The influence of the dielectric permeability of the solvent on the reaction rate has been elucidated.

JHTEPATYPA

- 1. Топузян В. О., Герасимян Д. А., Эдилян А. С., Мнажоян О. Л.—Хим-фарм. ж., 1986, т. 20, № 6, с. 675.
- 2. Пароникан Р. Г., Несунц Н. С., Топузан В. О., Миджоян О. Л. Тезисы докладов VIII Молодежной конференции по синтетическим и природным физиологически активным соединениям. Ереван, 1986, с. 42.
- Гринштейн Дж., Виниц М. Химия аминокислот и пептидов. М., Мир. 1963, с. 331
- Бендер М. Механизм катализа нуклеофильных реакций производных карбоновых кислот. М., Мир, 1964, с. 73, 119, 127.
- 5. Tersey 1., Zerner 1. Blochemistry, 1969, v. 8, No. 5, p. 1975.
- 6. Зайцева М. Г., Богатков С. В., Черкасова Е. М. ЖОХ, 1965, т. 35, с. 2066.
- Schreiber V. M., Koll A., Sobczyk L. Bull. Acad. pol. sci. ser., sci. chim., 1978,
 v. 26, No. 8, p. 651.
- 8. Голубев Н. С., Денисов Г. С., Шрайбер В. М. Водородная связь. М., Наука, 1981, с. 212.
- Рабинович В. А., Хавин З. Я. Краткий химический справочник. М., Химия, 1977.
- 10. Crawford M., L'ttle W. T. J. Chem. Soc., 1959, p. 729.
- 11. Гордон А., Форд Р. Спутник химика. М., Мир. 1976.

Армянский химический журнал, г. 44, № 7-8, стр. 459-466 (1991 г.)

УДК 547.556

О НОВЫХ ИЗОМЕРНЫХ ФОРМАХ 4-ФЕНИЛАЗО-1,2-ДИОКСИБЕНЗОЛА

А. А. МАТНИШЯН и А. М. АРЗУМАНЯН Армянский филиал ВНИИ ИРЕА «Реахром», Ереван Поступило 28 II 1990

Обилружено, что 4-фенилазо-1,2-диоксибензол, известный как продукт азосочетания пирокатехина с фенилдиазоний хлоридом, в гвердой фазе существует в виде изомеров 4-фенилазо-1-оксициклогекса-1,3-диен-6-она и 3-фенилазо-1-оксициклогекса-1,3-диен-6-она (в основном в виде первого). В растворах же, в зависимости от типа растворителя, изомеры могут переходить частично или полностью в известную ранее форму 4-фенилазо-1,2-дноксибензол. Методами ИК, УФ, ПМР спектроскопии, а также рентгеноструктурного анализа и на основе теоретических расчетов подтверждена структура этих изомеров.

Рис. 2, табл. 2, библ. ссылок 11...

Азопроизводные пирокатехина являются хорошими комплексообразователями для различных редкоземельных металлов и селективными адсорбентами для их извлечения. В частности, 4-фенилазо-1,2-дноксибензол нашел применение в качестве реагента для фотометри-

ческого определения циркония [1] и является исходным мономером при получения пирокатехиновой смолы, применяемой в различных

композитах [2].

Оксиазосоединения отличаются большим разнообразием таутомерных форм. В работе [3] на основе квантовохимических расчетов
определены λ_{max} различных таутомерных форм, а экспериментально
подтверждено их существование в водно-диоксановых растворах при
различных рН. На основе данных ЯМР С¹³ показано, что в органических растворителях таутомерное равновесие в оксибензоле смещено
в сторону азопродукта [4]. Однако структура продукта исследована
недостаточно, известный из литературы [5, 3] факт перехода исходного кристаллического желтого продукта в красный в твердой фазе
не объясняется существованием прототропных изомсров.

Цель нашей работы-исследование структурных переходов как в

твердой фазе, так и в растворах.

Свежекристаллизованный из водного раствора продукт 1, представляющий собой голотисто-желтые игольчатые кристаллы 4-фенилазо-1.2 диоксибензола, при сушке на свету переходит в темно-красную форму. Нами обнаружено, что этот переход значительно ускоряется под действием света. По данным реиттеноструктурного анализа, при переходе от желтого продукта к красному (II) наблюдается изменение параметров кристаллической решетки. Однако резкое увеличение числа рефлексов может говорить о существовании продукта II в нескольких изомерных формах. В новой кристаллической фазе полностью отсутствуют рефлексы исходного кристалла, следовательно, в твердой фазе имеет место полный переход продукта I в II (табл. 1). Следует отметить, что при этом элементный состав их остается постоянным, а при нагревании продукт I переходит в II и фактически приведенные в литературе значения т. пл. относятся не к продукту I, а к его изомеру II.

В УФ спектрах как продукта 1, так и изомера 11, сиятых в этаноле, ацетоне, диоксане наблюдается поглощение в области 360 им (рис. 1), которое, согласно [6], соответствует структуре ссединения 1. Однако исследование УФ спектров в различных хлорсодержащих растворителях (тетрахлорэтилен, хлористый метилен, СС14) выявило новую полосу поглощения в области 450 им, вероятно, связанную с присутствием изомера 11. На основе спектральных псследований нами предложены альтернативные структуры для изомерных форм (схема, 11 а, б). Из данных квантовохимических расчетов, проведенных по методу ППП в л-электронном приближении как с учетом водородной связи, так и без, видно, что дрих для обеих структур прак тически одинаковы и соответствуют структурам 11а и 116—447, 149 им с учетом водородной связи и 440, 439 им без её учета (табл. 2).

Таблацо данны: рентгенографического анализа 1-фенилазо-1,2-диоксибензола и его изомеров

4-Фенила: оксибе:		Изомеры IIa, 6		
межпло- скостные расстояния. d, Å	интенсив- ность, J, 0/0	межпар- скостные расстояния.	ENTER- CHBROCTS, J. C/a	
6.0	- 19	8.58	28	
5.35	61	8 66	24	
4.95	27	8.29	21	
4,77	21	8.04	12	
4.53	13	7.27	37	
4.49	13	6,44	190	
4,19	15	6,52	90	
3,48	100	5,55	77	
3.30	38	5.00	16	
2.54	22	4,92	12	
200		4.86	21	
		4,56	10	
120		3,86	100	
		3,61	41	
		3,56	28	
		3,23	4/	
		3,96	19	
		2,71	64	
		2,60	34	
		2,67	23	
		2,39	47	
		2.28	16	

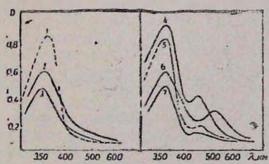


Рис. 1a УФ спектры 4 фенилазо-1.2-дноксибензола: 1 — в дноксане, 2 — в этаноле, 3 — изомерная форма II в этаноле.

Fис. 16. УФ спектры 4-фенилазо-1,2-дноксибензола: 4 — в тетрахлорэтилене; 5 — в ССІ₄, 6 — в СНСІ₃, 7 — СН₂СІ₂.

Параметры расчетов взяты из работы [7], а образование водофодной связи учитывалось по модели Шигорина [8]. В случае «лороформа в УФ спектрах наблюдается батохромный сдвиг этой полосы поглощения на 50 нм (рис. 16). К сожалению, попытка подобрать растворитель, в котором продукт находился бы только в форме II, не увенчалась успехом. Таким образом, в зависимости от растворителя продукт существует преимущественно или в желтой форме, или же в виде смеси изомерных форм. Подтверждением вышесказаного являются данные ПМР спектра соединения, снятого в дейтероацетоне, которые соответствуют форме I, в то время как спектр того же образца, снятый в СД₂Сl₂, представляет собой смесь резонансных линий изомерных форм (рис. 2).

Табаща 2
Параметры, использованные в квантово -- химических расчетах по методу ППП

Атом	Число =-элек- тронов	Потенциал нонизации И , эл	Одноцентр кулоновский интеграл, эВ	Связь	Резонансный инте рал р. эВ	Гасстояние между атомами. А
С	1	-11,16	11.13	C=C	-2,39	1,39
N	1	- 14,12	12,34	N = N	-2,60	1.23
Ö	1	- 17,70	15.23	C-N	-2.1	1,41
ö	2	- 34,00	21,00	C-OII-	-2.5	1.38
	1-1-1			C - O	-2,6	1,23

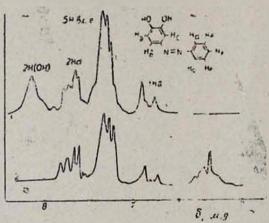


Рис. 2. П NP спектры феннлазо 1.2-д оксибензола: 1-в дейтероацетоне, 2-в CD_2CI_2

В ИК спектре соединения II, спятого в твердой фазе, присутствуют полосы поглощения, характерные для замещенных ароматических колец: валентные колебания — СН в области $3030\ cm^{-1}$, плоскостные колебания скелета C=C-1520, $1620\ cm^{-1}$, впеплоскостные деформационные колебания СН—780, 810, 930, 970, 1175, 1225 cm^{-1} . О наличии ароматических колец свидстельствуют также данные ПМР спектров $(6,9-7,7\ m$. д.). В ИК спектрах наблюдается поглощение в области $1370\ cm^{-1}$, характерное для C-O связи, что подтверждается наличием максимума в этой же области для o-диоксибензола, а поглощение при $1290\ cm^{-1}$ соответствует колебаниям C-N связи.

жарактерног особенностью спектров продукта II является наличие полос поглошений для CH_2 -группы; валентные колебания в области 2850, 2930 и деформационные при 1430 см⁻¹ Присутствие CH_2 -групны подтверждается также наличием в ПМР спектре сигнала в области 2,4 ж. д. ($\Delta v_2 := 15 \ \Gamma u$) (рис. 2). В ИК спектре в области 1590—1640 см⁻¹ наблюдается широкая полоса поглошения аномально смещениой карбонильной группы, которая, согласно работе [9], является результатом внутримолекулярного комплексообразования 1-кето-2-оисисоеличений, содержащих двойную связь в цикле. Вместо поглошения межмолекулярной водородной связи в области 3460 см⁻¹, характерной для пирокатехина, в ИК спектре проявляется широкая, очень размытая полоса поглощения в области 2500—3600 см⁻¹, свяванная с наличием впутримолекулярной водородной связи.

На основе вышеприведенных данных мы считаем, что имеет место изомеризации продукта I, приводящая к нарушению ароматичности о-диоксибензольного кольца с образованием фенилазсоксициклогексадиенонов.

Нарушение ароматичности известно и для других оксиароматических соединений, в частности, в случае 1-нафтола имеет место кетоснольное таутомерное равновесие [10]. В о-диоксибензольных производных кето-форма стабилизируется внутримолекулярной водородной связью. Однако в пирокатехине кето-енольная таутомерня неизвестна. Вероятно, в продукте ІІ жето-форма стабилизирована не только образованием внутримолскулярной водородной связи, но и эффектом сопряжения азобензольного заместителя. В среде полярного растворителя равновесие нарушается и наблюдается обратный переход продукта из формы ІІ в І.

Красный продукт II представляет собой смесь изомерных форм II и II в и II в отличающихся местом азобензольного заместителя, разделение которых не представляется возможным, что создает определение трудности для структурных исследований. Более того, как было отмечено выше, не удалось подобрать растворитель, в котором

существовала бы только форма II. Поэтому ПМР спектр составния II малоинформативен, но тем не менее можно сказать, что вы двух типов СН2-групп преобладает та, которая имеет изолированные протоны, проявляющиеся в виде синглета, что отвечает структуре IIа. Следует также отметить, что структура IIа энергетически более выгодна, чем структура IIб, т. к. длина сопряженной цепи в первом случае больше, более того, структура II стабилизирована образованием внутримолекулярной водородной связи с азо-группой. Отсутствие полос поглощения свободной хинонной группы в ИК спектрах указывает на невозможность образования продуктов дальнейшей изомеризации III а, б.

Таким образом, нами обнаружены новые таутомерные формы 4-фенилазо-1,2-дноксибензола, соответствующие структурам: 4-фенилазо-1-оксициклогекса-1,3-днен-6-он (IIa) и 3-фенилазо-1-оксициклогекса-1,3-днен-6-он (IIб), которые стабильны в твердой фазе, а в зависимости от растворителя могут переходить частично или полностью в исходную форму—4-фенилазо-1,2-дноксибензол.

Реакция азосочетания пирокатехина с солью диазовия, в отличие от многих других подобных реакций, сопровождается образованием смолообразных продуктов. Образование низкомолекулярных смолообразных продуктов до 75-80% в условиях синтеза связано с высокой активностью продукта II к дегидрополиконденсационным процессам. Нами осуществлена термическая поликонденсация соединения 11 при 100°, а также в присутствии H₂SO₄. Структура полученных полимеров идентична структуре смолообразных продуктов реакции, о чем свидетельствует схожесть ИК спектров этих полимеров. В свою очередь, олигомерные продукты реакции также полимеризуются термически с образованием твердых черных блоков. Судя по данным характеристической вязкости ([η]=0,1 дл/г), полимеры имеют невысокую молекулярную массу, а вязкость олигомерных продуктов совсего 0,035 дл/г. Полученные полимеры растворимы в ставляет ДМФА, парамагнитны, концентрация ПМЦ-1018 cnunlz. Наличие в полимере соединения II подвижного атома водорода, а также ОНгруппы, и факт полимеризации в присутствии H₂SO4 позволяют предположить, что здесь имеет место дегидрополиконденсация по следующей схеме:

Взилу низкой молекулярной массы доля концевых групп достаточно велика, поэтому ИК спектры малоинформативны. Исследозание структур таких полимеров представляется достаточно сложной задачей.

Экспераментальная часть

УФ спектры сняты на спектрометре «Specord» в растворителях этанол, ацетон, диоксан, тетрахлорэтилен, хлористый метилен, четыреххлористый углерод, хлороформ; концентрация 10-3 моль/л. ИК спектры образцов получены на спектрометре «UR-20» в тонких пленках и в таблетках с КВг, ПМР спектры—на «Tesla» с рабочей частотой 100 М/ц с внутренним эталоном ТМС в D₆-ацетоне и СД₂Сl₂. Дифрактограммы получены на дифрактометре «ДРОН—2,0 (). СиКа)».

TCX проводилась на пластинках «Silufol UV-254» в системе тексап этилацетат, 9:1.

4-12 с. п.л. изго-1,2-сиоксибензол (1) получали по методикам, описанным в работах [2, 5, 11]. Перекристаллизацией из воды или же осажлением из ацетонового раствора волой получен не устойчивый в твердой фазе пролукт 1, представляющий собой золотисто-желтые игольчатые кристаллы, которые при сушке на свету постепенно (1—2 дня) переходят в темно-красный продукт, представляющий собой смесь изомеров 1-и 3-фенилазо-1-оксиниклогекса-1,3-днен-6-онов (Пб) с т. пл. 164°. Найдено, %: С 67,30; Н 4,85; N 13,14. Вычислено, %: С 67,28; Н 4,70; N 13,03. Изомеры Па, б можно получить также при облучении продукта I лампой (300 в) в течение 2—3 мин.

4-ՖԵՆԻԼԱԶՈ-1,2-ԳԻՕՔՍԻՔԵՆԶՈԼԻ ՆՈՐ ԻԶՈՄԵՐԱՅԻՆ ՉԵՎԵՐԻ ՄԱՍԻՆ Հ. ս. ՄԱՏՆԻՇՑԱՆ ս. Մ. ԱՐԶՈՒՄԱՆՑԱՆ

Հայանաբերված է, որ 4-ֆենիլազո-1,2-դիօքսիբենզոլը, որը հայտնի է որպես պիրոկատեխինի ազոմիացության միացություն ֆենիլդիազոնիում թյորիզի հետ, պինդ ֆավում դոյություն ունի 4-ֆենիլազո-1-օքսիցիկլոհեքսա-1,3-դիեն-6-օնի և 3-ֆենիլազո-1-օքսիցիկլոհեքսա-1,3-դիեն-6-օնի և 3-ֆենիլազո-1-օքսիցիկլոհեքսա-1,3-դիեն-6-օնի իզոմեր-ների տեսքով (հիմնականում առաջինի)։ Լուծույթներում, կախված լուծիչի բնույթից, մասնակիորին կամ ամբողջովին կարող են ընդունել նախկինում այտնի 3-ֆենիլազո-1,2-դիօքսիբենզոլի տեսքը։ Իկ, ՈՒՄ կամ ՊՄՌ սպեկ-տրոսկոպիայի մեթոդներով, ինչպես նաև ռենտղենստրուկտուր անալիղի և տեսական հաշվարկների հիման վրա հաստատված է այս իզոմերների կա-ռուցվածքը։

ABOUT NEW ISOMERIC FORMS OF 4-PHENYLAZO-1.2-DIOXYBENZENE

II. A. MATNISHIAN and A. M. ARZOUMANIAN

It has been found that 4-phenylazo-1,2-dioxybenzene the product of azocombination of pyrocatechol and phenyldiazonium chloride in solid

state forms two Isomers: 4-phenylazo-1-oxycyclohexa-1,3-dien-6-one and 3-phenylazo-1-oxycyclohexa-1,3-diene-6-one (mainly as the former). In solutions depending on the nature of solvent they can transform partially or completely in well known form 4-phenylazo-1,2-dioxybenzene. By IR, UV and H' NMR X-ray analysis and on the basis of theoretical calculations the structure of the isomers has been proved.

ЛИТЕРАТУРА

1. Гень Л. И., Иванов В. М., Вилкова О. М., Голубицкий Г. Б. — ЖАХ, 1982, т. 37, № 6. с. 987.

2. Матнишян А. А. — Исследование в области механизма реакций диззосоединений и спитез ароматических полимеров на их основе. Автореферат дисс. на соиск. уч. ст. доктора хим. наук. Ереван, 1978.

3. Вилкова О. В., Гень Л. И., Иванов В. М. — ЖАХ, 1979, т. 34, № 11, с. 2192

4. Федоров Л. А., Жуков М. С., Ермилов А. Н. — Изв. АН СССР. сер. хим., 1984. № 5, с. 1185.

5. Bel., 1933, v 16, p. 176.

- 6. Савин С. Б., Кузин Э. Л. Электронные спектры и структура органических релгентов. М., Наука, 1974, с. 254.
- 7. Heinze J., Jaff H. H. Electronegativity. J. Orbital Electronegativity of neutral atoms, 1971.
- 8. Шигорин Д. Н. Водородная связь, М., Наука, 1964, с. 195.

9. Cordg J .-- J. Chem. Phys., 1940, v. 8, p. 516.

- Химия синтетических крисителей/под ред. Венкатарамана К.—Л., Химия, 1974.
 т. 3. с. 1786.
- 11. Кузнецов В. И. Сборник статей по общей химии. М.—Л., Изд. АН СССР. 1953. т. 2. с. 1378.

Армянский химический журнал, т. 44, № 7-8, стр. 466-472 (1991 e.)

УДК 678.13+547.538.141+547.724

ВЗАИМОДЕЙСТВИЕ 5-НИТРОФУРФУРОЛА С «-МЕТИЛСТИРОЛОМ

А. А. ДУРГАРЯН и Р. М. БЕГИНЯН

Ереванский государственный университет

Поступило 6 II 1989

Исследована реакция 5-нитрофурфурола с α-метилстиролом при —25, 0 π 25° в клорбензоле под действием эфирата трехфтористого бора.

Установлено, что нет сильного влияния температуры на состав продукта реакции. Доказано, что при избытке 5-интрофурфурола, в основном, получаются продукты реакции Принса: 2,4-ди(5'-интро-2'-фурил)-6-метил-6-фенил-1,3-диоксэн в 2,4диметил-2,4-дифенил-6-(5'-интро-2'фурил) тетрагидропирав.

Табл. 1, библ. ссылок 12.

При катионной сополнмеризации со стиролом при 20—70° фурфурол реагирует как альдегидной группой, так и фурановым кольцом, с образованием черного и, в основном, нерастворимого полимера [1].