4. Гросс Э., Майенхофер Н. — Пентиды. М., Мир. 1983. с. 13, 151.

5. Несунц Н. С., Топузян В. О. — Арм. хим. ж., 1991, т. 44, № 7—8, с. 454.

6. Альберт А., Сержент Е. — Константы новизации кислот и оснований. М., Химия, 1964, с. 116.

7. Голубев Н. С., Денисов Г. С., Шрайбер В. М. — Водородная связь. М., Наука, 1981, с. 212.

8. Рабинович В. А., Хавин З. Я. — Краткий химический справочник. М., Химия, 1977.

9. Crawford M., Little W. T. -- J. Chem. Soc., 1959, p. 729.

10. Гордон А., Форд Р. — Спутник химика. М., Мир. 1976.

Армянский химический журнал, т. XLV. № 3-4, стр. 226-233 (1992 г.)

УДК 547.831.832.722.821

получение производных 2,3-дигидрофуро/3,2-С/хинолина

Л. В. ГЮЛЬБУДАГЯН, И. Л. АЛЕКСАНЯН и А. А. АВЕТИСЯН

Ереванский государственный университет

Поступило 2 XI 1989

Синтезнрованы 2-бромметил-4-метил-2,3-дигидрофуро/3,2-d хннолины и изучены их взаимодействие с солями инкотиновой и у-аминомасляной кислот, приводящее к соответствующим эфирам никотиновой и у-аминомасляной кислот, а также метод их аминирования, приводящий к соответствующим 2-аминометил-2,3-дигидрофуро/-3,2-с/хинолинзм.

Табл. 4, библ. ссылок 2.

Ранее нами было установлено, что 2-метил-3-аллил-4-оксихинолины (I—VII) [1, 2] при взаимодействии с бромом в хлороформе при комнатной температуре подвергаются электрофильной внутримолекулярной гетероциклизации (ЭВГ) с образованием соответствующих 2-бромметил-4-метил-2,3-дигидрофуро/3,2-с/хинолинов (VIII—XII).

С целью синтеза новых биологически активных производных фурохинолинов в настоящей работе изучалось взаимодействие 2-бромметил-4-метил-2,3-дигидрофуро/3,2-с/хинолинов с натриевыми солями никотиновой и у-аминомасляной кислот. Показано, что при нагревании в среде диметилформамида с высокими выходами получаются (4-метил-2,3-дигидрофуро/3,2-с/хинолил-2) метиловые эфиры никотиновой (XIII—XIX) и у-аминомасляной (XX—XXVI) кислот.

В масс-спектрах этих соединений присутствуют характерные пики, однозначно доказывающие строение полученных дигидрофурохинолинов.

С целью получения 2-аминометил-4-метил-2,3-дигидрофуро/3,2-с/хиполинов (XXVII—XXXII) осуществлено взаимодействие 2-бромметил-4-метил-2,3-дигидрофуро/3,2-с/хинолинов с фталимидом калия. Кислотный гидролиз продуктов указанной реакции приводит к аминопроизводным фурохинолинов XXVII—XXXII, строение которых доказано данными ПМР и ИК спектроскопии.

Экспериментальная часть

ПМР спектры сняты на приборе «Varian» с рабочей частотой 60 МГц в четыреххлористом углероде, с внутренним стандартом ТМС. Масс-спектры сняты на приборе «МХ-1303-» с прямым вводом образца в область ионизации. ИК спекры сняты на приборе «UR-20» в вазелиновом масле. Чистота полученных соединений установлена методом ТСХ (окись алюминия II степени активности, проявитель—пары йода).

2-Бромметил-4-метил-2,3-дигидрофуро/3,2-с/хинолины (VIII—XII). К раствору 0,1 моля соответствующего 2-метил-3-аллил-4-оксихинолина (I—VII) [1, 2] в 100 мл хлороформа при комнатной температуре, перемешивая, добавляют по каплям 200 мл (0,1 моля) 0,5 М раствора брома в хлороформе. Раствор перемешивают еще 30 мин, получают бромистоводородные соли соответствующих дигидрофуро/3,2-с/хинолинов.

Продукт в виде основания выделяют тремя способами: а) по окончании реакции смесь экстрагируют водой. Водный раствор подщелачивают, выпавший осадок отфильтровывают; б) реакционную смесь нейтрализуют водным раствором бикарбоната натрия, хлороформный слой отделяют, хлороформ удаляют и остаток перекристаллизовывают; в) к реакционной смеси прибавляют эфир. Выпавшую бромистоводородную соль отфильтровывают, растворяют в воде. Водный раствор фильтруют и подщелачивают, выпавший осадок отфильтровывают.

Полученные фурохинолины перекристаллизовывают из гексана, четыреххлористого углерода или разбавленного водного спирта (1:1) (табл. 1). ПМР спектр соединения VIII, δ , м. δ .: 2,20 c (3H, CH₃); 2,45 c (3H, CH₃); 3,24 д (2H, CH₂); 3,60 д (2H, CH₂Br); 5,18 м (H, CH); 7,4—7,8 м 3H, аром.). ПМР спектр соединения X, δ , м. δ .: 2,45 c (3H, CH₃); 3,24 д (2H, CH₂); 3,62 д (2H, CH₂Br); 3,95 c (3H, OCH₃); 5,20 м (H, CH); 7,60—8,0 м (3H, аром.). Соединение VIII, M+ 292 (масс-спектрометрически).

2-Бромметия-4-метия-2,3-дигидрофуро/3,2-с/хинолины (VIII—XII)

Соедине-	D	R. 0/0	. пл.,			Найде	BO, º/o			Вычиса	N 4.79 4.79	
	R	Выход	°C	R,	С	Н	N	C1 + Br	С	Н	N	CI + Br
VIII	6-CH ₃	93	125	0,71	57,35	4,70	4,65	27,29	57,53	4,79	4,79	27,40
IX	8-CH ₃	94	152	0,69	57,38	4.71	4,68	27,26	57,53	4,79	4.79	27,40
x	8-OCH ₃	94	135	0,51	54,65	4,73	4,43	25,61	54.56	4,54	4,54	25,97
XI	6-C1	95	139	0.72	50,05	3,69	4,52	37,10	49,92	3,52	4,48	36,96
XII	8-CO ₂ C ₂ H ₅	96	118-119	0.50	54.99	4,72	4,18	22,61	54,86	4,57	4,00	22,85

^{*} В системе жлороформ-гексан, 1:1.

аблица 2 (4-Метил-2,3-дигидрофуро,3,2-с хинглил-2)метиловые эфиры никотиновой кислоты (XIII—XIX)

		0/0				Ha	й:ено 9	0		Вычислено, 0/0				
Соеди-	R	ОД,	T na.,	P;				дигидрохлорид					дигидрохлория	
нение	IX.	Выхо	°C		С	Н	N	N	C1 + Br	С	Н	N	N C1 - 6.88 17 6.88 17 6.62 16 6,62 16 6,55 24	CI + Bi
X111	6-CH ₃	77	164	0,49	71,68	5,63	8,46	6,79	17,64	71,86	5,39	8,38	6.88	17,44
XIV	8-CH ₃	81	173	0,12	71,64	5,58	8.21	6,77	17,59	71,86	5,39	8,39	6,88	17,44
xv	6-OCH ₃	82	163-169	0,60	68.70	5,04	8,09	6.59	16,72	68,57	5,14	8.00	6,62	16,78
XVI	8-OCH ₃	79	190-191	0.62	68,49	5,22	8.17	6.57	16,81	68.57	5.14	8,00	6,62	16,78
XVII	6-CI	80	159-160	0,59	64,43	4,37	8,01	6,69	25,03	61.41	4,23	7,90	6,55	24.91
XVIII	8-Br	76	151	0,61	57,28	3,93	7,24	5,76	32,20	57.14	3.76	7,02	5,93	31,99
XIX	8-CO2C2H3	71	160	0,68	67,46	5,24	7,01	6,29	15,08	67,75	5,10	7,14	6.02	15,27

^{*} В системе жлороформ - генсан, 1+3,

(4-Метня-2,3-дигидрофуро/3,2-с/хинолия-2)метилоные эфиры у-аминомасляной кислоты (XX--XXVI)

	-	%				Ha	Адено,	P/a			Выч	ислено.	0/0		
Соеди-	R		Т. пл.,	R,		1		дигиа	роклорид				дигидр	лидокхо	
нение	, i	Выход.	•c	N,	С	Н	N	N	CI + Br	С	Н	N _	N	17,62 17,62 26,13	
xx	6-CH ₈	80	192	0,51	68,68	7,20	9,06	7,44	18,18	68.79	7,01	8,92	7,23	18,35	
1XX	8-CH ₃	70	201	0,64	68,94	7,17	8.81	7,11	18,47	68,79	7,01	8,92	7,23	18,35	
XXII	6-OCH ₃	74	190-191	0,69	65,30	6,81	8,54	6,81	17,49	65,45	6,64	8.48	6,95	17,62	
XXIII	8-OCH ₃	77	189	0,72	. 65,56	6,59	8,59	7,08	17,78	65,45	6,64	8,48	6,95	17,62	
XXIV	6-C1	75	144-145	0,68	61,19	5,78	8,44	6,75	25,00	60,99	5,68	8,37	6,87	26,13	
XXV	8-Br	66	170	0,58	53,73	5,23	7.25	6,30	33,24	53,83	5,01	7,39	6,19	33,41	
XXVI	8-CO ₂ C ₂ H ₈	68	159—160	0,62	64,39	6.57	7.41	6,08	16,11	64,52	6,45	7,53	6.29	15,96	

^{*} В системе клороформ-гексан, 1:2.

TAGALMA J

2-А минометил-4-метил-2,3-дигидро рур	о 3.2-с хинолины	(XXVII-XXXII)
a riannoacing i actua-2,0-2018Apo pyp	O U,L-1 AHRUMARIO	TVVA III - VVVIII

		0/10				ŀ	Тайдено.	0,0			B	числено	нислено, ^о о			
Соеди-	R		Т. пл.,	Rr			CE	дигидр	дидокхо				дигидр	дидокхо		
нение		Выход	°C	ν,ι	С	H	N	N	CI	С	H	N	9,80 23, 9,80 23, 8,83 22, 8,83 22,	CI		
XXVII	6-CH ₃	85	115-116	0,57*	73,80	7,23	12,40	9,51	23.69	73,68	7.02	12,28	9.80	23,59		
XXVIII	8-CH ₃	82	197	0.61*	73,75	7,20	12,36	9.48	23,48	73,68	7,02	12,28	9.80	23,59		
XXIX	6-OCH ₃	86	207	0,59*	69.01	6,63	11,60	8,93	22.51	69,85	66	11,47	8,83	27.10		
XXX	8-OCH ₃	81	192	0,63*	68,94	6.50	11.59	8,78	22,48	68,85	6,56	11,47	8,83	22,43		
XXXI	6-C1	80	143 146	0,60*	62,93	5,38	11.06	8,64	33,02	62,78	5,23	11,27	8,71	33,13		
IIXXX	8-COOH	65	360 (свирт)	0,47**	65,01	5,58	10,68	-		65,12	5,43	10.85	-	-		

В системе ** хиороформ—спирт, 1:2, * хлороформ--гексан, 1:4.

(4-Метил-2,3-дигидрофуро/3,2-с/хинолил-2) метиловые эфиры никотиновой кислоты (XIII—XIX). К раствору 1,45 г (0,01 моля) натриевой соли никотиновой кислоты в 5 мл воды добавляют 30 мл ДМФА и 0,01 моля соответствующего бромметилфурохинолина VIII—XII и кипятят 2—3 ч, затем под пониженным давлением отгоняют ДМФА. После охлаждения осадок обрабатывают разбавленной щелочью, отфильтровывают и перекристаллизовывают из водного спирта (1:1) или нонана (табл. 2). ИК спектр соединения V, v, см-1: 1720 (ОС=О), 1270 (С—О—). Соединение XV, М+ 350 (349) (масс-спектрометрически).

(4-Метил-2,3-дигидрофуро/3,2-с/хинолил-2) метиловые эфиры у-аминомасляной кислоты (XX—XXVI). Аналогично предыдущему из 1,25 г (0,01 моля) натриевой соли у-аминомасляной кислоты и 0,01 моля соответствующего бромметилфурохинолина VIII—XII получают соединения XX—XXVI (табл. 3). Выделение и очистку продуктов проводят как указано выше. Соединение XXI, М÷ 314 (масс-

спектрометрически).

2-Аминометил-4-метил-2,3-дигидрофуро/3,2-с/хинолины (XXVII— XXXII). К раствору 0,01 моля соответствующего бромметилфурохинолина VIII—XII в 30 мл ДМФА прибавляют 1,85 г (0,01 моля) фталимида калия и кипятят в течение 7 ч, затем осадок бромистого калия отфильтровывают и ДМФА отгоняют. К остатку приливают 50 мл 20% соляной кислоты, кипятят 6—7 ч. Осадок фталевой кислоты отфильтровывают, фильтрат подщелачивают и выпавший осадок после фильтрования перекристаллизовывают из хлороформа или воды (табл. 4). ИК спектр соединения XXXII, ν , cm^{-1} : 1710 (C=O кисл.), 2750—3300 (ОН кисл.). ПМР спектр соединения XXIX, δ , м. ∂ .: 1,25 т (2H, NH₂); 2,45 с (3H, CH₃); 2,89 д (2H, CH₂); 3,21 кв (2H, CH₂NH₂); 3,95 с (3H, OCH₃); 4,8 м (H, CH); 7,4—7,8 м (3H аром.).

2,3-ԴԻՀԻԴՐՈՖՈՒՐՈ (3,2-C) ԽԻՆՈԼԻՆՆԵՐԻ ԱԾԱՆՑՑԱԼՆԵՐԻ ՍՏԱՑՈՒՄԸ Լ. Վ. ԳՑՈՒԼԲՈՒԴԱՂՑԱՆ, Ի. Լ. ԱԼԵՔՍԱՆՑԱՆ և Ա. Ա. ԱՎԵՑԻՍՑԱՆ

Սինթեզված են 2-բրոմմենիլ-4-մենիլ-2,3-դիհիդրոֆուրո (3,2-c)-խինոլիններ և նրանցից նիկոտինանելի և γ-ամինոկարագանիվի համապատասխան Էսներներ, ինչպես նաև 2-ամինոմենիլ-4-մենիլ-2,3-դիհիդրոֆուրո (3,2-c) խինոլինների ածանցյալներ։

PREPARATION OF THE DERIVATIVES OF 2,3-DIHYDROFURO/3,2-C/QUINOLINES

L. V. GYULBUDAGHIAN, I. I.. ALEXANIAN and A. A. AVETISSIAN

2-Bromomethyl-4-methyl-2.3-dihydrofuro-/3,2-c/quinolines have been synthesized and their Interaction with salts of nicotinic and γ -aminobutyric acids has been studied.

ЛИТЕРАТУРА

Salzer W., Timmler H., Andersag H. — Chem. Ber., 1948, v. 81, p. 12.
 Chudgar R. J., Triverdi K. N. — J. Indian Chem. Soc., 1972, v. 49, № 6, p. 513.

Армии кий химический журнал, т. XLV, 12 3-4, стр. 233-238 (1992 г.)

УДК 547.756.831.738

новые производные 2-стирилхинолинов

в. гюльбудагян, и. л. алексанян и а. а. аветисян

Ереванский государственный университет

Поступило 2 XI 1989

Осуществлен снитез 2-стирил-3-(3',3'-диклораллил)-4-феннии минохинелинов и 2-диклорметил-4-стирил-2,3-дигидротиено/3,2-с/хинолинов на базе 2-метил-3-(3',3'-диклораллил)-4-клорхинолинов.

Табл. 5, библ. ссылок 7.

Стирилхинолины составляют основу важных полиметиленовых или цианиновых красителей, которые применяются для повышения свето- и цветочувствительности фотографических эмульсий [1]. Некоторые из аминопроизводных стирилхинолина обладают антималярийной [2] и антимикробной [3, 4] активностью. Их синтез основан на реакционной способности атомов водорода алкильных заместителей, особенно во 2 или 4 положениях хинолинового цикла из-за воздействия гетероциклического азота.

Типичной реакцией получения стирилхинолинов является конденсация 2-метилхинолина с альдегидами. Свободное основание требует применения кислого катализатора, например, HCl или ZnCl₂, а четвертичные соли легко конденсируются даже в присутствии следов пиперидина. В настоящей работе разработан метод получения замещенных стирилхинолинов на базе 2-метил-3-(3',3'-дихлораллил)-4-оксихиполинов и изучены химические превращения.

Поскольку указанные 4-оксихннолины—трудно растворимые вещества, мы нашли целесообразным оксигруппу заменить хлором и далее хлор заместить фениламиногруппой. Полученные 4-хлор-2-метил-3-(3',3'-дихлораллил)хинолины (I), а также их 4-фениламиноаналоги II при нагревании с бензальдегидом превращаются в соответствующие 2-стирилхинолины III, IV. С целью получения стирилхинолинов, содержащих меркаптогруппу, 2-стирил-3-(3',3'-дихлораллил)-4-хлорхинолины (IV) были подвергнуты взаимодействию с тномочевиной в среде ацетона. Однако при подщелачивании растворов тиоурониевых солей вместо соответствующих 4-меркапто-2-стирилхинолинов были получены продукты их внутримолекулярной гетероциклизации, т. е. 2-дихлорметил-4-стирил-2,3-дигидротнено/3,2-с/хинолины (VI). По-видимому, в этих условиях по мере получения меркаптогруппы синхронно протекает внутримолекулярная гетероциклизация.