смесь 0,1 моля II а-г и 70 мл хлорокиси фосфора нагревают на кнпящей водяной бане около 3 ч. Под уменьшенным давлением отгоняют хлорокись фосфора, к остатку прибавляют 200 г толченого льда и оставляют на ночь.

											2,4-Динитрофенилгидразон			
9	од. 0/0	7. 1.a.,	Rf	Н	lайдено, ⁽	P/o	Вычи лепо, %			т. вл.	найдено, ⁰ /о	вычислено, 0/0		
Соед	Выход			С	Н	N	С	н	N	°C	N	N		
Ha	6-CH ₃	78	167—168	0,57*	74,21	6.57	5,89	74-07	6,70	5,76	263	16,47	16,55	
116	8-CH ₃	76	163 - 164	0,75**	73,98	6 83	5,64	74.07	6.70	5.7:	255	16.6 2	16,55	
Пв	6-OCH₃	67	160-161	0.51***	69,71	6,80	5,31	69,50	6,55	5,4)	181	16.08	15,95	
Ilr	8-OCH ₃	65	115—116	0,60***	61,31	6,23	5,58	67,5	6,56	5,40	174	16,10	15,95	

TCX в системах: * спирт—гекс. и. 1:4. ** ацт н гексан. 1:1; *** лорофо м гекса , 1:1.

После нейтрализации полученный продукт отфильтровывают и перекристаллизовывают из 50% спирта (табл. 3).

Таблица З 2-Хлор-3-(3"-оксобутия)-4-метияхинолины (IIIa-г)

- JH		0,0	Т. пл.,		Найд	ено, °,0	Вычислено, о		
Соединс-	K	Buxoa.	°C	R _f	N	CI	N	CI	
IIIa III6 IIIa IIIr	6-CH ₃ 8-CH ₃ 6-OCH ₃ 8-OCH ₃	96 97 95 93	95 – 96 86 – 87 81 – 82 70 – 71	0,47 0,43 0,48 0,44	5,26 5,44 5,10 5,15	18,81 13,39 12,98 12,60	5,35 5,35 5,04 5,04	13,58 13,58 12,79 12,79	

[&]quot; TCX в бензоле.

2-Меркапто-3-(3'-оксобутил)-4-метилхинолины (IV a-z). 0,1 моля III a-г, 10 z (0,13 моля) тиомочевины в 100 мл безводного ацетона нагревают на водяной бане 5 u. Ацетон отгоняют, осадок растворяют в воде, подщелачивают из растворов 10% NaOH. Смесь нагревают 1 u, после чего осадок отфильтровывают и перекристаллизовывают из смеси спирт-вода (1:1). Получены соответствующие гидразоны (табл. 4). ИК спектр, v, см $^{-1}$:1715 (C=0); 1290 (C=S тиоамидн.).

2- Γ идрокси (меркапто)-3-(3'- ϵ идроксибутил)-4-метилхинолины (V а-3). К $0.2\ \epsilon$ (0.0057 моля) алюмогидрида лития приливают $100\ \text{мл}$ абс. тетрагидрофурана и при постоянном перемешивании и температуре кипения ТГФ прибавляют по каплям раствор 0.02 моля соединения II а- ϵ или IV а- ϵ в $100\ \text{мл}$ тетрагидрофурана. Кипячение продолжают в течение $2\ \text{ч}$. По окончании реакции смесь охлаждают ледяной водой и при перемешивании очень осторожно (по каплям) прибавляют $0.20\ \text{мл}$ воды, затем $0.20\ \text{мл}$ 15% раствора NаOH и еще $0.60\ \text{мл}$ воды. Смесь фильтруют, ТГФ удаляют, остаток перекристаллизовывают из смеси спиртвода (1:1) (табл. 5). ИК спектр, v, $\epsilon m^{-1}:1640$ ($C=0\ \text{амидн.}$); $1290\ (C=S\ \text{тноамидн.})$; $3500\ \text{(OH)}$.

2,5-Диметил-4H-2,3-дигидропирано(тиопирано)/2,3-в/хинолины (V/а-з). Смесь 0,05 моля Va-з и 30 г ПФК нагревают при 110° в течение 3 ч. После охлаждения смесь выливают и лед. подщелачивают, осадок отфильтровывают и перекристаллизовывают из смеси спирт—вода (1:1) или четыреххлорнстого углерода (табл. 6). Спектр ПМР, в. м. д.: (ССІ₄) VIa, 1,40 д (3H, 2-CH₃), 1,8 кв (2H, 3-CH₂); 2,43 с (3H, 5-CH₃): 2,64 с (3H, 7-CH₃); 2,77 т (2H, 4-CH₂); 4,25 м (1H, CH); 7,00—7,68 м (3H, аром.), VIe (СГ₃СООН); 1,04 д (3H. 2-CH₃); 1,82 кв (2H, 3-CH₂); 2,16 с (3H, 5-CH₃); 2,40 с (3H, 9-CH₃); 2,62 т (2H, 4-CH₂); 4,02 м (H, CH); 6,62—7,02 м (3H, аром.); VIB (ССІ₄1: 1,41 д (3H, 2-CH₃); 2,0 кв (2H, 3-CH₂); 2,44 с (3H, 5-CH₃); 2,77 т (2H, 4-CH₂); 3,75 с (3H. 7-OCH₃); 4,25 м (H, CH); 7,00—7,60 м (3H, аром.).

Таблица 4

			2-М гка то	″′-ок∙о	бутил	-1-42 117x	1/0.7111	is (2-3			Jaomaiga 1	
	Соединение						1		24-Ди	ін і рофени	гидразон	
инение			Т. пл.	R _r H ñ		Н йдено ⁰ 10		глен о , º/o	т, пл.	найдено.	вычислено,	
Соеді		Выхол,			N	S	N	s	٠,٢	N	N	
IVa	6-CH ₃	80	121-122	0,63*	5.61	12,10	5,4)	12,36	202 2 3	16,09	15,94	
IVб	8-CH ₃	81	110-111	0,58**	5 27	2,50	5.40	12,36	175-176	15,82	15,94	
1V _B	6 O .H ₃	79	120-121	0,60 **	5,04	11,53	5,09	11,63	170-171	15,31	15,38	
1Vr	8 OCH3	74	101-102	0,62***	5,17	11,50	5.49	11,63	159 - 165	15,46	15,38	

ТСХ в системах: * свирт гекс и, 1:4. * * хлоро орм — четырежклористый углеро , 1:1; *** хлороформ — гексан, 1:2.

Таблица 5

2-Гидрокси(меркапто)-3-(3'-идроксибутия)-4-метияхиволины (Va-3)

	X	Выход,	Т. п л, °C \									
Соедине-	1	B.		· ·	С	н	N	S	С	н	N	S
	0	72	183	0,54*	73,34	7,89	5,58	-	73,47	7,76	5,71	
	0	71	190	0,63**	73,61	7,60	5,38	-	73,47	7,76	5,71	-
	0	80	181	0,41***	69,05	7,16	5,41	-	68,96	7,28	5,36	_
	0	81	134	0,53***	68,78	7,4)	5,23	-	68,96	7,28	5,36	<u> </u>
	s	72	145	0.58*	69,09	7.12	5,22	12,50	68,96	7,27	5,36	12,26
1.	s	70	132	0,64**	68,82	7.41	5,49	12,07	68,96	7,27	5,36	12,26
	S	75	140	0,46***	64,86	6,97	5,16	11,35	64,98	6,86	5,05	11,55
	s	74	124	0,57***	65.08	6.74	4.97	11,68	64,98	6,86	5,05	11,55
		S S S	S 72 S 70 S 75	S 72 145 S 70 132 S 75 140	S 72 145 0.58* S 70 132 0,64** S 75 140 0,46***	S 72 145 0.58* 69.09 S 70 132 0.64** 68.82 S 75 140 0.46*** 64.86	S 72 145 0.58* 69.09 7.12 S 70 132 0.64** 68.82 7.41 S 75 140 0.46*** 64.86 6.97	S 72 145 0.58* 69,09 7.12 5,22 S 70 132 0,64** 68,82 7.41 5,49 S 75 140 0,46*** 64,86 6,97 5,16	S 72 145 0.58* 69.09 7.12 5.22 12.50 S 70 132 0.64** 68.82 7.41 5.49 12.07 S 75 140 0.46*** 64.86 6.97 5.16 11.35	S 72 145 0.58* 69.09 7.12 5.22 12.50 68,96 S 70 132 0.64** 68.82 7.41 5.49 12.07 63,96 S 75 140 0.46*** 64.86 6,97 5,16 11.35 64.98	S 72 145 0.58* 69.09 7.12 5.22 12.50 68,96 7.27 S 70 132 0.64** 68.82 7.41 5.49 12.07 63.96 7.27 S 75 140 0.46*** 64.86 6.97 5.16 11.35 64.98 6.86	S 72 145 0.58* 69.09 7.12 5.22 12.50 68.96 7.27 5.36 S 70 132 0.64** 68.82 7.41 5.49 12.07 68.96 7.27 5.36 S 75 140 0.46*** 64.86 6.97 5.16 11.35 64.98 6.86 5.05

TCX в системаж: * с.ирт—тексэн, 1:4; ** вгетон гексан, 2:1; *** атетон элороформ, 2:1.

2.5-Димет іл-2.3 диги іро 4H-пирано(тиопиран і)/2,3 в х інолины (Via s)

	VI3	V: ж	VIe	VIA	VIr	VIB	V16	VIa	Соед	ине-
	9-0CH3	7-0CH ₃	9-CH ₃	7-CH ₃	9-0CH ₃	7-0CH ₃	9-CH ₃	7-CH ₃	,	v
-	S	S	S	S	0	0	0	0		×
	80	81	3	90	78	79	6.2	87	Выхо	д. ⁰ /о
1	107-108	116-117	120-121	117-118	111-011	144-145	135-136	148-149	,c	Г. пл.,
	0,52*	0.54*	0,53**	0.59*	0. 0**	0,49**	0,54**	0.56*		æ
	69,42	69,63	73,94	74.16	73,98	71,18	79,17	79.38	C	
	6,68	6,41	7,12	6,85	7,11	6.87	7,64	7.34	I	Найде
	5,28	5,62	5,88	5,67	5,69	5.84	6,05	6.26	z	Найдено, %
	12,43	12,19	12,98	13,31	1	1.	I	1	s	
	69,50	69,50	74,07	74.07	74,07	74.07	79,29	79,29	C	
	6,56	6,56	6,99	6,99	6,99	6,99	7.49	7,49	I	Вытно
	5,41	5,41	5,76	5,76	5,76	5.76	6,17	6,17	z	Выпислено, %
	12.35	12,35	13,17	13,17	1	1	1	1	S	

Таблица б

ՀԵՑԵՐՈԵՌՑԻԿԼԻԿ ՄԻԱՑՈՒԹՅՈՒՆՆԵՐ α-(3′-ՔԼՈՐ-2′-ԲՈՒՏԵՆԻԼ)-ԱՑԵՏՈՔԱՑԱԽԱԹԹՎԻ ԱՐԻԼԱՄԻԴՆԵՐԻՑ

է Վ. ԳՅՈՒԼԲՈՒԴԱՂՅԱՆ, Ի. Լ. ԱԼԵՔՍԱՆՅԱՆ և Ա. Ա. ԱՎԵՏԻՍՑԱՆ

Մշակված է հետերոեռցիկլիկ միացությունների սինթեզի հղանակ α-(3'-թլոր-2'-բուտենիլ) ացետոքացախանթիվի արիլամիդների հիմքի վրա։ Ստացվել են 2,5-դիմեթիլ-2,3-դիհիդրո-4H-պիրանո (Բիոպիրանո) (2,3-b) խինոլիններ։

HETEROCVCLIC COMPOUNDS FROM ARYLAMIDES OF α-(3'-CHLORO-2'-BUTENYL)-ACETO ACETICACID

L. V. GYULBUDAGKIAN, I. L. ALEKSANIAN and A. A. AVETISSIAN

A method af synthesis of heterocyclic compounds on the basis arylamides of α -(3'-chloro-2'-butenyl)-aceto aceticacid has been worked out 2,5-dimethyl-2,3-dihydro-4H-pirano(tioplrano)/2,3-b/quinolines have been obtained.

ЛИТЕРАТУРА

1. Гюльбудагян Л. В., Дургарян В. Г.—ХГС, 1972, № 4, с. 534.

- 2. Гюльбудагян Л. В., Ван Нгок Хыонг, Асрян Р. С.—Арм. хнм. ж., 1977, т. 30, № 6, с. 493:
- 3. Гюльбудагян Л. В., Алексанян И. Л.—Арм. хнм. ж., 1983, т. 36, № 8, с. 540:

4. Fierz-David, Ziegler - Helv. Chim. Acta, 1928. M. 11, c. 779, 180.

Армянский химический журнал, т. 47, № 1-3, стр. 54-60 (1994 г.)

КРАТКИЕ СООБЩЕНИЯ

УДК 547.724.391.1.37

ВЛИЯНИЕ РАСТВОРИТЕЛЕЙ НА РЕАКЦИЮ ВНУТРИМОЛЕКУЛЯРНОГО ДИЕНОВОГО СИНТЕЗА ФУРФУРИЛОВОГО ЭФИРА АКРИЛОВОЙ КИСЛОТЫ.

Г. О. ТОРОСЯН, А. А. АКОПЯН, и А. М. ГАЛОЯН

Ереванский университет «Грачья Ачарян»

Поступило 29 IV 1994

Недавно было установлено, что продолжительное нагревание фурфурилакрилата (100 ч, при 90—92°, в присутствии неозона Д) приводит к образованию продукта циклизации-3 т-6-эпокси-3 α , 6, 7, 7 α -тетраги-дро-3H-бензо[с]фуран-1-она с выходом 10%. Циклизация проходит с высоким выходом (50%) на диатомите. В присутствии AlCl₃ имеет место полимеризация [1].

Согласно данным Зауера и Зустмана, реакция Дильса-Альдера проходит по согласованному механизму, однако две новые связи обра-

\$5: