ЛИТЕРАТУРА

- 1. Jones G. C., Beard W. Q., Hauser C. R. J. Org. Chem., 196', v. 28, № 1, p. 199.
- Glumanini A G., Lepley A. R. X Congresse National della Societa, Chimica Italiana, Padova, 1968, conm. XIII/25 (1968).
- 3. Hellman H., Unseld W. Ann., 1968, B. 631, Nº 1-3, S. 82.
- 4. Glumanini A. G., Lepley A. R. Bull. Soc. Chim. (Japan), 1959, v. 42, № 8, p. 2359.
- 5. Бабаян А. Т., Инджикян М. Г., Азизян Т. Л. ДАН АрмССР, 1960, т. 31, № 2, с 79.
- 6. Бабаян А. Т., Кочарян С. Т., Оганджанян С. М. ДАН АрмССР, 1974, т. 57. № 2, с. 100.
- 7. Бабаян А. Т., Кочарян С. Т., Оганджанян С. М. Арм. хим. ж., 1976, т. 29, № 5, с. 403.
- 8. Кочарян С. Т., Оганджанян С. М., Бабаян Л. Т. Арм. хим. ж., 1976. т. 29, № 1, с. 42.
- 9. Бабаян А. Т., Мартиросян Г. Т., Григорян Дж. В. ДАН АрмССР, 1962, т. 35, № 3, с. 129
- 10, Willstatter, Kahn Ber., 1904, B. 37, S. 416.
- Засосов В. А., Никулина Т. А., Блинова Л. С., Оноприенко В. С., Сычева В. Н., Соколов Г. Н., Бородина К. С., Денисова К. В. — Хим.-фарм. ж., 1972, т. 6, № 3, с. 29.

Армянский химический журнал, т. 43, № 5, стр. 324—332 (1990 г.)

УДК 547.852.9

ПРОИЗВОДНЫЕ ПИПЕРИДАЗИНА

IV. РЕАКЦИЯ ГЕВАЛЬДА В ПРИМЕНЕНИИ К ПИПЕРИДАЗИН-4-ОНАМ*

Р. С. ВАРТАНЯН, Ж. В. КАЗАРЯН, М. А. ШЕЙРАНЯН, А. А. КАРАПЕТЯН, Ю. Т. СТРУЧКОВ и М. А. АЛЕКСАНЯН

> Институт тонкой органической химии им. А. Л. Миджояна АН Армянской ССР, Ереван

> > Гюступило 28 XII 1989

Осуществлен синтез 2-амино-5,6-диметоксикарбонил-3-этоксикарбонил-4,5,6,7-тетрагидротиено/2,3-d/пиридазина, исходя из 1,2-диметоксикарбонилгексагидропиридазин-4-она. Проведено рентгеноструктурное исследование 2-амино-5,6-диметоксикарбонил-3-этоксикарбонил-4,5,6,7-тетрагидротиено/2,3-d/пиридазина.

Рис. 2, табл. 3, библ. ссылок 9.

Нами начато систематическое изучение способов синтеза функциональных производных аза-аналогов пиперидина-гексагидропиридазина и возможностей их трансформации в соединения, представляющие интерес в качестве потенциальных биологически активных веществ. В настоящем сообщении описывается синтез 2-амино-5,6-диметоксикарбонил-3-этоксикарбонил-4,5,6,7-тетрагидротиено/2,3-d/пиридазина III, исходя из описанного ранее 1,2-дикарбметоксигексагидропиридазин-4-она [1], В работе использованы способы трансформации кетонов в производные 2-амино-3-карбэтокситиофенов, предложенные

324 wait excites with a set of a state that the

• Сообщения I и II см. [1, 2].

12.7

define the second

Aller .

is de .

Јевальдом [3], непосредственным их взаимодействием с циануксусным эфиром и серой [4-6], а также введением в аналогичную реакцию снаминов соответствующих кетонов [7]. С точки зрения выхода продукта оптимальным оказалась реализация поставленной задачи путем предварительного получения енаминов исходных кетонов. При этом в качестве аминного компонента при получении енаминов были использованы традиционно применяемые для этих целей пирролидин, пиперидии и морфолин. Лучшие выходы конечных продуктов были получены при использовании морфолинового енамина IIa. Следует отметить, что выделение енаминов II в индивидуальном состоянии обычными методами, пригодными для препаративных целей, нецелесообразно вследствие их интенсивного осмоления. Поэтому указанные соединения вводились в реакции циклизации без предварительпого выделения. О месте двойной связи в енаминах II судили по структуре конечного продукта III, строение которого было однозначпо доказано методом рентгеноструктурного анализа.

С целью исследования возможностей полученного аминоэфира III в дальнейших трансформациях изучено его взанмодействие с ангидридами и хлорангидридами кислот с получением соединений IVa, б.

Строение молекулы

Перспективный вид исследованной молекулы IVa с длинами связей показан на рис. 1. В табл. 1 и 2 приведены значения валентных углов и характеристики плоских фрагментов молекулы, соответственно.

Найденные геометрические характеристики указывают, что атомы N (2) и N (3) фактически не одинаковы. Сумма валентных углов при атоме N (2) равна 350,3°, что указывает на его пирамидальность в отличие от N (3), при котором сумма валентных углов равна $360,0^\circ$. Длины связей N—C (Sp²) с участием атомов N (2) и N (3) также не одинаковы, а именно, длина связи N (2)—C (8), равная 1,374 (3) А°, существенно больше соответствующего значения N (3)—C (12), равного 1,345 (3) А°, с участием плоского атома азота. Такая неравноценность длин связей в целом характерна для пирамидального и плоского атомов азота, хотя оба найденных значения несколько меньше соответствующих стандартных значений 1,416 и 1,355 А° [8]. Между тем, длины связей N (2)—C (1) и N (3)—C (4) совпадают и равны 1,459 (3) А°, что находится в хорошем согласии со стандартным значением для связей N—C (Sp³) 1,464 А° [8]. Найденное значение длины

связи N (2) — N (3) 1,390 (3) А° существенно меньше стандартного значения 1,420 А° [8] для связи с участием плоского и пирамидального атомов азота и близко к значению 1,401 А° [8], характерному для плоских атомов азота.

Рис. 1. Строение молекулы IVa с длинами связей (==0,003 ----0,004).

Валентные углы, град

Таблица 1

Угол	ω (τ)	Угол	ω (σ)
C(1) N(2) N(3)	112,0(2)	C (1a) C (4a) C (5)	113,2(2)
N(2) N(3) C(4)	117,8(2)	C('a) C(5) C(6)	111.8 (2)
N(3) C(1) C(4a)	109.1 (2)	C (5) C (6) S (7)	
C(4) C(4a) C(1a)	120,8(3)	C(6) S(7) C(1a)	91,3(1)
C(4a) C(1a) C(1)	125,0(3)	S(7) C(1a) C(4a)	112.1 (2)
C(la) C(l) N(2)	167,7(2)	C(1) C(1a) S(7)	122.9(2)
C(1) N(2) C(8)	123,0(2)	C (4) C (4a) C (5)	125.9(2)
N(3) N(2) C(8)	115,3(2)	C (4a) C (5) C (16)	127,9(3)
N (2) C (8) O (9)	124.5(3)	C (6) C (5) C (16)	120,4(3)
N(2) C(8) O(10)	109,9(3)	C (5) C (16) O (17)	124,8(2)
O (9) C (8) O (10)	125,9(2)	C (5) C (16) O (18)	112,9(2)
C(8) O(10) C(11)	115,7(3)	O (17) C (16) O (18)	122,4(2)
N(2) N(3) C(12)	120,3(2)	C (16) O (18) C (19)	116.0(3)
C(4) N(3) C(12)	121,9(2)	O (18) C (19) C (20)	107,7(3)
N (3) C (12) O (13)	123,0(2)	C (5) C (6) N (21)	128,4 (2)
N (3) C (12) U (14)	112,0(2)	S(7) C(6) N(21)	120.0 (3)
O (13) C (12) O (14)	125,0(2)	A.C	A DET +
C (12) O (14) C (15)	112,8(3)	a be an or a	

Наблюдается некоторое отличие значений аналогичных валентных углов в карбметокси группах. Это, по-видимому, вызвано как их

Плоские фрагменты молекулы

a) (Отклонен	не атомо	в (<i>1A</i> 0)	ОТ	сред	неквадрат	HTR	ЫХ	плоск	остей
и ур	равнения	Ax - By	- Cz -	– D	= 0	плоскосте	й в	0,	тогона	льной
системе координат										

Плоскость і	72	Плоскость III	72			
C(1)	-0,002 (3)	C(1)	0,207 (3)			
C (Ja)	0,004 (3)	N (2)	-0,267 (2)			
C (4a)	-0,004 (3)	N (3)	0,269(3)			
C (4)	0,002 (3)	C (4)	-0,083(3)			
N (2)*	-0,474 (2)	C (4a)	0,100 (3)			
N (3)*	0,186 (3)	C (1a)	0,043(3)			
		°C (8)*	—1,543 (3)			
		C (12)*	1,084 (3)			
Уравнение: —0 — 0,5839а	0,7282x - 0.3589y - 0.35	Уравнение: —0,6710x — 0.6763z + 3,3	-0,3038y - 585 = 0			
Плоскость II	72	[Плоскость IV	Δσ			
C (la)	-0,002(3)	N (2)	0,004(2)			
C (4a)	0,003(3)	C (8)	0,024(3)			
C (5)	-0,004 (3)	O (9)	0,006 (2)			
C. (6)	0,002(3)	O (10)	0,003(3)			
S (7)	0,000(1)	C (11)*	-0,020(2)			
C (16)*	-0,026(3)					
N (21)*	0,006(3)					
.Уравнение: - (0,5690	7399x — 0,3588y — z + 3,1779 ≕ 0	Уравнение: 0,4072 <i>х</i> — — 0,8942 <i>z</i> — 0,4	- 0,1861y 776 = 0			
Плоскость V	72	Плоскость VI	Δσ			
N (3)	0,001 (3)	C (5)	-0,001 (3)			
C (12)	- 0,006 (3)	C (16)	0,002(3)			
O (13)	+0,001 (2)	O (17)	-0,001 (2)			
O (14)	+0,001 (2)	O (18)	-0,000(2)			
C (15)*	0,158(5)	C (19)*	-0,076 (4)			
		C (20)*	-0,116(4)			
Уравнение: — 0 —0,46264	0,8310x + 0,309iy - 2 + 4,6412 = 0	Уравнение: -0,7473x - 0,3664y - - 0,5543z + 3,1153 = 0				
б) Двугранные углы между плоскостями						
Плоскости	Угол	Плоскости	Угол			
II- III	8°	III-IV	679			
11-V1	1°	III-V	200			
		! ∀V	800			

• Эти атомы не включены в расчет среднеквадратичных плоскостей.

соседством в пиридазиновом кольце, так и упаковкой в кристалле, т. е. внутримолекулярными и межмолекулярными стерическими затруднениями, что проявляется в контактах меньших сумм ван-дерваальсовых радиусов соответствующих атомов [9]: C (8)...C (12) 3,212 (4), C (8) ... O (14) 3,211 (3), C (9) ... C (15) (0,5-[-x, -0,5-y, 0,5-z] 2,996 (4) н 0 (10) ... O (14) (1-x, -y, -z) 3,045 (3) Λ^* .

Рис. 2. Проекция bc структуры IVa. Штрихованными линиями показаны Н-связи.

Пиридазиновый цикл имеет конформацию сильно деформированного полукресла с выходами атомов N (2) и N (3) от среднеквадраостальных атомов кольца на -0,474 (2) и тичной плоскости 0,186 (3) А°, соответственно (табл. 2). Карбметокси заместители при атомах N (2) и N (3) занимают соответственно аксиальное (выход атома С (8) от среднеквадратичной плоскости пиридазинового кольца составляет -1,543 (3) А°) и экваториальное (выход атома С (12) от той же плоскости составляет 1,084 (3) А°) положения относитель: пиридазинового цикла. Среднеквадратичные плоскости карбметокси заместителей практически перпендикулярны (двугранный угол равен 89°). В то же время среднеквадратичная плоскость карбэтокси заместителя копланарна плоскости тиофенсвого цикла (двугранный угол равен 1°). Такая относительная ориентация тиофенового цикла и карбэтокси заместителя, вероятно, реализуется за счет внутримолекулярной водородной связи N (21)-H (21a) ... O (17) (N ... 0 2;758 (3), N-H 0,90 (3), H...O 2,13 (2) А°, N-II...O 126.8 (3)°, (рис. 1), посредством которой в структуре замыкается шестичленное кольцо. За счег межмолекулярных Н-связей N (21)-Н (21b) ... О (13) (0,5-х, 0,5-у, 0,5-z) (N...O 2,865 (3), N-H 0,88 (3), H...O 2,02 (2) A°, N-H... О 159,6 (3)°) молекулы в кристалле образуют спирали вдоль кристаллографического направления [010] (рис. 2).

Экспериментальная часть

ИК спектры сняты на приборе «UR-20» в вазелиновом масле, спектры ПМР—на «Varian T-60» (60 *МГц*) в CDCl₃ с использованием в качестве внутреннего стандарта ТМС. Масс-спектры сняты на масс-спектрометре «MX-1320» с системой прямого ввода образца в источник иолов. ТСХ проводили на пластинках «Silufol UV-254» в системе ацетон—гексан, 1:1.

Параметры элемептарной ячейки и интенсивности отражений получены на 4-кружном автоматическом дифрактометре «Синтекс P2₁» при температуре —120° с использованием МоКа-излучения.

Кристаллы моноклинные: a=9,310(3), b=15,009(4), c=11,980(4) Å. $\beta = 111,62(2)^\circ, v = 1556,3(8)$ Å³, $d_{\text{выч.}} = 1,47 \ z/cm^3, z = 4$, пространственная группа $P2_1/n$.

В области 2° $\leqslant \theta < 28^{\circ}$ методом $\theta/2\theta$ -сканирования измерено 1613 наблюдаемых отражений. Структура расшифрована прямым методом по программе MULTAN и уточнена методом наименьших квадратов в анизотропном блок-диагональном приближении. Атомы Н, положения которых определены из разностного синтеза, включены в уточнение в изотропном приближении с фиксированными температурными параметрамн $B_{0.00} = 5 \text{ Å}^3$. Окончательные значения факторов расходимости R = 0,035, $R_m = 0,037$ по 1599 отражениям с $F^2 \ge 4,5\sigma$. Все расчеты проведены по программам INEXTL [8] на ЭВМ "Эклипс S/200". Координаты атомов с эквивалентными азотропными тепловыми параметрами приведены в табл. З.

Енамины 1,2-диметоксикарбонилпиперидазин-3-она (Па-в). а) Смесь 19 г (0,09 моля) кетона I, 10 г (0,12 моля) морфолина в 100 лл бензола кнпятят с насадкой Дина-Старка до прекращения выделенья воды. Бензол отгоняют и продукт реакции Па далее используют без дополнительной обработки. б) Аналогично из 1,1 г (0,005 моля) кетона I, 0,6 г (0,0075 моля) пиперидина, 10 лл бензола получают II6. в) Аналогично из 1,1 г (0,005 моля) кетона I, 0,5 г (0,0075 моля) пирролидина, 10 мл бензола получают IIв.

2-Амино-5,6-диметоксикарбонил-3-этоксикарбонил-4,5,6,7-тетрагидротиено [2,3-d] пиридазин (111). І. К смеси енамина ІІа (полученного из 0,03 моля кетопа І), растворенного в 10 мл абс. этанола, и 0,9 г (0,03 моля) порошкообразной серы при перемешивании добавляют 3,3 г (0,03 моля) этилового эфира циануксусной кислоты. Перемешивание продолжают 7 ч при 70°. После охлаждения осадок отфильтровывают, сушат на воздухе: Перекристаллизовывают из этанола. Получают 8,1 г (78,6%) соединения III с. т. пл. 174—175°, Rt 0,62. Найдено, %: С 46,00; Н 5,22; N 12,63; S 9,80. С₁₃H₁₇N₃O₆S. Вычислено, %: С 45,48; Н 4,96; N 12,24; S 9,33. ИК спектр, v, см⁻¹: 1690 (NCOCH₃), 1725 (СОС₂H₅), 3310 (NH₂). Спектр ПМР, δ , м. д.:

6,2 уш. с. (2H, NH₂), 5,03—4,00 м [4H, (N—CH₂)₂]; 4,22 кв (2H, J=6 Гц, CH₃CH₂); 3,67 с (6H, OCH₃); 1,28 т (3H, J=6 Гц, CH₃CH₂). Macc-спектр m/e M⁺ 343.

 \mathbf{O}

Аналогично из енаминов II6, в получают соединение III с выходами 43,7; 26,2%, соответственно.

Таблица З

Координаты атомов ×10⁴ для неводородных атомов (×10³ для атомов Н) в их изотропные эквивалентные температурные параметры

Атом	X/a	Y/b	Z/c	В ^{экв} Изо	Атом	X/a	Y'/b	Zic
C(1)	4036 (3)	41 (2)	1337 (2)	2,4	H (1A)	53 (3)	563 (2)	371 (2)
N (2)	5218 (3)	-621 (1)	1420 (2)	2,2	H (1B)	189 (4)	494 (2)	445 (2)
N (3)	4799 (3)	-1467 (1)	1663 (2)	3,2	H (4A)	93 (3)	285 (2)	226 (2)
C (4)	4625 (4)	-1607 (2)	2811 (2)	2,9	H (4B)	69 (3)	671 (2)	843 (2)
C (4a)	3857 (3)	-8(4(2)	3097 (2)	2,1	H (11A)	76 (3)	954 (2)	827 (2)
C (1a)	3596 (3)	-70 (2)	2410 (2)	2,0	H (11B)	863 (3)	130 (2)	204 (3)
C (5)	3353 (3)	-718 (?)	4097 (2)	2.2	H (11C)	910 (3)	55 (2)	298 (2)
C (6)	2698 (3)	101 (2)	4111 (2)	2,3	H (15A)	-24 (3)	244 (2)	621 (2)
S (7)	2709 (1)	767 (1)	2928 (1)	2,5	H (15B)	512 (3)	310 (2)	-67 (2)
C (8)	6773 (4)	-438 (2)	1902 (2)	2,5	H (15C)	425 (3)	-224 (2)	-171 (2)
O (9)	7761 (3)	-985(1)	2326 (2)	4,2	H (19A)	158 (3)	205 (2)	922 (2)
O (10)	7014 (2)	420 (1)	1753 (2)	2,6	H (19 B) .	509 (3)	-254 (2)	661 (2)
C(11)	8597 (4)	702 (2)	2216 (3)	4,4	H (20A)	48 (3)	118 (2)	31 (2)
C (12)	4568 (3)	-2127 (2)	855 (2)	2,4	H (20B)	114 (3)	837 (2)	48 (2)
O(13)	4095 (2)	-2859 (1)	983 (2)	3,0	H (20C)	38 (3)	899 (2)	117 (2)
O(14)	4892 (3)	1872 (1)	88 (2).	3,3	H (21A)	209 (3)	5 (2)	549 (2)
C (15)	4471 (6)	-2540 (2)	-1039 (3)	6,2	H (21B)	168 (3)	95 (2)	479 (2)
C (16)	3482 (4)	-1370 (2)	5023 (2)	2,9	10- 1 -			
0(17)	3049 (2)	-1253(1)	5655 (2)	4,4	1			
O(18)	4149 (2)	-2134(1)	4879 (2)	3,3		-		
C (19)	4398 (4)		5811 (3)	4,5				
C (20)	5185 (4)	3566 (2)	5514(3)	4,2				
N (21)	2097 (3)	414 (2)	4899 (2)	3,6				
1								

2. Смесь 4,4 г (0,02 моля) кетона 1, 22 г (0,02 моля) этилового эфира циануксусной кислоты, 0,2 мл ледяной уксусной кислоты, 0,17 з ацетата аммония и 9 мл абс. этанола кипятят при перемешивании 4 ч. После того, как темнература смеси понизится до 50°, добавляю: 0,6 г (0,02 моля) мелкоизмельченной серы и 0,5 мл диэтиламина. Реакционную смесь нагревают так, чтобы температура смеси не превысила 60°, до полного растворения серы. После охлаждения осадок отфильтровывают, тщательно промывают водой и сушат. Перекристаллизовывают из спирта. Получают 2,5 г (36,5%) III.

2-Ацетамидо-5,6-диметоксикарбонил-3-этоксикарбонил-4,5,6,7-тетрагидротиено [2,3-d] пиридазин (IVa). Смесь 0,5 г (0,0016 моля) аминоэфира III и 10 мл уксусного ангидрида кипятят 2 ч. Избыток ангидрида отгоняют, продукт осаждают водой, осадок фильтруют, сушат, перекристаллизовывают из этанола. Получают 0,6 г (97,5%) соединения III а с т. пл. 169—170°, Rf 0,49. Найдено, %: С 46,24; Н 5,35; N 11,48; S 8,85. С15Н19N3O7S. Вычислено, %: С 46,75; Н 4,94; N 10,91; S 8,31. ИК слектр, , сж⁻¹: 1670 (NCO); 1705 (NCCH₃); 1730 (COC₃H₃);

O

3270 (NH). Спектр ПМР, δ , *м*. $\dot{\sigma}$.: 11,25 с (1H, NH амидн.); 5,50 – 4,10 м [4H, (N-CH₂)₂]; 4,39 кв (2H, $J=6 \Gamma \mu$, CH₃CH₂); 3,67 с (6H, OCH₃); 2.25 с (3H, CCH₃); 1,28 т (3H, $J=6 \Gamma \mu$, CH₂CH₃).

5,6-Диметоксикарбонил-2(метоксикарбонил)амино-3-этоксикарбонил-4,5,6,7-тетрагидротиено [2,3-d] пиридазин (IVб). Аналогично вышеописанному из 0,5 г аминоэфира III и 10 мл метилового эфира хлоругольной кислоты получено 0,5 г (77,5%) соединения IV6 с т. пл. 158—160°. R_f 0,48. Перекристаллизовывают из этанола. Найдено, %: С 44,27; Н 4,69; N 11,07; S 8,32. $C_{15}H_{19}N_3O_8S$. Вычислено, %: С 44,89; Н 4,74; N 10,47; S 7,98. ИК спектр, v, см⁻¹: 1670 (NCO); 1705 (NCOCH₃); 1730 (CCOC₂H₃); 3270 (NH). Спектр ПМР, δ , м. d.:

10,4 с (1H, NH амидн.); 5,4-4,0 м [4H, (N-CH₂)₂]; 4,37 кв (2H, J=6 Гц, <u>CH₂CH₃</u>); 3,81 с (3H, NHCO<u>CH₃</u>); 3,67 с (6H, OCH₃); 1,28 т

)

(3H, J=6 Гц, CH₂CH₃). Масс-спектр m/e M⁺ 401.

ՊԻՊԵՐԻԴԱՉԻՆԻ ԱԾԱՆՑԱԼՆԵՐ

IV. ԳԵՎԱԼԴԻ ՌԵԱԿՑԻԱՑԻ ԿԻՐԱՌՈՒՄԸ **ՊԻՊԵՐԻԴԱԶԻՆ-4-ՈՆԻ ՀԱՄԱ**Ր

Ռ. Ս. ՎԱՐԴԱՆՑԱՆ, Ժ. Վ. ՂԱԶԱՐՑԱՆ, Ծ. Ա. ՇԵՑՐԱՆՑԱՆ, Հ. Ա. ԿԱՐԱԳԵՏՑԱՆ, 8ու. Տ. ՍՏՐՈՒՉԿՈՎ Է Մ. Ա. ԱԼԵՔՍԱՆՑԱՆ

իրականացվել է 2-ամինո-5,6-դիմենքօբսիկարբոնիլ-3-էթօբսի-4,5,6,7տետրահիդրոնքիննո [-2,3-d] -պիրիդազինի սինթեզը ելնելով 1,2-դիմենքօբսիկարբոնիլհեբսա-հիդրոպիրիդազին-4-ոնից։ Կատարված է նպատակային նյու-.. Բի ռենտաբենակառուցված բային ուսումնասիրություն։

PIPERIDAZINE DERIVATIVES

IV. USE OF GEWALD REACTION IN PIPERIDAZIN-4-ONES PREPARATION

R. S. VARTANIAN, Zh. V. GHAZARIAN, M. A. SHEYRANIAN, H. A. KARAPETIAN, Yu. T. STRUCHKOV and M. A. ALEXANIAN

The synthesis of 2-amino-5,6-dimethoxycarbonyl-3-ethoxycarbonyl-4,5,6,7-tetrahydrothieno/2,3-d/pyridazine has been realised starting from. 1,2-dimethoxycarbonylhexahydro-pyridazin-4-one. X-Ray diffractionstudy of the product has been carried out.

ЛИТЕРАТУРА

I. Вартанян Р. С., Гюльбудагян А. Л., Ханамирян А. Х. — Ары. хим. ж., 1987, т. 40, № 9, с. 596.

Армянский химический журнал, XLIII, 5-4 3

- 2. Вартанян Р. С., Гюльбудагян А. Л., Ханамирян А. Х., Карапетян А. А., Стручков Ю. Т. — Арм. хим. ж., 1987, т. 40, № 9, с. 563.
- 3. Гевальд К. ХГС, 1976. № 10. с. 1299.
- 4. Gewald K. Z. Chem., 1962. Bd. 2. № 10. s. * 5.
- 5. Jewald K., Böttcher H., Schinke E. Ber.; 1966, Bd. 59, № 1, s. 9 .
- 6. Mayer R., Gewald K. Angew. Clem., 1967, Bd. 7J. No. 1. S. 298.
- 7. Шведов В. И., Гринев А. Н. ЖОрХ, 1965. т. 1. с. 2228.
- 8. Allen F. H., Kennard O., Watson D. G. J. Chem. Soc. Perkin Trans II, 1987, p. sl.
- 9. Герр Р. Г., Яновский А. И., Стручков Ю. Т. Кристаллография, 1983, т. 28, № 5, c. 1029.

Армянский химический журнал, т. 43, № 5, стр. 332—336 (1990 г.)

УДК 547.814.1

ПРОИЗВОДНЫЕ ИЗОХРОМАНА

1Х. НЕКОТОРЫЕ СИНТЕЗЫ НА ОСНОВЕ 1-БРОМИЗОХРОМАНА

А. Г. САМОДУРОВА и Э. А. МАРКАРЯН

Институт тонкой органической химин им. А. Л. Миджояна АН Армянской ССР. Ереван

Поступило З IV 1989

Исследованы реакции бромнрования изохромана при действии ультразвука и превращения 1-бромизохромана в ; зличные функциональные производные-1-цианизохроман, 1-аминометилизохроман, изохроман-1-уксусную кислоту. Библ. ссылск 10.

В синтезе производных 1-замещенных изохроманов часто ключсвым продуктом является 1-бромизохрсман, на основе которого получают разнообразные функциональные производные, используемые в качестве синтонов для биологически активных соединений [1, 2]. 1-Бромизохроман (I), получаемый бромированием изохромана при ультрафиолетовом облучении, используют, как правило, в сыром виде. т. к. он при нагревании изомеризуется, что впервые было обнаружено при попытке повысить выход [3]. Оказалось, что 1-бромизохроман, как α-галоидэфир [4], при нагревании изомеризуется с образованием о-в-бромэтилбензальдегида [5], который получен также при действии на соединение I 48% бромистоводородной кислотой [6].

Настоящая работа посвящена исследованиям других доступных методов бромирования изохромана и его превращениям в различные функциональные производные. В частности, исследована возможность бромирования изохромана под действием ультразвука (УЗ) с учетом ранней работы по эффективности УЗ в реакции присоединения [7] и известное действие УЗ на молекулу брома [8].

В результате проведенных экспериментов установлено, что бромирование изохромана успешно протекает при действии УЗ, продукт же реакции в вакууме при температуре 100-145° изомеризуется в соединение II с высоким выходом. Строение полученного бромальде-