- Общий практикум по органической химви/под ред. А. Н. Коста, М., Мир. 1965.
 с. 358.
- 4. Choi Jong M. Ewbligde Robert W .- J. Org. Chem., 1989, v. 54, 32 15, p. 1198.
- 5. Крам Д. Основы химии карбанионов. М., Мир. 1967. 300 с.
- 6. Бартон Д., Оллис Д. Общая органическая химия. М., Мир. 1985, т. 8. с. 196.

Армянский химический журнал, т. 44, № 2, стр. 105-113 (1991 г.)

УДК 547.253.3+547.281+547.282.2

АЛКИЛИРОВАНИЕ БУТАДИЕНОМ α-C-ЗАМЕЩЕННЫХ N-БЕНЗИЛАЛЬДИМИНОВ

А. Н. ГЕОЛЕЦЯН, А. Ц. КАЗАРЯН, С. О. МИСАРЯН, Э. А. ГРИГОРЯН, С. К. АКОПЯН и Г. Т. МАРТИРОСЯН

Научно-производственное объединение «Наирит», Ереван Поступило 23 V 1990

Изучено алкилирование с-С-замещенных N-бензилальдиминов бутадиеном в присутствии каталитических количеств натрия. Показано, что при отсутствии подвижных итомов водорода в с-положении к иминогруппе реакция с высокой селективностью протекает в направлении 3+2 циклоприсоединения, с образованием производных пирролидина.

Табл. 2, библ. ссылок 7.

Ранее нами было показано, что при катализируемом натрием взаимодействии N-бензилиминов с изопреном, стиролом и бутадиеном наряду с продуктами 3+2 циклоприсоединения получаются продукты α-С-алкилирования и конденсации [1, 2]. Количество побочных продуктов уменьшалось в зависимости от степени замещенности α-положения к иминогруппе в карбонильной части молекулы [3, 4].

В связи с этим представляло интерес изучить взаимодействиебутадиена с азометинами, не содержащими подвижных атомов водорода в аллильном положении к иминогруппе.

В настоящем сообщении приводятся данные по алкилированию 2,2-диметил-3-фенилпропилиден-(Ia), 2,2-диметилпентен-4-илиден-(Iб) и 2,2-диметил-5-хлоргексен-4-илиденбензиламинов (Iв) бутадиеном в присутствии каталитических количеств патрия.

Исходные азометины были получены взаимодействием бензиламина с α-С-замещенными производными изомасляного альдегида, синтезированными по методике [5], алкилированием изомасляного альдегида бензилхлоридом, аллилбромидом и 1,3-дихлорбутеном-2.

Алкилирование иминов Ia, б, в эквимольным количеством буталиена проводили в среде тетрагидрофурана (ТГФ) в присутствии каталитических количеств натрия при 40—45°. В условиях реакции имеет место имин-иминная изомеризация с образованием прототропных изомеров IIa, б, в. В результате реакции в основном получаются соответствующие продукты 3+2 циклоприсоединения—2,3,5-замещенные пирролидины (IIIa, б, в). Кроме того, были идентифицированы продукты их дегидрирования—пирролины IVa, б, в, пирролы Va, б, в и продукты N-алкилирования полученных гетероциклических соединений: VIa, б, в; VIIa, б, в; VIIIa, б, в.

$$C_{6}H_{5}CH_{2}N = CHC(CH_{3})_{2}R \xrightarrow{Na, T\Gamma\Phi} C_{6}H_{5}CH = NCH_{2}C(CH_{3})_{2}R$$

$$Ia, 6, B \xrightarrow{IIa, 6, B} IIa, 6, B$$

$$CH_{2} = CHCH = CH_{2}, Na, T\Gamma\Phi$$

$$C_{6}H_{5} \xrightarrow{Na} C(CH_{3})_{2}R \xrightarrow{C_{6}H_{5}} C(CH_{3})_{2}R \xrightarrow{C_{6}H_{5}} C(CH_{3})_{2}R$$

$$CH = CH_{2}$$

$$CH = CH_{2}$$

$$CH = CHCH_{3}$$

$$CH_{2}CH = CHCH_{3}$$

$$CH_{3}CH = CHCH_{3}$$

$$CH_{2}CH = CHCH_{3}$$

$$CH_{3}CH = CH_{2}$$

$$CH_{3}CH_{5} \xrightarrow{Na} C(CH_{3})_{2}R$$

$$CH_{4}CH_{5} \xrightarrow{Na} CH_{5} \xrightarrow{Na} CH_{5}$$

$$CH_{5}CH_{5} \xrightarrow{Na} CH_{5}$$

$$CH_{5}CH_{5} \xrightarrow{Na} CH_{5}$$

$$CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}CH_{5}$$

$$CH_{5}CH_$$

Хромато-масс-спектрометрическое изучение продуктов реакции и продуктов кислотного гидролиза реакционной смеси подтвердило отсутствие азадиенов (продуктов конденсации и алкилирования) и продуктов их гидролиза—аминов и альдегидов [3]. Продукты 3+2-циклоприсоединения, их N-алкилирования и дегидрирования составляют около 90% от прореагировавших иминов I и II (табл. 1).

Таблица / Взанмодействие иминов I и II с бутадиеном, в присутствии каталитических количеств натрия (40-45°, 2 часа, ТГФ)

Имия	Мольное отно- шение- имин 1 бу- тадиен	Конвер- сия, ⁰ / ₀	Выходы продуктов реакции, мол. 0/0							
			изо- иерный имин	111	IV	V	VI	VII	VIII	неиденти- фициров. продукты и смолы
la	1:1	84	5 2 1	47	11	4	2	6	3	6
la	1:2	97		30	35	4	5	5	8	8
lla	1:1	88		27	16	8	5	12	I1	8
16	1:1	80	6	39	10	6	2	8	3	6
16	1:2	94	4	27	32	2	6	6	10	7
116	1:1	80	2	28	18	7	5	9	7	4
la	1:1	76,6	4	29	11	4	32	7	5.5	13
la		84	2	18	29	3	4	5	7	16
IIa		79	2	20	18	6	7	8	3	15

Строение продуктов III—VIIIa, б, в доказано по данным масс-, ИК и ПМР спектров (табл. 2).

Кроме того, пирролины IVa и VIIa были получены дегидрированием соответственно пирролидинов IIIa и VIa. Соединение VIa получили алкилированием бутадиеном пирролидина IIIa. Встречный синтез

N-замещенного пирролина VIIa был осуществлен также алкилированием пирролина IVa.

При проведении реакции иминов Ia, б, в с двойным мольным количеством бутадиена пирролидины VI становятся основными продуктами реакции. Содержание в реакционной смеси соединения VII также возрастает за счет расходования продукта IV (табл. 1).

Использование вместо иминов Ia, б, в их прототропных изомеров IIa, б, в существенно не влияет на реакцию, с той разницей, что в реакционной смеси возрастает содержание продуктов N-алкилирования и дегидрирования. Этот факт объясняется идентичностью реакционного 2-азааллильного карбаниона для обоих иминов, а также незначительными различиями скоростей ионизации азометинов в ТГФ под действием натрия.

Таким образом, полученные данные показывают, что блокирование аллильного положения к иминогруппе алкильными, алкилароматическими или олефиновыми группами приводит к протеканию реакпии между азометином и бутадиеном исключительно в направлении 3-1-2-циклоприсоединения. Образующиеся в небольших количествах побочные вещества являются продуктами реакций N-алкилирования и дегидрирования производных пирролидинов.

Экспериментальная часть

Индивидуальность исходных и полученных продуктов определяли хроматографически на приборе «ЛХМ-80» (6) с пламенно-ионизационным детектором (газ-носитель—гелий, скорость 30—40 мл/мин, неподнижная фаза—5% силоксановый эластомер S—30 на хромосорбе W, размеры стальных колонок 2000 × 3 мм, температура 150—300°) и хромато-масс-епектрометрически на приборе «G C/MS Hewlett-Packard 5980». Спектры ИК снимали на приборе «ИКС-4», ПМР—на приборе «Varian T-60».

- 1. Алкилирование изомасляного альдегида алкилгалогенидами [6]. В четырехтубусную колбу, снабженную механической мешалкой, термометром и обратным холодильником, помещали 72 г (1 моль) изомасляного альдегида, 63 г бензола, 95,3 г (0,75 моля) бензилхлорида, 66,4 г (0,83 моля) 50% водного раствора едкого натра и 0,7 г тетрабутиламмонийхлорида. Реакционную смесь кипятили при перемешивании 3 ч. Затем органический слой экстрагировали и перегоняли. Получили 94 г (58%) 2,2-диметил-3-фенилпропионового альдегида с т. кип. 117—118°/13 мм, про 1,5100, М+ 162. Аналогично получены 2,2-диметил-4-пентеналь (53%), с т. кип. 112—115°/15 мм, про 1,4439, М+ 112 и 2,2-диметил-5-хлор-4-гексеналь (45%) с т. кип. 86—89°/27 мм, про 1,4602, М+ 160, 162.
- 2. Получение азометинов I и II. Синтез иминов Ia, б, в осуществляли кондонсацией бензиламина с альдегидами, полученными по п. I [7]. Получили Ia с выходом 66%, т. кип. 145—146°/2 мм, п²⁰ 1,5542, М+ 251; Iб с выходом 64%, т. кип. 98—100°/5 мм, п²⁰ 1,5120, М+ 201; Iв с выходом 33%, т. кип. 120—123°/11 мм, п²⁰ 1,5230, М+ 249, 251.

Соедн-	Т. кип "С/мм п ²⁰	Спектры ПМР, ѷ, .м. д.	Масс-спектры, <i>m/e</i> ; ¹ спектры ИК, у, с.и ⁻¹	Найдено, º/o	Брутто- формула	Вычислено
1	2	3	4	5	6	7
Illa	210—213/9 1,5604	7,1—7,2 π (10.1, apom); 4.2 τ (1H, NH); 5.6—5,9 μ (1H, —CH=); 4.8—5,1 μ (2H, =CH ₂); 4.2 μ (1H, CHC ₀ H ₃), 2.6 μ (2H, CH ₂ C ₀ H ₃); 2.0—2,3 μ (1H, CH); 2.8—2,9 μ (1H, CH); 1.6 μ (2H, CH ₃); 0.9 μ (6H, CH ₃)	M_1^+ 305, $(M-CH_3)^+$ 290, $(M-CH_2C_6H_5)^+$ 214, $(M-C_6H_5)^+$ 228, $(C_6H_3CH=N)^+$ 104, $(C_6H_5)^+$ 77. CREKTP UK: 3390 (NH), 1640, 3090 (= CH ₂)	C 86,23 H 8,75 N 5,61	C ₂₂ H ₂₇ N	C 86,56 H 8,85 N 4,59
III6	168—169/3 1,5590	7,1 c (5H, apom.); 4,2 τ (1H, NH); 5,6-6,3 μ (2H, -CH=); 4,8-5,1 μ (4H, -CH ₂); 4,2 μ (1H, C ₆ H ₅ CH), 1,9 μ (2H, CH ₂ =); 2,0-2,3 μ (1H, CH); 2,8-2,9 μ (1H, CH). 1,6 μ (2H, CH ₂); 0,9 c (6H, CH ₃)	M^+ 255, $(M-CH_3)^+$ 240, $(M-C_3H_5)^+$ 214, $(M-C_6H_5)^+$ 178, $(C_6H_5CH=N)^+$ 104, Спектр ИК; 3300 (NH) 1640, 3090 (=CH ₂)	C 84.53 H 9,68 N 5,79	C ₁₈ H ₂₅ N	C 84,70 H 9,80 N 5,49
llim	165 -168/15 1,5491	7,1 c (5H. вром.), 4,2 уш. c (1H, NH); 5,6—6,7 м (2H, —CH=-); 4,8—5,1 м (2H, CH ₂); 4,2 кв (1H, CHC ₆ H ₆); 3,6—3,7 д (2H, CH ₂ CH=-); 2,4 c (3H, CH ₂); 2,0—2,3 м (1H, CH); 2.8-2,9 м (1H, CB); 1,6 т (2H, CH ₂); 0,9 c (6H, CH)	M^+ 303, 305, $(M-Cl)^+$ 268, $(M-C_6H_6Cl)^+$ 214, $(M-C_6H_5)^+$ 226, 228, $(C_8H_8CH=N)^+$ 104, $(C_7H_7)^+$ 91 Cπεκτρ ИК: 3300 (NH), 1640, 3090 (= CH ₂), 870 (Cl)	C 75,02 H 8,48 N 4,97 Cl 11,53	C ₁₉ H ₂₆ NC1	C 75,12 H 8,56 N 4.61 Cl 11,69
IVa	228-239/9 I,5710	7,1—7,25 м (10H, аром.); 4,2 уш. с (1H, NH); 5,6—6,7 м (2H, CH=); 4,8—5,1 д (2H, = CH ₂); 4 6—4,8 т (1H, CH); 2,6 с (2H, CH ₂ C ₆ H ₅); 4,8—5,2 т (1H, CH); 0,9 с (6H, CH ₃)	M ⁺ 303, (M—СН ₃) ⁺ 288, (M—С ₆ H ₆) ⁺ 226, (М—С ₇ H ₇) ⁺ 212, М—(СН ₃) ₂ ССН ₂ С ₈ H ₅ ⁺ 170: Спектр ИК: 1840, 3090 (=CH ₂) 3300 (NH)	C 86,95 H 8,20 N 4,85	C ₂₂ H ₂₃ N	C 87.12 H 8,25 N 4,62

1	2	3
IV6	179—182/3 1,5690	
lVB	182—183/15 1,5523	7,1 c (5H, аром.); 4,2 уш. c (1H, NH); 5,6-6,7 м (3+, -CH); 4,8-5,1 д (2H, -CH ₂); 3,4 д (2H, CH ₂); 2,8-2,9 д (1H, CH); 2,3 c (3H, CH ₃ CCI); 2,0-2,3 м (1H, CH); 1,0 c (6H, CH ₃)
Va	240—242/9 1,5908	7,1 с (5H, аром.); 6,8—7,3 м (5H, аром.); 7,3 уш. с (1H, NH); 6,4—6,8 м (2H, —CH=); 5,4—5,9 д (2H, =CH ₂); 2,7 с (2H, CH ₂); 1,25 с (6H, CH ₃)
V6	190—191/3 1,5723	7.3 уш. с (1H, NH); 6,8—7,2 м (5H, аром.); 6,3—6,8 м (2H,—CH=); 5,6 м (1H,—CH=); 5,4—5,9 д (2H,—CH ₂); 4,6—5,5 д (2H,—CH ₂); 1.9 д (2H,
VB	190—194/15 1,5598	СН₃); 1,25 с (6Н, СН₃)

Продолжение таблицы 2

4	5	6	7
M^{+} 253, $(M-C_8H_5)^{+}$ 176,	C 85,21	CasHan	C 85.37
$(M-C_3H_5)$ 212. (C_nH_5CH-N)	H 9,02		H 9,09
104. Спектр ИК: 3300 (NH), 1640, 3090 (=CH ₂)	N 5,59		N 5,53
M 301, 303, (M-C1) 266.	C 75,63	CuHa NC1	C 75,74
$(M - C_4 H_0 C1)^{-1} 212, (M - C_4 H_0)$	H 7.85		11 7,97
224, 226 (C ₃ H ₃ CH = N) 104,	N 4,84		N 4,65
Спектр ИК: 3300 (NH), 1640, 3090, (= CH ₂), 870 (CI)	Cl 11,63	•	Cl 11,79
M^{+} 301, $(M-CH_3)^{+}$ 286,	C 87,33	C-H21N	C 87,71
$(M-C_0H_0)^+$ 224, $(M-CH_0C_0H_0)$	H 7,45		11 7.64
210, M-(CH ₃) ₂ CCH ₂ C ₀ H ₅) 170, (M-CH=NH) 272. Спектр ИК: 3300—3500 (NH), 1640, 3090 (=CH ₂)	N 5,22		N 4,65
M^{+} 251, $(M-C_3H_3)^{+}$ 174,	C 85,70	C _{0i} H _{2i} N	C 86,05
(M—C ₃ H ₃) ⁴ 210, (C ₄ H ₃ CH N)	H 8.13		11 8,37
104	N 6,17		N 5,58
M+ 299, 301, (M-CI)+ 264,	C 75,58	C ₁₀ H ₂₂ NC1	C 76,12
$(M-C_4H_0CI)^+$ 210, $(C_0H_0CH=N)^+$	H 7,57		H 7,36
104, (MC ₀ H ₁₁) 222, 224	N 4,90		N 4,6
	CI 11.95		Cl 11,84

1	2	3
VIa	230-233/9 1,5788	7,1-7,15 д (10H, аром); 5,6-6,5 м (3H, CH=); 5,1 д (2H, =CH ₂); 4,2 кв (1H, CHC ₆ H ₅); 2.6 с (2H, CH ₂ C ₆ H ₅); 2,3 д (3H, CH ₃); 2,0-2.3 м (1H, CH); 2,8-2,9 м (1H, CH); 3,2-3,4 д (2H, CH ₂); 1,6 т (2H, CH ₂); 0,9 с (6H, CH ₃)
VI6	20 ! 202/3 1,5810	
Vls	205—2 8/15 1,5730	
VIIa	243-244/9 1,5848	7,1 c (5H, ϵ po ϵ); 6,6-7,1 ϵ (5H, ϵ po ϵ); 5,6-6,7 ϵ (4H, -CH-); 4.8-5,2 ϵ (2H, -CH ₂); 2.8-2.9 ϵ (1H, CH); 2,6 c (2H, CH ₂ C ₀ H ₅); 3,2-3,4 ϵ (2H, CH ₂); 2,1 ϵ (1H, CH); 1,7 ϵ (3H, CH ₃); 1,0 c (6H, CH ₂)
Vild	213—215/3	

Продолжение таблицы 2

4	5	6	7
M^{+} 359, $(M-CH_3)^{+}$ 341, $(M-CH_2C_0H_5)^{+}$ 268, $(M-C_4H_7)^{+}$	C 86,72 H 9,05	C ₂₁₁ H ₃₃ N	C 86,9 H 9,19
304. $(M-C_0H_5)^+$ 282. $(C_0H_5)^+$ 77. $(C_0H_5CH=N)^+$ 104. Chektp IK: 1640, 3090 (= CH ₂)	N 4,23		N 3,89
M^{+} 309, $(M-CH_3)^{+}$ 295,	C 84,981	C ₂₂ H ₃₁ N	C 85,44
$(M-C_3H_5)^+$ 268. $(M-C_6H_{11})^+$	H 10,22		H 10,03
266. $(M-C_0H_0)^+$ 232, $(M-C_4H_7)^+$ 254, $(C_0H_0CH=N)^+$ 104.	N 4,80		N 4,53
M^{+} 357, 359 $(M-CH_3)^{+}$ 342, 341,	C 77,20	C ₂₃ H ₃₂ C1	C 77,31
$(M-C1)^+$ 322. $(M-C_4H_7)^+$ 302,	H 8,75		H 8,83
$304, (M-C_4H_5CI)^+ 269,$	N 4.15		N 3,92
$(C_0H_3CH=)^+$ 104, $(M-C_0H_{11})^+$ 274, 276. Спектр ИК: 1640, 3.90 (= CH ₂), 870 (C1)	Cl 9,90		C1 9,94
M^+ 357, (M—CH ₃) 342,	C 87,22	C ₂₅ , H ₃₁ N	C 87.40
$(M-CH_2C_0H_3)^+$ 266, $(M-C_4H_7)^+$	Н 8,52		H 8,68
302. $(M-C_0H_5)^+$ 280.	N 4,26		N 3,92
$(C_8H_5CH=N)^+$ 104. Спектр ИК: 1640, 3090 (=CH ₂)			
M^{+} 307, $(M - CH_3)^{+}$ 293,	C 85,54	C22H20N	C 85,99
$(M-C_3H_5)^+$ 266. $(M-C_0H_{11})^+$	H 9,37		H 9.45
224, $(M-C_0H_5)^+$ 230, $(M-C_4H_7)^+$ 254, $(C_0H_5CH=N)^+$ 104	N 5,09		N 4,56

1	2	3
Vila	220—222/15 1.5862	
VIIIa	250—253/9 1.5910	7,1 c (5H, apoм.); 6.8—7,3 м (5H, apoм.); 6.3—6,8 м (2H. —CH—); 5.6—5,7 м (2H, —CH=); 5.4—5.9 м (2H, —CH ₂); 4,3 д (2H, NCH ₂); 2.7 м (2H, CH ₂); 1.7 д (3H, CH ₃); 1,25 c (6H, CH ₃)
VII:6	220 - 221/3 1,5922	6,8-7,2 μ (5H, apon.): 6,3-6,8 μ (2H, -CH=); 5,6-6,0 μ (3H, -CH=); 4,6-5.9 μ (4H, -CH ₂): 4,3 μ (2H, CH ₂); 1.9 μ (2H, CH ₂); 1,7 μ (3H, CH ₃); 1,2 c (6H, CH ₃)
Vilia	230-231/15 1,5931	

4	5	6	T I
M^{+} 355, 357, $(M-CH_3)$ 340, 342, $(M-CI)$ 320, $(M-C_1H_3)$ 300, 302, $(M-C_1H_3CI)$ 267, $(C_8H_3CH=N)$ 104	C 77,63 H 8,38 N 4,14 CI 9.85	C ₂₁ H ₂₄ NC1	C 77,74 H 8,45 N 3,91 CI 10,0
M^{+} 355, $(M-CH_3)$ 340. $(M-CH_2C_0H_3)^{+}$ 264, $(M-C_1H_7)^{+}$ 302, $(M-C_1H_7)^{+}$ 320. $(M-CH-NH)^{+}$ 326. CHERTP HK: 1640, 3090 (= CH ₂)	C 87,41 H 8,47 N 4,12	C _M H _M N	C 87,89 H 8,17 N 3,94
M^{+} 305, $(M-CH_{3})^{+}$ 291. $(M-C_{3}H_{5})^{+}$ 264, $(M-C_{6}H_{11})^{+}$ 222, $(M-C_{4}H_{5})^{+}$ 228, $(M-C_{4}H_{1})^{+}$ 252, $(M-CH-NH)^{+}$ 276	C 86.97 11 8,75 N 4,28	C _{as} H _{ar} N	C 86,56 11 8,97 N 4,17
M ⁺ 353, 355, (M - CH ₃) 338, 340, (M - Cl) 318, (M - C ₁ H ₂) 298, 300 (M - C ₁ H ₃ Cl) 265, (M - HCl) 317	C 78,12 H 7,65 N 3,43 CI 10,80	CmHmNC1	C 78,08 H 7,92 N 3,96 CI 10,01

Имины IIa, б, в получали изомеризацией соответственно иминов Ia,

·б, в [3].

3. Взаимодействие иминов Іа, б, в, с бутадиеном. В четырехтубусную колбу, снабженную механической мешалкой, обратным ацетоновым холодильником (—60°), через который непрореагировавший бутадиен возвращается в колбу, термометром и трубкой для подачи бутадиена, помещают 20,1—25,1 г (0,1 моля) иминов Іа, б или в, 25 мл ТГФ, 0,1 г металлического натрия и 0,1 г неозона «Д». В реакционную смесь подавали газообразный бутадиен, испаряющийся при нагревании 5,4 г (0,1 моля) или 10,8 г (0,2 моля) жидкого бутадиена (—60°). В процессе реакции происходит повышение температуры до 40—45°. После подачи бутадиена реакционную смесь продолжали перемешивать в течение 1 ч. После удаления растворителя дробной перегонкой получили продукты ІІІа, б или в. Данные по выходам различных продуктов реакций и их физико-химические константы приведены в табл. 1, 2.

4. Дегидрирование производных пирролидина IIIа, б и в. Соединения IIIа, б и в в количествах 12,8—15,3 г (0,05 моля) нагревали в течение 5 ч при 200—250° в присутствии катализатора—палладия на животном угле, взятом в количестве 5 вес. % от исходного IIIа, б или в. Затем продукты реакции перегоняли и выделяли продукты: IVa 3,1 г (20,4%) и Va 4,4 г (29,2%); или продукты: IV6 2,29 г (18,1%) и V6 3,89 г (31,0%); или IVв 1,54 г (10,2%) и Vв 3,36 г (22,4%). Физико-химические константы приведены в табл. 2.

5. Взаимодействие соединений III и Va, б, в с бутадиеном. Реакции проводили аналогично примеру 1. Получали соответственно продукты VIa, б, в, и VIIIa, б, в. Физико-химические константы приведены в табл. 2.

6. Дегидрирование соединения VIa. Реакцию проводили аналогично примеру 4. Выделили продукт VIIIa (28,5%), по физико-химическим константам идентичный соответствующим соединениям из оп. 2 и продукту VIIIa из оп. 5.

«-C-ՏԵՂԱԿԱԼՎԱԾ N-ՔԵՆԶԻԼԱԼԴԻՄԴՄԻՆՆԵՐԻ ԱԼԿԻԼՈՒՄԸ ՔՈՒՏԱԴԻԵՆՈՎ

Ա. Ն. ԳԵՈԼԵՑՅԱՆ, Հ. 8. ՉԱԶԱՐՑԱՆ, Ս. Հ. ՄԻՍԱՐՅԱՆ, Է. Ա. ԳՐԻԳՈՐՑԱՆ, Ս. Կ. ՀԱԿՈՐՅԱՆ և Գ. Թ. ՄԱՐՏԻՐՈՍՅԱՆ

Ուսումնասիրված է L-C-տեղակալված N-բենզիլալդիմինների ալկիլումը բուտադիենով կատալիտիկ քանակության նատրիումի ներկալությամբ։ Ցույց է տրված, որ խմինիսմբի նկատմամբ α-դիրքում շարժուն ջրածնի ատոմների բացակայությամբ ռետկցիան ընթանում է ընտրողական 3+2 ցիկլոմիացման ուղղությամբ, պիրոլիդինի ածանցյալների առաջացմամբ։

a-C-SUBSTITUTED-N-BENZALDIMINES ALKYLATION BY BUTADIENE

A. N. GEOLETSIAN, A. Ts. KAZARIAN, S. O. MISARIAN, E. A. GRIGORIAN, S. K. HAKOPIAN and G. T. MARTIROSSIAN

Alkylation of 2-C-substituted N-benzaldimenes by butadiene in the presence of the catalytic ammounts of sodium has been studied. It has been shown that in the absence of the mobile hydrogen atoms in α -position in respect of imino-group the reaction proceeds as highly selective 3+2 cycloaddition reaction resulting in the formation of pyrrolidine.

JHTEPATYPA

- 1. Казарян Л. Ц., Мисарян С. О., Мартиросян Г. Т. Арм. жим. ж. 1978, т. 31, № 12, с. 913.
- 2. Казарян Л. Ц., Мисарян С. О., Миракян С. М., Мартиросян Г. Т. Арм. хим. ж., 1979, т. 32, № 12, с. 979.
- 3. Капарян Л. Ц., Геолецян Л. Н., Нонезян Н. Г., Акопян С. К., Мартиросян Г. Т.— Арм. хим. ж, 1991, т 44, № 2, с.
- 4. Геолецян Л. И., Казарян А. Ц., Григорян Э. А., Акопян С. К., Мартиросян Г. Т.— Арм. хим. ж., 1990, т. 43, № 9, с. 592.
- Мартиросян Г. Т., Казарян Л. Ц., Мисарян С. О. Арм. хим. ж., 1976, т. 29, № 11, с. 938.
- 6. Hans K. Dietl, Kent C. Branok Tetrah. Lett, 1973, N. 15. S 1275.
- 7. Ttollats R. Bull. Soc. Chem. Fr. 1917, n. 7-8, p. 716.

Армянский химический журнал, т. 44, № 2, стр. 113—117 (1991 г.)

УДК 547.491+781.307+547..11

РЕАКЦИИ ХЛОРАЛЬАМИДОВ И ХЛОРАЛЬГИДРАЗИДОВ С ИЗОЦИАНАТАМИ

Э. Н. АМБАРЦУМЯН, А. С. ВОРСКАНЯН и В. В. ДОВЛАТЯН Армянский сельскохозяйственный институт, Ереван Поступило 13 IV 1990

Показано, что хлоральамиды и хлоральгидразиды арилокснуксусных кислот легко реагируют с изоцианатами, образуя соответствующие карбамоилпроизводные. Между тем, хлоральамиды сульфокислот с изоцианатами образуют продукты декар-боксилирования промежуточных карбамоилпроизводных—α-ариламино-β.β,β-трихлор-этиларилсульфамиды.

Табл. 3, библ. ссылок 2.

Ввиду наличия электроакцепторного ацильного радикала у NH-группы амидов кислот скорость их реакции с изоцианатами резко понижена по сравнение с аминами. Поэтому ожидаемые производные ацилмочевии образуются в жестких условиях при повышенной температуре. Нами было установлено, что амиды арилуксусных кислот, в отличне от соответствующих гидразидов, с изоцианатами вообще не реагируют.