The manufacture subgroup of the summander and also

SUCCESSION CLASS CHARGE

УДК 547.491.9.07(088.8)

СИНТЕЗ И НЕКОТОРЫЕ ПРЕВРАЩЕНИЯ АРИЛОКСИАЦЕТИЛЦИАНАМИДОВ

Э. Н. АМБАРЦУМЯН, Г. С. АМАЗАСПЯН и В. В. ДОВЛАТЯН Армянский сельскохозяйственный институт, Ереван Поступило 10 VII 1989

Синтезированы арилоксиацетилцианамиды и изучены их некоторые свойства. Табл. 1. библ. ссылок 8.

Соединения, сочетающие в себе структурные фрагменты, характерные для препаратов типа арилоксиуксусных кислот и N-арил-N', N'-диметилмочевин, вероятно, будут обладать более широким спектром действия на сорную растительность, чем представители указанных классов гербицидов в отдельности [1, 2].

С целью синтеза указанных соединений нами изучалось взаимодействие амидов арилоксиуксусных кислот с изоцианатами. Известно, что амиды с изоцианатами реагируют в более жестких условиях, чем амины, и зачастую аномально [3]. Наши неоднократные попытки конденсации амидов арилоксиуксусных кислот с изоцианатами не привели к желаемой цели. При многочасовом кипячении смеси амида 2,4дихлорфеноксиуксусной кислоты и фенилизоцианата в бензоле в присутствии каталитических количеств пиридина, вместо ожидаемых мочевин, обратно были получены исходные продукты.

В этой связи нам представилось более целесообразным вовлечение в карбамоилирование более реажционноспособных амидов арилоксиуксусных кислот, в частности, соответствующих цианамидов [4].

Указанные соединения описаны в литературе. Их синтез основан на взаимодействии хлорангидридов арилоксиуксусных кислот с цианамидом в присутствии щелочи [5]. Однако при очистке полученных при этом продуктов выходы их резко падают до 40%. В этой связи нам пришлось разработать видоизмененный способ синтеза цианамидов арилоксиуксусных кислот с применением более мягкого и доступного цианамидирующего средства—кислого цианамида кальция, что обеспечивает как высокие выходы целевых продуктов, так и их исключительно высокую чистоту.

I. $Ar = 2,4-Cl_2C_6H_5$; II. $Ar = 2-Cl_{10}$, $4-ClC_0H_5$; III. $Ar = C_0H_5$,

Было установлено, что цианамиды арилоксиуксусных кислот с изоцианатами гладко реагируют с образованием ожидаемых производных мочевин.

A homeyou N. A. Armonyan A. A. Manna M. T. - MOPA, 1975, v. 2, 34 1, c 35

& Britainen 5. Mening D. - Anyaharren 1938, Mr 15, a. 877.

IV-IX. $Ar = 2.4-Cl_2C_6H_2$; X-XV. $Ar = 2-CH_3$, 4-ClC₆H₃

Известно, что гербициды симм-триазинового ряда обладают самым разнообразным действием на сорную растительность [6].

Между тем, производные арилоксиуксусных кислот, содержащие симм-триазиновое кольцо, мало изучены [7]. Синтез такого типа возможных гербицидов можно было осуществить взаимодействием как ранее полученных цианамино-симм-триазинов с хлорангидридами арилоксиуксусных кислот с хлортриазинами.

Было найдено, что из числа цианамино-симм-триазинов с хлорангидридами арилоксиуксусных кислот сравнительно гладко реагирует только 2,4-бис-диметиламино-симм-триазин. Между тем, хлор-симмтриазины, а также соответствующие четвертичные аммониевые соли с цианамидами арилоксиуксусных кислот образуют смеси трудноразделяемых продуктов.

Результаты испытаний показали, что полученные производные мочевины по своей гербицидной активности близки к производным 2,4-дихлорфеноксиуксусной кислоты.

Экспериментальная часть

ИК спектры соединений сняты на спектрометре «UR-20» в вазелиновом масле, ТСХ проведена на пластинках «Silufol UV-254», элюент—ацетон-гексан (1:2), проявление 2% AgNO₃+0,4% БФС+4% лимонной кислоты.

Цианамиды арилоксиуксусных кислот I—III. К раствору 185 мл кислой соли цианамида кальция (полученного гидролизом 40 г технического цианамида кальция в 200 мл воды при 25—30°) [8] при охлаждении льдом по каплям прибавляют 0,1 моля хлорангидридов арилоксиуксусных кислот. Оставляют на ночь, отфильтровывают и фильтрат подкисляют соляной кислотой до рН 4—5. Полученный кристаллический продукт фильтруют, промывают водой. Выход І—94%, т. пл.

139—140°, R_f 0,57. Найдено, %: N 11,12; Cl 28,5. $C_9H_6Cl_2N_2O_2$. Вычислено, %: N 11,42; Cl 28,97. II—85%, т. пл. 136—137°, R_f 0,6. Найдено, %: N 12,89; Cl 16,25. $C_{10}H_9CINO_2$. Вычислено, %: N 12,48; Cl 15,87. III—90%, т. пл. 109—110°, R_f 0,52. Найдено, %: N 15,53. $C_9H_8N_2O_4$. Вычислено, %: N 15,90. ИК спектр, v, c_{M} -1: 2190, 2225

(C=N), 3320 (NH), 1600, 1580 (C=C ap.), 1640 (C=O).

N-Арилоксиацетил-N-циан-N'-арил (метил) мочевины (IV—XV). Смесь 0,01 моля цианамидов арилоксиуксусных кислот I—III и 0,01 моля арил (метил) изоцианатов в 10 мл абс. бензола в присутствии каталитических количеств пиридина оставляют при комнатной температуре 12—14 ч. Осаждают петролейным эфиром и фильтруют (табл.). ИК спектр, v, cm-1: 2220 (C=N), 1650 (C=O), 3300 (NH), 1550, 1605 (C=C ap.).

N-Арилоксиацетил-N-циан-N'-арил(метил) мочевины (IV-XV)

Таблица

Соедине-	R	Выход, 0/0	Т. пл., °С	Rf	Найдено, о,о		Брутто-	Вычис- лено, ⁰ / ₀	
					N	CI	формула	N	CI
IV	C ₈ H ₅	56.3	122-124	0.35	11,45	20.20	C ₁₆ H ₁₁ Cl ₂ N ₃ O ₃	11.53	19,50
V	3,4-Cl2CeH3	85.2	82 85	0.4	10.10	32,2	CteHaClaNaO3	9,70	32,72
VI	4-CIC ₈ H ₄	61.5	90 - 92	0,42	10.83	27.17	CusHio(IaNaOa	10.54	26,72
VII	2-C1C ₆ H ₄	90	136 - 138	6.35	10.20	27,20	$C_{\mu}H_{\mu}CI_{3}N_{3}O_{3}$	10,54	26.72
VIII	3-CIC ₆ H ₄	61.6	121-123	0,46	10,31	26.98	C ₁₆ H ₁₀ Cl ₃ N ₃ O ₃	10,54	26,72
IX	CH ₃	81	106 - 108	0,51	14,22	23,02	C11H9Cl2N3O2	13.90	23,47
X	C ₈ H ₅	89,3	118-120	0.46	12,55	10,05	CITHIACIN3O3	12,23	10,33
XI	3,4-C1 ₂ C ₆ H ₃	77.7	63-85	0.3	10,_9	25,9	C ₁₇ H ₁₂ Cl ₃ N ₃ O ₃	10.18	25,81
IIX	4-CICBH4	83.3	111-113	0, 1	11,47	19,10	$C_{17}H_{13}CI_2N_3O_3$	11,08	18,78
XIII	2-CIC ₆ H ₄	67,5	140 - 142	0.37	10,71	18,30	$C_{17}H_{13}CI_2N_3O_3$	11,03	18.78
VIX	3-CICeH.	55,5	118 – 120	0.45	11.40	19,10	C17H13C12N3O3	11,08	18,78
XV	CH ₃	99	119-121	0,50	15,21	16,74	C12H12C1N3O3	14,87	16,34
			C			!!	and the same of the same of	1	l .

2-N-Циан-N-2',4'-дихлорфеноксиацетиламино-4.6-бис-диметиламино-симм-триазин (XVI). К 0,7 г (0,01 моля) тонкоизмельченного едкого кали в 4 мл абс. ацетона прибавляют 2,1 г (0,01 моля) 2-цианамино-4,6-бис-диметиламино-симм-триазина и перемешивают при комнатной температуре 1,5—2 ч. Затем при охлаждении льдом по каплям прибавляют 2,4 г (0,01 моля) хлорангидрида 2,4-дихлорфеноксиуксусной кислоты в 3 мл ацетона. Оставляют на ночь, добавляют 10—15 мл воды и осадок отфильтровывают. Выход 3,6 г (90%), т. пл. 168—170°, R_1 0,5. Найдено, %: N 23,5; Cl 16,83. $C_{16}H_{17}Cl_2N_7O_2$. Вычислено, %: N 23,8; Cl 17,2. ИК опектр, v, cm^{-1} : 2230 (C N), 1640 (C O), 1580, 1605 (C C ap.).

or or property of the state of

ԱՐԻԼՕՔ ՍԻԱՑԵՏԻԼՑԻԱՆԱՄԻԴՆԵՐԻ ՍԻՆ**Թ**ԵԶԸ ԵՎ ՆՐԱՆՑ ՈՐՈՇ ՓՈԽԱՐԿՈՒՄՆԵՐԸ

է. Ն. ՀԱՄԲԱՐՁՈՒՄՑԱՆ, Գ. Ս. ՀԱՄԱԶԱՍԿՑԱՆ և Վ. Վ. ԴՈՎԼԱԹՑԱՆ

Արիլօքսիքացախանքուների քլորանհիդրիդների և կալցիումի ներու ցիանամիդի փոխազդմամբ ստացվել են արիլօքսիացետիլցիանամիդներ։ Վերջիններիս և արիլ(մենիլ)իզոցիանատների փոխազդմամբ սիննեզվել են նոր Nարիլօքսիացետիլ-N-ցիան-N'-արիլ(մենիլ)միզանյուներ։

SYNTHESIS AND SOME REACTIONS OF ARYLOXYACETYLCYANAMIDES

E. N. HAMBARTSOUMIAN, G. S. HAMAZASPIAN and V. V. DOVLATIAN

The aryloxyacetylcyanamides have been synthesized and some properties have been investigated.

ЛИТЕРАТУРА

- Мельников Н. Н., Баскаков Ю. А. Химия гербицидов и регуляторов роста растений. М., Госхимиздат. 1962, с. 301.
- 2. Мельников Н. Н., Новожилов К. В., Белан С. Р., Пылова Т. Н. Справочник по пестицидам. М., Химия, 1985, с. 106.
- 3. Саундерс Дж. Х., Фриш К. К. Химия полиуретанов. М., Химия, 1968, с. 76.
- 4, Frederic Kurzer, J. Roy Povell Org. Synth., 1956, v. 36, p. 8.
- 5, Pai, 3564607 (1977), USA/Broer G. C. A., 1971, v, 75, p. 486:2.
- 6. Мельников Н. Н., Баскаков Ю. А. Химия гербицидов и регуляторов роста растений. М., Госхимиздат, 1962, с. 635.
- 7. Гизин Г., Кнюсли Е. Успехи в сбласти изучения пестицидов. М., ИЛ, 1962, т. 3, с. 168.
 - Winnel: Ph. S., Anderson G. W., Marson H. W. J. Am. Chem. Soc., 1942, v. 64, p. 1682.

Армянский химический журнал, т. 43, № 7, стр. 463—468 (1990 г.)

УДК 615.31.547.551

СИНТЕЗ 4-N-(1'-ОҚСИ-2',2',2'-ТРИХЛОРЭТИЛ) АМИНО-1,2,4-ТРИАЗОЛА И ЕГО ПРЕВРАЩЕНИЯ

В. В. ДОВЛАТЯН, К. А. ЭЛИАЗЯН и А. М. АКОПЯН Армянский сельскохозяйственный институт, Ереван Поступило 30 XII 1988

Исследовано взаимодействие хлораля с 4-амино-1,2,4-триазолом, приводящее к образованию 4-N-(2',2',2'-трихлорэтилимино)-1,2,4-триазола, восстановлением которого получено соответствующее 2,2,2-трихлорэтиламинопроизводное. Последнее легко взаимодействует с арилизоцианатами и четвертичными аммониевыми солями триазинового ряда.

Табл. 2, библ. ссылок 5.